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AIDS case-definition, the criteria of persistent cough for
longer than 1 month or general lymphadenopathy should
not be used in patients with proven tuberculosis. With this
modification, the WHO clinical definition was 93%
specific, 55% sensitive, and had a positive predictive value
of 80% for HIV seropositivity.

We have confirmed the strong association between a
history of varicella zoster infection and HIV seropositivity in
another study' and therefore propose that “a history of
herpes zoster during the previous 5 years” replaces
“recurrent herpes zoster” as a minor criterion in the clinical
definition.

In other regions or countries, the diagnostic value of the
provisional WHO clinical case-definition may differ. The
positive predictive value of a definition for infection will be
higher in a population where the prevalence of HIV
infection is high. The specificity of the definition will be
higher in places that have few other diseases with AID S-like
clinical features (such as tuberculosis, malnutrition, cancer,
trypanosomiasis). In the department of internal medicine at
Mama Yemo Hospital all conditions were present to give a
high specificity and positive predictive value for a clinical
case-definition of AIDS. Indeed, among hospital inpatients,
HIV seroprevalence was very high and other diseases with
AIDS-like symptoms were rare.

For diagnostic purposes, laboratory confirmation of HIV
infection is highly desirable if it is available. Because the
main use of the provisional WHO clinical case-definition
will be surveillance of the disease, epidemiological criteria
such as being in a risk group were not included in this
definition.

Although our results encourage the use of the WHO
clinical case-definition for AIDS in Africa, expected
variation in HIV seroprevalence and disease expression

require that a similar evaluation be carried out in other
regions.
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Statistical Analysis

CONFIDENCE INTERVALS

C.J.BuLPITT

Department of Epidemiology, London School of Hygiene and
Tropical Medicine, London WCIE 7HT

MUCH of medical research involves the comparison of
two or more groups. The p or probability value for a
comparison between two groups indicates the long-term
probability that the groups originate from the same
population; if the p value is low it is unlikely that the groups
arise from the same population. The researcher may
therefore summarise the result of a study as “the difference
between the groups was not significant, p>0-05" or “the
difference was significant, p <0-05”. The precise p value
should be quoted to at least 2 decimal places, but even thenit
gives no information on the actual differences observed or
on the range of possible differences between the groups. The
confidence interval gives this range.

Medical research is concerned as much with estimation as
with hypothesis testing and, since repeated studies would
provide different estimates, we need to know an interval of
values that is likely to contain the true result.! Qur sample
statistic—for example, the mean difference—is our best
estimate of the result. However, this figure is only a single
result. If a second, third, or even a hundred such
comparisons were made, what would be the results? The
confidence limits (CL) for one comparison encompass a
range of values (the confidence interval [CI]) that is likely o
cover the true population value.

DEFINITION OF A CONFIDENCE INTERVAL

The confidence interval is a range of values that is likely to
cover the true but unknown value. In classic significance
testing the confidence interval is based on the concept of
repeated trials or studies—ie, with the 95% confidence
interval, if the study was repeated 100 times, the confidence
interval would be expected to include the true value on %
occasions. However, a reported CI either does or does not
include the true value.

USE OF THE CONFIDENCE INTERVAL

In 1973 Wulff? pointed out that confidence limits were
well known to everyone interested in statistics, but rarely
encountered in medical journals. Rothman provided
powerful support in 1978,* and many workers have since
advocated the use of confidence intervals and presented the
results of such calculations.*” Gardner and Altman® have
formulated a policy for the British Medical Journal—
namely, that “Confidence intervals, if appropriate to the
type of study, should be used for major findings in both the
main text of a paper and its abstract™.

The term confidence interval rather than confidence
limits is to be preferred. The term limits implies that values
are not possible beyond these and ignores the fact thatin 5
out of 100 studies the true values would be outside these
limits. Gardner and Altman also predicted that authors
would tend to selectively quote one limit rather than the
other and this has already happened. The confidence
interval cannot, by definition, be presented as a single figure.
For example, the 95% confidence interval for a mean should
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be represented as follows: mean x units, 95% Cl y to z units.

In an article on the use of ketanserin in the treatment of
traumatic vasospastic disease® the summary stated “Ninety-
five percent confidence intervals for difference between the
treatments, however, showed that finger systolic pressure
may be 80% better and rewarming time 256 seconds faster
after treatment with ketanserin than after placebo”. The
enthusiasm of the authors for ketanserin was apparent since
they only reported the upper confidence limits in the
summary. However, to be fair, I must say that they reported
the full 95% confidence intervals in the results section (as
-3%to +80% and —32 to + 256 seconds).

THE RELATION BETWEEN HYPOTHESIS TESTING AND
THE CONFIDENCE INTERVAL

Rothman emphasised that testing for statistical
significance and the reporting of a “significant” or “non-
significant” result may be useful in decision-making, but is
of little value in medical research where the problem is one of
estimation.® He pointed out that highly “significant” p
values may, in a large study, be associated with trivial and
biologically unimportant results. Similarly, in a small study
a“non-significant™ result may, if true, be of great biological
importance. The results of medical research must be
presented as a problem of estimation and the confidence
interval gives us a range of values compatible with the data.

Two problems .of presentation exist—firstly, when there
is a statistically significant finding to report; and, secondly,
when the authors judge the result to be negative. Let us
assume that the authors are comparing two groups. In the
first instance, when a statistically significant difference is
reported, the readers require not only the mean difference
between the two groups but also the range of outcomes with
which the result is compatible. When the result is negative,
the reader wishes to know whether the range of possible
outcomes is grouped close to zero or whether the interval
encompasses a wide range of positive or negative outcomes.

Whether the results of a study are statistically significant
or not, the authors should report a range of outcomes
compatible with their data—the confidence interval. When
the result is significant at the 5% level, the 95% confidence
interval will not encompass zero. When the resuit is “non-
significant” the confidence interval will include zero. The
interval may be wide when the data are very variable, or the
numbers studied are very small, or both. (In these instances
the power of the study to detect the observed difference
would be said to be low.) Having a greater number of
patients would narrow the Cl—for example, a fourfold
increase in each group would halve the width of the
confidence interval.

GENERAL PRINCIPLES FOR CALCULATING THE
CONFIDENCE INTERVAL

The appropriate CI and the level of confidence to be
tmployed must be discussed especially when multiple
Statistical tests are employed or subgroup analysis is
Performed. The biological significance of the interval must
also be considered.

The Appropriate Confidence Limit

' In comparison of two proportions or means, confidence
intervals may overlap for the individual sample proportions
or means, but the difference may still be statistically
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significantly different. The CI for the difference should be
presented when only two groups are considered. However,
itis often helpful to present also the CI for separate groups of
data, especially when large numbers of groups have to be
compared. '

Samanta and colleagues'® reported that 14% of 370
Asians with diabetes had proteinuria compared with 6% of
368 whites. In correspondence Cruickshank!! argued that
selection bias might be large in this study, and that
confidence intervals should also be calculated. He reported
the 99% CI at 9-4-186% for Asians and 2-8-9-2% for
whites (figure) and commented that these distributions are
only just apart. However, these are not the most appropriate
CIs. The 95% CI for the difference of 8% ranged from
3-4% to 12-7% and did not include zero (figure).

The Level of Confidence to be Employed

There is no rule that the 95% confidence limits should be
reported. A 90% or a 99% interval may be presented.
However, it must be understood that the 99% interval will
be much wider than the 95% interval, and the 95% interval
wider than the 90% interval.

90% limits tend to be employed in small studies to limit
the width of the confidence interval, and 99% limits in large
studies (usually in conjunction with a definition of statistical
significance at the 1% level) when the interval is narrow.
However, the 90% CI may be employed to give an
impression of greater than usual precision and the 99% in a
critical appraisal of the data. In the example in the figure,
99% rather 95% CIs were initially calculated. This strategy
tends to minimise the difference between the groups but
may be appropriate when many variables are being
examined. In order to avoid bias in overemphasising or
underestimating a difference, consistent use of the 95% CI
is to be preferred.

Subgroup Analysis

Analysis by subgroups may lead to different statistical
results in each subgroup. Even if the subgroups all show the
same result—for example, the same difference in prevalence
of proteinuria between male and female Asians and
whites—then the number of subjects and the levels of
significance will be decreased in all subgroups and the
confidence limits will be wider in the subgroups than in the
group as a whole. In the example above, the difference
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between all Asians and all whites was statistically significant,
but Cruickshank’s letter!! included the statement, “For the
sexes separately 99% confidence intervals overlap with
those for whites”—a good example of the subgroup analysis
hiding a possibly real difference.

A different problem occurs when the null hypothesis is
rejected for the group as a whole but is not rejected in one of
the subgroups. Analysis of subgroups provides little
evidence on when to accept or reject the null hypothesis.
Where possible, subgroup analysis should be avoided.

What to do ivhen Several Statistical Tests are Employed

When many statistical tests are employed, some say that
the confidence limits should be wider (eg, 99%). Multiple
testing arises in three main ways—repeated looks at the data
(eg, as the numbers increase during a study); examination of
several variables in the course of a single study; and the
performance of several independent studies. Iet us consider
the effect of each of these on the confidence interval.

Repeated looks at the data—This will happen in a long-term trial
when the ethical or steering committee examines the data each year.
The level of significance must be adjusted for the effect of repeated
looks. There is no argument over the necessity for such an
adjustment and the methods have been described.'? These methods
should be used to calculate 95% ClIs that take into account the
repeated looks at the data.

Several variables in a single study.—The examination of several
variables in one study may lead to a demand for a higher level of
significance for any one variable. Alternatively, multivariate
methods may be employed to see whether there is an overall
difference between two groups.® If such a difference is statistically
significant, then the individual variables may be compared: you can
either use Bonferroni’s adjustment* or require a fixed high level of
significance for each variable (eg, 1 %). In this case it seems best to
calculate the 99% confidence interval for one of many variables.

Many similar studies considered at once—The performance of
more than one study also theoretically increases the chance of one
false positive result. When a series of studies or trials is being
examined we can expect one or more to provide a false positive
result. (In reality, the tendency to perform small studies means that
falsely negative results are more likely.) When the type 1 () error
exactly equals 5%, then the probablity of a false positive resuit is
0-05, and the probability of a “correct” result is 0-95. For twenty
studies the probability of a false positive result is 1-0-952° = 0-64. It
is often assumed that we expect one false positive result in 20. In
fact, the likelihood of at least one false positive result in 20 studies is
0-64. Fortunately, positive results have type 1 errors often
appreciably less than p=0-05 (eg, p=0-01), so in well-designed
experimental studies such as randomised controlled trials false
positive results are very rare.'s False positive results are frequent in
observational studies, such as case-control studies, but there the
false results are usually due to bias from confounding variables and
the underlying statistical theory is still valid. The 95% CI is still the
most appropriate interval to report since a powerful bias cannot be
allowed for by adjusting the level of significance.

Biological importance of the confidence limits

The British Medical Journal’s campaign for confidence
intervals started in a controversial way. In his editorial
Langman?” quoted a mean difference in systolic blood
pressure between diabetics and non-diabetics of 6 mm Hg
(p<0:02, 95% CI 1-1-10-9 mm Hg, higher in diabetics)
and, asserted, “Not only is the mean difference of 6 mm Hg
rather small, however, and so unlikely to have practical
relevance—but we also say using the confidence interval that
there is only a 2-5% chance that the true difference in the
population at large is greater than 10-9 mm Hg. Again, thisis
a figure which is unlikely to be of clinical importance; so the
conclusion must be that we are unlikely to be missing a large
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and clinically important difference.” Many will not agree
with Langman that 10 or even 6 mm Hg is unimportant.
However, the confidence interval allows the reader to assess
the matter for himself or herself.

GRAPHICAL PRESENTATION OF THE CONFIDENCE
INTERVAL

Many figures provide mean results with bars sticking ow
above and below (and often sideways as well). Sometimes
the reader is not informed what these represent. Usually
they provide a graphical illustration of one standard
deviation (SD) either side of the mean or one standard error
of the mean (SEM) on either side. What can be understood
from the figure depends on the amount of overlap or
separation between the lines, the relative length of the
intervals, and the sample sizes. Browne'® concluded that the
only truly universal rule is that when SEM intervals overlap,
the means are never significantly different.

When two means are compared the best illustration is that
of the mean difference and bars showing the 95% CI for the
difference (figure). However, when we compare two
separate means with more than ten observations in each
group, if the confidence intervals do not overlap then the
means are significantly different. It would greatly simplify
the understanding of graphical presentation if authors
presented the 95% CI in a standard bar format.

CALCULATION OF CONFIDENCE INTERVALS

The following sections give brief descriptions of how to
calculate the confidence intervals for a mean result, the
difference between two mean results, a proportion, the
difference between two proportions, a regression coefficient,
and an estimate of relative risk. References are given for the
computation of other confidence intervals such as those fora
median, correlation coefficient, and so on.

The 95% CI for a single mean.—For normally distributed
quantitative data, let SD be the standard deviation, SE the standard
error, n the sample size, and X the mean. Then SE= 8D/ \/ nandfor
samples over 30 the 95% CI ranges from X— (196 x SE) to X+
(1-96 x SE). (For samples less than 30, the multiplier is not 1-96 and
must be taken from tables of the t distribution with nn— 1 degreesof
freedom.?*® The multiplier 2 is used below as an approximate 0
1-96.) .

The 95% CI for the difference berween two means—The
calculation is the same as above when normally distributed
quantitative data are compared. The 95% CI ranges from mean
difference — (2 x SED) to mean difference + (2 x SED) where SED
is the standard error of the difference and the number of
comparisons is more than 30. However, the SED differs according
to whether the differences are paired, as in a within-patient or paired
analysis, or whether the average difference is simply the difference
between two means (an unpaired analysis). Gardner and Altman®
have clearly shown how to make these calculations and have
provided examples.

The 95% CI for a proportion—A proportion, such as tht
proportion of subjects with proteinuria, does not represent
normally distributed data and the calculations differ from those fore
single mean. Again, let SE be standard error, n be the numberinthe
sample, and p be the proportion with a certain characteristic; thes
SE=./p(1 —p)/n and the 95% confidence interval ranges from
p—(1-96 x SE) to p+(1-96 x SE). The multiplying factor (1-96'
independent of sample size in this instance, but the calculaton
only approximate for small values of n x p.

The 95% CI for a difference between two proportions—Gardner
and Altman® have again provided a worked example of how t0
derive the CI for the difference between two proportions, both
the paired and in the unpaired case.

The 95% CI in regression analysis—Armitage®® has described
how to calculate the confidence interval for a regression coeffiier
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(slope, b). Again, the CI for a sample over 30 is given by
b+2 x SE (b) where SE(b) is the standard error of the slope b. For
smaller numbers, t tables have to be consulted and the degrees of
freedont are n—2. Useful sections in Snedecor and Cochran'®
indicate how to get CIs for correlation coefficients and provide the
basis for determining the CI of the differences between two
correlation or regression coefficients.

The 95% CI for a reduction in mortahty or morbidity rates in a
randomised controlled trial —During a randomised controlled trial,
events may be reduced by no more than 100% but can be increased
without limit. The confidence limits may therefore extend more
into a positive increase than a negative reduction and are said not to
be symmetrical around the observed result. For example, a —3%
reduction in mortality may have a 95% CI from —42% to +62%.
Katz and colleagues®® have provided the necessary methods of
calculation. .

The 95% ClI for relative risk—The relative risk (RR) from having
a certain factor (eg, smoking) may be determined either as the true
relative rate measured in a longitudinal study

_ incidence rate/100/yr in persons who are factor positive
incidence rate/100/yr in persons who are factor negative
or as an approximate result derived from a case-control study. Katz
etal® give the method for calculating the CI in the former case and
Armitage'® provides a method of determining the CI for an estimate
of relative risk in a case-control study.

The 95% CI when non-parametric statistics are employed —It is
not always possible, or appropriate, to calculate confidence intervals
for quantitative data that do not have a normal distribution.?
However, sometimes the data can be transformed so that they
assume a fairly normal distribution. It is also possible to calculate
confidence intervals for the median.?

GUIDELINES

1. The 95% confidence interval of the mean should be

reported as follows:
mean X units, 95% CI y to z units.

2. When two groups are compared the appropriate
confidence limits are usually the confidence limits for the
difference between the two results.

3. Itis neither misleading nor incorrect to report 90% or
99% confidence limits. However, confusion may be avoided
by using 95% and bias will be avoided from over-
emphasising or underestimating any difference.

4. Bias in reporting occurs if only the upper or lower
confidence limit is reported; therefore the full confidence
interval should always be reported.
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Conference

HUMAN GENETICS: FRAGILE SITES STILL A
MYSTERY

FRAGILE sites are a feature of human chromosomes
which has puzzled cytogeneticists for a long time. They are
visible as elongated, lightly staining regions between two
chromosome bands which are normally adjacent (see
accompanying figure). Such regions are visible only in
metaphases of cells that have been subjected to various
treatments known or suspected to interfere with DNA
replication. There are two types of fragile sites—rare and
common. Common sites are seen in cells from any
individual, but only in a small proportion of metaphases
(typically a few per cent); more than sixty such sites have
been mapped on the various human chromosomes. Rare
fragile sites are present only in some individuals (and
inherited in families) and are seen in a higher proportion of
metaphases (typically 20% and sometimes as high as 90%).
Nineteen rare fragile sites have been reported; much of the
interest in this subject is focused on the site close to the end
of the long arm of the X chromosome, in view of its very
strong association with the X-linked mental retardation
syndrome.!~

An EMBO workshop held in Marseille last September
provided an opportunity for medical geneticists,
cytogeneticists, and recombinant DNA scientists to
exchange views and pool knowledge on this intriguing
subject. The molecular nature of fragile sites remains
unknown: none of them has been cloned so far, and in spite
of the considerable number of probes mapped, in particular
to the q27—q28 bands of the X chromosome, none of these
has been shown to map in the X fragile site which lies
between these two bands. Fragile sites are a chromosomal
phenotype which requires a particular environment (culture

Diagram of the human X chromosome as seen by R-banding (left)
and two X chromosomes (right) displaying the Xq27 fragile site
(courtesy of M-G. Mattei).
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Abstract. Despite the ever larger choice of softwares
and statistical packages allowing fast and accurate
computation of binomial and Poisson confidence
limits, there is always a need for a simple and reliable
formula allowing non-computerized computations.
The method proposed in this paper is derived from
the Freeman and Tukey’s variance stabilizing trans-
formation for a random Poisson variable and

adjusted for giving the best fit with the exact Poisson
values. Despite its simplicity, allowing its use in any
circumstances, this method provides very satisfactory
results and a much better fit than classical formula
based on the normal approximation, even if a conti-
nuity correction is used. It allows computation of
Poisson confidence limits both for count or rates and
proportions.

Key words: Biostatistics, confidence intervals, Poisson approximation, Poisson count

Introduction

As the basis of statistical inference, computation
of confidence intervals is of major importance in
biostatistics and epidemiology. For dichotomous
outcomes, the most common in epidemiology, the
reference distribution is binomial. Provided that the
number of attempts » tends to infinite and p the
probability of success approaches 0, the Poisson
distribution constitutes a very satisfactory approxi-
mation of the binomial distribution [1-5].

Before statistical packages being available, com-
puting exact binomial distributions was fairly com-
plex, so that approximations were commonly used.
The simplest are based on the normal approximation
but do not provide satisfactory results when the
expected or observed number of events of interest
becomes small, i.e., lower than 10 [6-9] or 30 [10-11],
even if a continuity correction is used [1, 12]. Much
more accurate results can be derived from more
complex formula, e.g., those based on the F or X3
distributions [13], however such computations are
relatively troublesome if not made with the help of a
computerized program.

Despite the ever greater set of statistical packages
available today, there is undisputably a need for a
simple formula providing satisfactorily accurate
results when a computer or powerful calculator is not
available or when its use appears not time effective,
e.g. if only a single estimate is needed.

This paper proposes a handy method developed for
this purpose and compares the results with exact

computation and those obtained from normal
approximation.

Methods

If k is the number of events, during an observation
period and thus assumed to be a Poisson variable, vk
and preferably, vk + 0.5 are expected to roughly fit
the normal distribution [2]. It was the basis of the
square root variance stabilizing transformation for a
Poisson variable proposed by Freeman and Tukey
[14] from which it can be derived that the 100 (1-x)%
two-sided confidence interval, on the basis of k&
occurrences, is [15]:

2
(212‘“ + \/k+0.5:|:a) , (1)
€ being 0.5.

For k varying from 1 to 100 and using a program
specifically developed on the STATA® software [16],
we searched which values of ¢ led to the best fit with
the Poisson distribution, i.e., resulted in the lowest
sum of differences between the computed values and
the exact Poisson limits.

Moreover, we propose to use formula (1) to derive
confidence limits for rates and proportions by dividing
the computed values by the number n of trials (e.g.,
number of subjects, number of units of follow-up).

By using the optimized values of €, we computed the
95% two-sided confidence interval for 3 theoretical
proportions: 3, 10 and 70 per 1000, respectively. The
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results were compared to exact Poisson and binomial
limits, computed with the STATA® statistical package
[16], and to those obtained by the classical formula
based on the normal approximation [1]:
p(1-p)

: ()

p + Zl—a/2 n

Results

As shown in Figure 1, the values of € which provided
the best fit with the Poisson distribution, i.e. the
lowest sum of differences between the computed
values, were 0.48 for the lower bound and 0.46 for
the upper one. Therefore, for a two-sided interval,
formula (1) became:

0,800

—— lower bound
0,700 —s— upper bound
0,600

05003
0,400
0,300
0,200

0,100

0,000 -

2
(Z12—u Vit 0,02) for the lower limit, and

2
(212_“ —Vk+ 0.96) for the upper limit.
Both are not too far from the approximation initially
proposed by Freeman and Tukey (0.05 and 1,
respectively).

Table 1 shows the values obtained from these
formula compared with the exact 95% two-sided
Poisson limits when & varies from 1 to 100.

Table 2 compares the 95% two-sided confidence
intervals for a rate of 3, 10 and 70 per 1000,
computed by using the proposed approach and

04 041 042 0,43 0,44 045 046 0,47 048 049 05 0,51 052 0,53 0,54

Figure 1. Values of ¢ providing the best fit (the lowest sum of squares of differences) with the exact Poisson two-sided 95%

confidence interval: difference when k varies from 1 to 100.

Table 1. Exact 95% two-sided confidence limits for a Poisson count compared to those calculated by using the proposed
formula and the Freeman and Tukey approach when k varies from 1 to 100

k Exact Poisson confidence limits Proposed method ¢ = 0.46 Freeman and Tukey’s formula
and 0.48
1 [0.03-5.57] [0.001-5.66] [0.0004-5.73]
2 [0.24-7.23] [0.19-7.29] [0.19-7.36]
3 [0.62-8.77] [0.57-8.82] [0.57-8.88]
4 [1.09-10.24] [1.05-10.29] [1.04-10.34]
5 [1.62-11.67] [1.59-11.71] [1.58-11.76]
6 [2.20-13.06] [2.17-13.09] [2.16-13.15]
7 [2.81-14.42] [2.79-14.45] [2.77-14.50]
8 [3.45-15.76] [3.43-15.79] [3.42-15.84]
9 [4.12-17.08) [4.09-17.11] [4.08-17.16]
10 [4.80-18.39} [4.78-18.41] [4.76-18.46]
30 [20.24-42.83] [20.24-42.83] [20.23-42.87]
50 [37.11-65.92] [37.12-65.91] [37.10-65.96]
70 [54.57-88.44] [54.58-88.43] [54.56-88.48]

100 [81.36-121.63]

[81.38-121.61]

[81.36-121.66]
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Table 2. 95% confidence two-sided, limits for an observed number of events of 3, 10 and 70 for 1000 units of observation,
computed with the proposed approach and compared to the normal approximation (formula 2) and to exact Poisson and

binomial limits

0.003

0.010 0.070

Exact binomial

Exact Poisson
Proposed approach
Normal approximation

0.000619; 0.008742
0.000619; 0.008765
0.000574; 0.008821
-0.000390; 0.006390

0.004805; 0.018313
0.004796; 0.018389
0.004776; 0.018409
0.003833; 0.016167

0.054972; 0.087618
0.054568; 0.088440
0.054579; 0.088431
0.054186; 0.085814

formula (2) to exact binomial and Poisson limits
calculated by the STATA® software [6].

Discussion

Table 1 shows that substituting 0.5 by 0.48 and 0.46,
respectively, in the Freeman and Tukey’s formula
greatly improves the fit with the exact Poisson limits.
The improvement is more marked for the upper
bound estimates and constant over the 0-100 range
for the k values. This is confirmed by Figure 1 which
shows that the upper bound estimate is more sensitive
to the value of € than the lower bound estimate.

The only one limitation of the proposed approach
appears to be the marked underestimation of the lower
limit when £ is unity. It is observed both for the original
Freeman and Tukey’s formula and for the improved
one, the discrepancy being lower for the later.

Despite its intrinsic simplicity making computa-
tions by hand or with the help of a basic calculator
straightforward, the proposed formula gives consid-
erably better results than other ‘simple’ formulae
such as those based on the normal approximation.
For example, the confidence limits obtained from the
formula classically used for approximating confi-
dence intervals for a Poisson count (k + Z;_, /> x Vk)
were [3.43; 15.79] vs. [3.45; 15.76] for kK =8 and
[37.12; 65.91] vs. [37.11; 65.92] for k=50, the
approximation becoming acceptable only when k is
large and meaningless when below 5.

The same can be said for proportions and incidence
rates, the results obtained from the classical normal
approximation being acceptable only for the larger
values of k, i.e., 70 (Table 2). Again, it can be noted
(Table 2) that the estimates from the proposed
approach are quite close to the exact Poisson limits,
particularly for k=10 (p = 0.01). In the range of
selected values, the Poisson and binomial intervals
are almost perfectly superimposable, an expected
result since # is large and p remains small, i.e., <0.1.

As previously said, for the lowest value, i.e., k = 3
and p = 0.03, the proposed formula fits less satisfac-
torily the exact Poisson limits. However, even in this
case, the results are much better than those that
would have been obtained from the formula derived
from the normal approximation.

Finally, the main criticism that could be opposed to
the present proposal is about its practical relevance.
Indeed, as mentioned in the introduction, some indi-
rect methods based on the F or X? distribution [13]
give very satisfactory results, as good as or even better
than the proposed approach. However, in this case,
computation is relatively complex and tedious if not
using an ad hoc computerized program. Therefore,
giving that a large choice of statistical packages is
available today, some of them giving exact binomial
and Poisson intervals, the practical relevance of these
methods is today more than questionable.

On the other hand, there is still a niche for a simple
computation method allowing to derive one-sided
and two-sided confidence intervals without the need
of a computer or a specialized program. It could be
the case when working out of the office, travelling or
when the use of statistical packages is not justified by
other calculations and analyses. In these circum-
stances, the proposed approaches, because very
handy and giving much more reliable results, are to
be preferred to the classical formula based on the
normal approximation [2] and still proposed in the
majority of statistical textbooks.
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Approximate is Better than “Exact” for Interval Estimation

Alan AGRESTI and Brent A. COULL

For interval estimation of a proportion, coverage probabil-
ities tend to be too large for “exact” confidence intervals
based on inverting the binomial test and too small for the
interval based on inverting the Wald large-sample normal
test (i.e., sample proportion =+ z-score x estimated standard
error). Wilson’s suggestion of inverting the related score
test with null rather than estimated standard error yields
coverage probabilities close to nominal confidence levels,
even for very small sample sizes. The 95% score interval
has similar behavior as the adjusted Wald interval obtained
after adding two “successes” and two “failures” to the sam-
ple. In elementary courses, with the score and adjusted Wald
methods it is unnecessary to provide students with awkward
sample size guidelines.

KEY WORDS: Confidence interval, Discrete distribu-
tion; Exact inference; Poisson distribution; Small sample;
Score test.

1. INTRODUCTION

One of the most basic analyses in statistical inference is
forming a confidence interval for a binomial parameter p.
Let X denote a binomial variate for sample size n, and let
p = X/n denote the sample proportion. Most introductory
statistics textbooks present the confidence interval based
on the asymptotic normality of the sample proportion and
estimating the standard error. This 100(1 — a)% confidence
interval for p is

P+ za/2vP(1 = P)/n, (1)

where z. denotes the 1 — ¢ quantile of the standard normal
distribution. This is called the Wald confidence interval for
p, since it results from inverting the Wald test for p; that is,
the interval is the set of pg values having P value exceeding
o in testing Hy : p = po against H, : p # po using the
test statistic z = (p — po)/~+/P(1 — p)/n. Historically, this
is surely one of the first confidence intervals proposed for
any parameter (see, e.g., Laplace 1812, p. 283).

To avoid approximation, most advanced statistics text-
books recommend the Clopper—Pearson (1934) “exact” con-
fidence interval for p, based on inverting equal-tailed bino-

Alan Agresti is Professor, Department of Statistics, University of Florida,
Gainesville, FL 32611-8545 (E-mail: aa@stat.ufl.edu). Brent A. Coull is a
post-doc, Department of Biostatistics, Harvard School of Public Health,
Boston MA 02115. This work was partially supported by a grant from the
National Institutes of Health. The authors thank the referees and Thomas
Santner for helpful suggestions.

(© 1998 American Statistical Association

of Binomial Proportions

mial tests of Hy : p = pp. It has endpoints that are the
solutions in pg to the equations

> ( Z )plg(l —po)"* = a/2
k=z
and

g (%)== a2

except that the lower bound is O when = = 0 and the upper
bound is 1 when z = n. This interval estimator is guar-
anteed to have coverage probability of at least 1 — o for
every possible value of p. When =z = 1,2,...,n — 1, the
confidence interval equals

n—xz+1

-1
£UF‘Q:D,2(n—w+1),1—04/2 :|

1+

-1
n—x

sPs {1 * (% + 1) Fa(z41) 2(n—a),a/2
where F, ;. denotes the 1 — ¢ quantile from the F' distri-
bution with degrees of freedom a and b. Equivalently, the
lower endpoint is the «/2 quantile of a beta distribution
with parameters x and n — x + 1, and the upper endpoint is
the 1 — «/2 quantile of a beta distribution with parameters
z+1 and n—z. Letters to the editor from J. Klotz and from
L. Leemis and K. S. Trivedi in the November 1996 issue of
this journal (p. 389) showed how simple it is to calculate
this interval using Minitab or S-Plus.

A considerable literature exists about these and other,
less common, methods of forming confidence intervals for
p. Santner and Duffy (1989, pp. 33-43) and Vollset (1993)
reviewed a variety of methods. It has been known for some
time that the Wald interval performs poorly unless n is
quite large (e.g., Ghosh 1979, Blyth and Still 1983). The
Clopper—Pearson exact interval is typically treated as the
“gold standard” (e.g., Bohning 1994; Leemis and Trivedi
1996; Jovanovic and Levy 1997; and most mathematical
statistics texts). However, this procedure is necessarily con-
servative, because of the discreteness of the binomial distri-
bution (Neyman 1935), just as the corresponding exact test
(without supplementary randomization on the boundary of
the critical region) is conservative. For any fixed parameter
value, the actual coverage probability can be much larger
than the nominal confidence level unless n is quite large,
and we believe it is inappropriate to treat this approach as
optimal for statistical practice.

A compromise solution is the confidence interval based
on inverting the approximately normal test that uses the
null, rather than estimated, standard error; that is, its
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endpoints are the pg solutions to the equations (p —
p0)/v/Po(1 — po)/n = £24/9. This confidence interval, ap-
parently first discussed by Edwin B. Wilson (1927), has the
form

(54 2222 B =51+ 2 Al ) 1+ 22 /)
(2)

This inversion of what is the score test for p is called the
score confidence interval. (Score tests, and in particular
their standard errors, are based on the log likelihood at the
null hypothesis value of the parameter, whereas Wald tests
are based on the log likelihood at the maximum likelihood
estimate; see, e.g., Agresti 1996, pp. 88-95.) This article
shows that the score confidence interval tends to perform
much better than the exact or Wald intervals in terms of
having coverage probabilities close to the nominal confi-
dence level. It can be recommended for use with nearly all
sample sizes and parameter values. In addition, we show
that a simple adaptation of the Wald interval also performs
well even for small samples.

At first glance, the score confidence interval formula
seems awkward to interpret, compared to (1). Letting z =
Z4/2, however, the midpoint of this interval is the weighted

‘average
N n N 1 22
P\q + 22 2\n+22)’

which falls between p and 1/2, with the weight given to
p approaching 1 asymptotically. This midpoint shrinks the
sample proportion towards .5, the shrinking being less se-
vere as n increases. The coefficient of z in the term that
is added to and subtracted from this midpoint to form the
score confidence interval has square equal to

ool O

This has the form of a weighted average of the variance
of a sample proportion when p = p and the variance of a
sample proportion when p = 1/2, using n + 22 in place of
the usual sample size n.

2. COMPARING ACTUAL COVERAGE
PROBABILITIES TO NOMINAL
CONFIDENCE LEVELS

For a fixed value of a parameter, the actual coverage prob-
ability of an interval estimator is the (a priori) probability
that the interval contains that value. In many cases, such
as with discrete distributions, this varies according to the
parameter value. In statistical theory, the confidence coeffi-
cient is defined to be the infimum of such coverage proba-
bilities for all possible values of that parameter. Most practi-
tioners, however, probably interpret confidence coefficients
in terms of “average performance” rather than “worst pos-
sible performance.” Thus, a possibly more relevant descrip-
tion of performance is the long-run percentage of times that
the procedure is correct when it is used repeatedly for a va-
riety of data sets in various problems with possibly different
parameter values.

For any confidence interval procedure for estimating p,
the actual coverage probability at a fixed value of p is

Calp) = " 1(h,) (’,;‘)m —pH,
k=0

where I(k, p) equals 1 if the interval contains p when X = k
and equals O if it does not contain p. We summarize this,
using the alternative description of performance, by aver-
aging over the possible values that p can take. We obtained
results C,, = fol Cn(p)g(p)dp for three beta densities g(p)
for this averaging: (1) the uniform distribution (mean = .50,
std. dev. = 1/4/12 = .29); (2) bell-shaped with values rel-
atively near the middle (mean = .50, std. dev. = .10); (3)
skewed with values relatively near 0 (mean = .10, std. dev.
= .05) or, by symmetry, near 1. Due to space considerations,
we report results here mainly for the first case, but similar
results occurred in the other two cases. Though this eval-
uation may suggest a Bayesian approach to inference, we
restrict attention in this article to comparing the three stan-
dard methods decribed previously, in which the user makes
no assumption about such a distribution for p.

Table 1 shows the mean of the actual coverage probabili-
ties for the uniform averaging of the parameter values (i.e.,
C, with g(p) =1, 0 < p < 1) at various sample sizes, for
nominal 95% Wald, score, and exact confidence intervals
(the three other methods listed in that table are discussed

Table 1. Mean Coverage Probabilities of Nominal 95% Confidence Intervals for the Binomial Parameter p, with Root Mean
Square Errors in Parentheses, for Sampling p from a Uniform Distribution

Method n=25 n=15 n= 30 n =50 n= 100
Exact .990 .980 .973 .969 .965
(.041) (.031) (.026) (.022) (.017)

Score .955 .953 .952 .952 .951
(.029) (.019) (.014) (.012) (.008)

Wald .641 .819 .875 .901 .922
(.400) (.238) (.170) (.133) (.094)

Wald with ¢ .664 .837 .886 .905 .926
(.391) (.233) (.167) (.131) (.093)

Mid-P .978 .964 .958 .955 .953
(.033) (.021) (.017) (.013) (.010)

Continuity-corrected .987 979 973 .969 .965
Score (.039) (.030) (.025) (.021) (.016)

120
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in Section 4). The mean actual coverage probabilities for
the Wald interval tend to be much too small. On the other
hand, the exact interval is very conservative. For instance,
for this method, C,, = .990 when n = 5, .980 when n =
15, and .973 when n = 30. By contrast, C,, for the score
method is close to the nominal confidence level, even for n
= 5 where it is .955. Figure 1, which plots C,, as a function
of n for the three interval estimators with the uniform and
skewed beta weightings, illustrates their performance. Sim-
ilar results were obtained with the bell-shaped weighting
and using .90 nominal confidence coefficient, but are not
reported here.

To describe how far actual coverage probabilities typi-
cally fall from the nominal confidence level, Table 1 also

reports \/ fol(Cn(p) —.95)2dp, the uniform-weighted root
mean squared error of those probabilities about that confi-
dence level. These values indicate that the variability about
the nominal level is much smaller for the score confidence
interval than for the Wald or exact confidence intervals. The
improved performance of the score method relative to the
Wald method is no surprise and simply adds to other evi-
dence of this type accumulated over the years (e.g., Ghosh
1979; Vollset 1993). Some readers, though, may be sur-
prised at just how much better the score method does than
the exact method. The exact interval remains quite conser-
vative even for moderately large sample sizes when p tends
to be near O or 1. The Wald interval is also especially inad-
equate when p is near O or 1, partly a consequence of using
p as its midpoint when the binomial distribution is highly
skewed.

Even though the score intervals tend to have consider-
ably higher actual coverage probabilities than the Wald in-
tervals, they are not necessarily wider. In fact, unless the
sample proportions fall near 0 or 1, they are shorter. Di-
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rect comparison of the formulas for the two interval widths
yields that the score interval is narrower than the Wald
interval whenever p falls within \/(n + 22)/(8n + 422) of
1/2. In particular, since this term decreases in the limit to-
ward 1/4/8 = .35 as n increases or |z| decreases, the score
interval is narrower than the Wald interval whenever p falls
in (.15, .85) for any n and any nominal confidence level.
See Ghosh (1979) for additional results about the relative
lengths of the two types of interval. This comparison has
limited relevance, since the actual coverage probabilities of
the two methods differ. We mention this, however, to stress
that the inadequacy of the Wald approach is not that the
intervals are too short.

For fixed n and p, the expected width of an interval es-
timator is a useful measure of its performance. Figure 2
illustrates the relative sizes of the expected widths for the
nominal 95% Wald, score, and exact intervals by plotting
them as a function of p, for n = 15. For small n, the score
intervals tend to be much shorter than exact intervals. The
narrowness of the Wald intervals as p approaches 0 or 1
reflects the fact that when x = 0 or n, that interval is de-
generate at 0 or at 1. By contrast, when =z = 0, the score
interval is [0,2%/(n + 2%)] = [0, 3.84/(n + 3.84)] and the
exact interval is [0, 1 — (.025)'/™], which is approximately
[0, —log(.025)/n] = [0, 3.69/n]; the latter shows an exten-
sion of the “rule of 3/n” (Jovanovic and Levy 1997) from
the .95 upper confidence bound to .95 confidence limits.

Is anything sacrificed by using the score intervals? Well,
since they are not “exact,” they are not guaranteed to have
coverage probabilities uniformly bounded below by the
nominal confidence level, and their actual confidence co-
efficient (the infimum of such probabilities) is, in fact, well
below it. Vollset’s (1993) plots of the coverage probabilities
as a function of p, for various methods, are illuminating for
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Figure 1. Mean Coverage Probability as a Function of Sample Size for the Nominal 95% Exact (E), Score (S), and Wald (W) Intervals, When p
has (a) a Uniform (0,1) Distribution and (b) a Beta Distribution with . = .10 and o = .05.
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Figure 2. A Comparison of Expected Widths for the Nominal 95%
Exact, Wald, and Score Intervals When n = 15.

describing the behavior of the methods. The score method
has two very narrow regions of values for p, one near 0 and
one near 1, at which the actual coverage probability falls
seriously below the nominal confidence level, and this badly
affects the actual confidence coefficient. These regions get
closer to 0 and to 1 as n increases. For n = 10 with nominal
95% confidence intervals, for instance, there is a minimum
coverage of .835 at p = .018 and p = .982, whereas at n =
100, there is a minimum coverage of .838 at p = .002 and
p = .998.

We now explain why this happens. There is a region
of values [0,7) for p that falls in the score confidence
interval only when X = 0. The upper bound r of this
region is the lower endpoint of the confidence interval
when X = 1, which for large n is approximately (1 +
2%/2 — 23/4+ 22/2)/n. The coverage probability just be-
low r is approximately P(X = 0) = [1 — (1 + 22/2 —
2VA+22/2) /0] ~ exp{—(1 + 22/2 — /4 + 22/2)}. The
analogous remark applies for values of p near 1. This lim-
iting coverage probability is .800 for nominal 90% inter-
vals, .838 for 95% intervals, and .889 for 99% intervals.
See Huwang (1995) for related remarks. In particular, the
actual confidence level does not converge to the nominal
level as n increases.

Though this may seem problematic, the portion of the [0,
1] parameter space over which the actual coverage proba-

bility drops seriously below the nominal confidence level
is small. Table 2 illustrates. The proportion of the parame-
ter space for which the coverage probability of the nominal
95% score interval falls below .90 is no more than .01 when
n > 20. That table also shows that the proportion of param-
eter values for which the coverage probability is within .02
of .95 is much higher for the score than the exact interval.
In fact, the score coverage probability is closer than the ex-
act coverage probability to .95 over more than 90% of the
parameter space, for the sample sizes reported.

3. THE “ADD TWO SUCCESSES AND TWO
FAILURES” ADJUSTED WALD INTERVAL

The poor performance of the Wald interval is unfortu-
nate, since it is the simplest approach to present in elemen-
tary statistics courses. We strongly recommend that instruc-
tors present the score interval instead. Santner (1998) makes
the same recommendation. Of course, many instructors will
hesitate to present a formula such as (2) in elementary
courses. The shrinkage representation of the score approach
suggests, however, that for constructing 95% confidence in-
tervals (for which 2% = 1.96% ~ 4 and the midpoint of the
score interval is (X + 22/2)/(n + 2%) = (X +2)/(n + 4))
an instructor will not go far wrong in giving the following
advice: “Add two successes and two failures and then use
the Wald formula (1).” That is, this “adjusted Wald” interval
uses the usual simple formula presented in such courses, but
with (n + 4) trials and point estimate p = (X + 2)/(n + 4).

The midpoint of this interval, 5 = (X + 2)/(n + 4), is
nearly identical to the midpoint of the 95% score interval.
It is identical to the Bayes estimate (mean of the posterior
distribution) for the beta prior distribution with parame-
ters 2 and 2, which has mean .50 and standard deviation
.224 and which shrinks the sample proportion toward .50
somewhat more than does the uniform prior. This simple
adjustment to the ordinary Wald interval changes it from
highly liberal to slightly conservative, on the average, and
a bit more conservative than the score method. Figure 3 il-
lustrates, showing the mean actual coverage probability C,,
for the nominal 95% Wald and adjusted Wald intervals as a
function of n, for the uniform and skewed weightings of p.
The adjusted Wald confidence interval behaves surprisingly
well, even for very small sample sizes.

Figure 4 shows the actual coverage probabilities as a
function of p for the Wald, adjusted Wald, and Clopper—
Pearson exact intervals when n = 5 and n = 10. The im-

Table 2. Proportion of Parameter Space for which (a) Nominal 95% Score Interval has Actual Coverage Probability
Below .90; (b) Nominal 95% Score and Exact Intervals Have Actual Coverage Probabilities
Between .93 and .97, (c) Actual Coverage Probability is Closer to .95 for Score Interval than Exact Interval

Coverage Coverage closer
Score coverage .93-.97 to .95 for Score
n Prob. below .90 Score Exact than Exact

5 .042 463 .000 .944
10 .019 .608 .077 .963
20 .010 .792 .297 .925
30 .006 .882 .395 977
50 .003 .939 615 .961
100 .002 .968 .830 .961
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Figure 3. Mean Coverage Probability as a Function of Sample Size for the Nominal 95% Wald (W) and Adjusted Wald (A) Intervals, When p
has (a) a Uniform (0,1) Distribution and (b) a Beta Distribution with . = .10 and o = .05.

provement of the adjusted Wald interval over the ordinary ing spikes with seriously low coverage near p = 0 and 1.
Wald interval is dramatic. The adjusted Wald interval also This is because this interval’s rather crude bounds contain
has the advantage, relative to the score interval, of not hav- 0 when X = 0 or 1 and contain 1 when X = n—1 or n. For
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Figure 4. A Comparison of Coverage Probabilities for the Nominal 95% Wald, Adjusted Wald, and Exact Intervals.
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instance, the minimum coverage probability for the nominal
95% adjusted Wald interval is .917 for n = 10 and never
falls below .92 for n > 10. The proportion of the parameter
space for which the actual coverage probability falls within
.02 of .95 is slightly less than reported in Table 2 for the
score interval, but the proportion of times its actual cov-
erage probability is closer to .95 than the exact interval is
still at least .94 for the sample sizes reported in that table.
See Chen (1990) for results about coverage properties of
related intervals using Bayes estimates as midpoints.

Introductory statistics textbooks have an awkward time
with sample size recommendations for the Wald inter-
val. Most simple recommendations tend to be inadequate
(Leemis and Trivedi 1996). Our results suggest that if one
tells students to add two successes and two failures be-
fore they form the Wald 95% interval, it is not necessary to
present such sample size rules, since the “add two successes
and two failures” confidence interval behaves adequately
for practical application for essentially any n regardless of
the value of p.

One can use the adjusted Wald interval without regard-
ing its midpoint p = (X +2)/(n +4) as the preferred point
estimate of p. However, this rather strong shrinkage toward
.5 might often provide a more appealing estimate than p.
The mean square error of p equals [np(1 — p) + 16(p —
5)2]/(n + 4)%, which is smaller than that of $ when p is
within v/3n? + 8n + 4/(6n + 4) of .5; this interval of val-
ues of p decreases from (.113, .887) to (.211, .789) as n in-
creases. Interestingly, Wilson (1927) mentioned this shrink-
age estimator as a reasonable alternative to the sample pro-
portion or the Laplace estimator (X + 1)/(n + 2). Letting
S denote X, the number of successes, Wilson stated, “As
the distribution of chances of an observation is asymmet-
ric, it is perhaps unfair to take the central value as the best
estimate of the true probability; but this is what is actually
done in practice. .. . Those who make the usual allowance
of 20 for drawing an inference would use (S +2)/(n+4).”

In recognition of his pioneering work, predating the fa-
mous articles by Neyman and Pearson on confidence inter-
vals, we suggest that statisticians refer to p = (X +2)/(n+

Coverage Coverage

Probability Probability
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0.70 T T T T T U 0.70 T T

4) as the Wilson point estimator of p and refer to the score
confidence interval for p as the Wilson method. See Stigler
(1997) for an interesting summary of Edwin B. Wilson’s ca-
reer. Other highlights included service as the first professor
and head of the Department of Vital Statistics at Harvard
School of Public Health in 1922, the Wilson—Hilferty nor-
mal approximation for the chi-squared distribution in 1931,
and the Wilson—Worcester introduction of the median lethal
dose (LD 50) in bioassay.

4. OTHER INTERVAL ESTIMATION
METHODS FOR p

Although the focus of this article is comparison of the
Wald, score, and exact intervals, which are the methods
commonly presented in statistics textbooks, we next briefly
discuss some alternative methods. Some elementary text-
books (e.g., Siegel 1988), perhaps recognizing the poor per-
formance of the Wald intervals, suggest using ordinary ¢
confidence intervals for a mean for interval estimation of a
proportion. These intervals are wider than the Wald inter-
vals, of course, but we found that mean coverage probabil-
ities are still seriously deficient. Table 1 illustrates for the
uniform weighting.

Other, more complex, methods exist for constructing ex-
act confidence intervals, such as presented by Blyth and
Still (1983) and Duffy and Santner (1987). Our evaluations
of these intervals indicated that they perform better than the
Clopper—Pearson intervals but not as well as the score in-
tervals, still showing considerable conservatism. To reduce
the conservativeness inherent in exact methods for discrete
distributions, many authors recommend using tests and con-
fidence intervals based on the mid-P value, namely half the
probability of the observed result plus the probability of
more extreme results (Lancaster 1961). The mid-P confi-
dence interval is the inversion of the adaptation of the ex-
act test that uses the mid-P value. Results in Vollset (1993)
suggest that the mid-P interval tends to perform well but
is somewhat more conservative than the score interval, typ-
ically having actual coverage probability greater than (and
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never much less than) the nominal confidence level. Our
evaluations agreed with this, and are also illustrated in Ta-
ble 1. We feel this is a reasonable method to use, especially
if one is concerned that p may be very close to 0 or 1. It is
more complex computationally than the score and adjusted
Wald intervals, but like those intervals it has the advantage
of being shorter than the exact interval.

Yet another alternative method is a continuity-corrected
version of the score interval, based on the normal continu-
ity correction for the binomial. This interval approximates
the Clopper—Pearson interval, however, and our evaluations
and results in Vollset (1993, Fig. 2) suggest that it is often
as conservative as the exact interval itself. Again, Table 1
illustrates, and we do not recommend this approach.

Finally, we mention two other methods that perform well.
The confidence interval based on inverting the likelihood-
ratio test is similar to the score interval in terms of how it
compares with the exact interval, but it is more complex to
construct. Not surprisingly, Bayesian confidence intervals
with beta priors that are only weakly informative also per-
form well in a frequentist sense (see, e.g., Carlin and Louis
1996, pp. 117-123).

In deciding whether to use the score interval, some may
be bothered by its poor coverage for values of p just below
the lower boundary of the interval when X = 1 and just
above the upper boundary of the interval when X =n — 1.
One could then use an adapted version that replaces the
lower endpoint by —log(l — a)/n when X = 1 and the
upper endpoint by 1+ log(1 — a)/n when X =n —1. (e.g.,
at p=—log(l—a)/n, P(X =0)=[1+log(l—a)/n|" ~
1 — o) This adaptation improves the minimum coverage
considerably. For instance, the nominal 95% interval has
minimum coverage probability converging to .895 for large
n, which is the large-sample coverage probability at p just
below the lower endpoint of the interval when X = 2.

5. CONCLUSION AND EXTENSIONS

The Clopper—Pearson interval has coverage probabilities
bounded below by the nominal confidence level, but the
typical coverage probability is much higher than that level.
The score and adjusted Wald intervals can have coverage
probabilities lower than the nominal confidence level, yet
the typical coverage probability is close to that level. In
forming a 95% confidence interval, is it better to use an ap-
proach that guarantees that the actual coverage probabilities
are at least .95 yet typically achieves coverage probabilities
of about .98 or .99, or an approach giving narrower inter-
vals for which the actual coverage probability could be less
than .95 but is usually quite close to .95?7 For most appli-
cations, we would prefer the latter. The score and adjusted
Wald confidence intervals for p provide shorter intervals
with actual coverage probability usually nearer the nominal
confidence level. In particular, even though the score and
adjusted Wald intervals leave something to be desired in
terms of satisfying the usual technical definition of “95%
confidence,” the operational performance of those methods

is better than the exact interval in terms of how most prac-
titioners interpret that term.

Results similar to those in this article also hold in other
discrete problems. For instance, similar comparisons apply
for score, Wald, and exact confidence intervals for a Pois-
son parameter u, based on an observation X from that dis-
tribution. Figure 5 illustrates, plotting the actual coverage
probabilities when the nominal confidence level is .95. Here,
the score interval for y results from inverting the approx-
imately normal test statistic z = (X — p)/+/fo, the Wald

interval results from inverting z = (X — po)/v/X, and the
endpoints of the exact interval, (1/2)(x3 X..025° xg( X +1)7_975),
result from equating tail sums of null Poisson probabilities
to .025 (Garwood 1936; for n independent Poisson obser-
vations, Xi,...,X,, the same formulas apply if one lets
X =Y X; and p = F(X) = nE(X;)). For another discrete
example, see Mehta and Walsh (1992) for a comparison of
exact with mid- P confidence intervals for odds ratios or for
a common odds ratio in several 2x2 contingency tables.

Exact inference has an important place in statistical infer-
ence of discrete data, in particular for sparse contingency
table problems for which large-sample chi-squared statis-
tics are often unreliable. However, approximate results are
sometimes more useful than exact results, because of the
inherent conservativeness of exact methods.

[Received February 1997. Revised November 1997.]
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Guinness, Gosset, Fisher, and
Small Samples

Joan Fisher Box .

Abstract. The environment in which W. S. Gosset (Student) worked as a
brewer at Guinness’ Brewery at the turn of the century is described fully
enough to show how it forced him to confront problems of small sample
statistics, using the techniques he picked up from Karl Pearson. R. A.
Fisher’s interest in human genetics prompted biometrical applications of
his mathematical training even as an undergraduate. As soon as he consid-
ered Student’s work, he perceived its importance and began to extend its
applications. Consequently, when he started work at Rothamsted Experi-
mental Station in 1919, he was ready to respond to the experimental
problems by developing statistical theory along with appropriate methods
of experimental analysis and design.

Key words and phrases: Gosset, Student’s ¢, Fisher, small samples, analysis

of variance, correlation.

The two men I want to write about are W. S. Gosset,
better known as Student, who invented Student’s ¢
test, and R. A. Fisher, who took up Gosset’s work and
extended and generalized it so greatly. I am interested
in the circumstances that forced them to break new
ground where they did. Gosset was a brewer, Fisher a
mathematics student when he started. Why should
they have invented statistical methods for experi-
menters? How did they pinpoint the problem area
where human thought was dammed back and baffled?
Sometimes the most important step in creative work
is simply to ask the right question. The question
nobody thinks to ask—that may seem too trivial, or
too difficult—but which, once asked, must be an-
swered. Gosset asked the first question and found the
answer, despite his lack of mathematics. Fisher made
it elegant and went on from there. Why did they
persist while experts in the field ignored or belittled
their work? Mathematicians only slowly realized that
an intellectual revolution was taking place through
the new inductive uses of mathematics. Even now,
people often think statistics can be reduced to deduc-
tion—that once you have learned the theory you
understand statistics. Gosset and Fisher believed
otherwise. They believed that understanding of induc-
tive reasoning is acquired through learning to deal

Joan Fisher Box is the author of “R. A. Fisher, the Life
of a Scientist” (Wiley, New York, 1978) and lives at
230 North Hillside Terrace, Madison, Wisconsin
53705.
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with real data inductively, knowing that practical
action will be taken on the basis of your conclusions.
Knowing the theory is not the answer, but it can help
you find the answer to statistical problems.

One of the first things you learn in statistics is to
distinguish between the true parameter value of the
standard deviation ¢ and the sample standard devia-
tion s. But at the turn of the century statisticians did
not. They called both ¢ and s the standard deviation.
They always used such large samples that their esti-
mate really did approximate the parameter value, so
it did not make much difference to their results. But
their methods would not do for experimental work.
You cannot get samples of thousands of experimental
points. Any experiment large enough would spread so
far in time or space that extraneous variation would
drown out any effects of treatment you might be

‘looking for.

My story begins with Gosset, for he came first in
time. Born in 1876, the oldest of five children of a
Colonel in the Royal Engineers, Gosset entered the
Royal Military Academy, Woolwich, to become a
Royal Engineer himself before being rejected on ac-
count of his poor eyesight. He was very bright, with
high ideals, and an impish sense of humor. A most
appealing character—quiet, unaffectedly friendly,
helpful, patient, loyal—everybody liked and trusted
him. In the very quarrelsome world of statistics, he
managed to be on friendly terms with everyone. He
was never employed as a statistician. After school at
Winchester and New College, Oxford, where he won
a first class degree in chemistry in 1899, he took a job
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W. S. Gosset, 1899

as brewer at Guinness’ Brewery in Dublin. He was
Head Brewer when he died in 1937. It was the envi-
ronment at Guinness’ that made him a statistician.
That is what we look at next.

One hundred years ago, in 1886, there was eager
buying on the London Stock Exchange when Guin-
ness’ was incorporated as Arthur Guinness Son and
Company, Ltd. and sold to the public for six million
pounds. Until then, it had been a family firm, run
almost exclusively by Guinness and one other family.
The first Arthur Guinness and son had started brew-
ing at St. James’ Gate on the southwest of Dublin in
1759. Forty years later they were getting a foothold in
the London market, selling the brown beer called
“porter” because of its popularity with London por-
ters. Later, Guinness offered what they called “a stou-
ter porter” or stout. As this gained in popularity, it
came to be known simply as Guinness. All through
the century Guinness kept extending its market and
building and extending the brewery to deal with grow-
ing trade. By the end of the century, it was the largest
brewery in the world, producing over 1.5 million bulk
barrels a year for distribution in England and Ireland
and for export to the ends of the earth.

Ireland is a small island and, all through the barley-
growing districts of the south and east, Guinness
commissioned maltsters to buy local barley and malt
it exclusively for the St. James’ Gate brewery. Their
commission maltsters were prosperous citizens of in-
fluence in their own areas.

After incorporation, Cecil Guinness, head of the
firm, became Chairman of the Board and Christopher
Digges La Touche (one of two brewers taken in from
outside the family in the 1870s) was made Managing
Director. Although Guinness himself was apparently
removed from the running of the brewery, it was he,
with La Touche’s advice, who made all the important
decisions. In particular, Guinness, by then the first
Lord Iveagh, and La Touche together brought about
a quiet revolution around the turn of the century.
They had decided to make the brewing scientific. Up
to that time the brewers had learned as apprentices to
know every process and to follow meticulously the
traditional practices—all the black magic of brewing,
as it were. Now, Guinness espoused a new approach
and invested a lot in it.

First, they began to hire a series of the brightest
young men they could find—all of them newly gradu-
ated from Oxford or Cambridge University with first
class degrees in chemistry—and to appoint them brew-
ers. Other breweries employed the occasional chemist
in research laboratories, but Guinness brought in
these chemists as their top management, in positions
previously occupied by the Guinness family. As soon
as each new brewer completed 2 years as a junior,
learning his duties under senior brewers in every de-
partment, he was put in charge of a section of the
brewery and research work. Guinness brewers were
awfully grand. Stella Cunliffe (1976) recalls how, on
arrival at St. James’ Gate as a newly-hired statistician
in 1947, she was instructed how to dress and how to
behave in her new work. If she was lucky enough to
meet a brewer in the corridor, she was told, she was
on no account to recognize him but to lower her eyes
until he had passed.

So, the new brewers were appointed: 1893, Thomas
Case; 1895, Alan McMullen; 1897, Arthur Jackson;
1899, E. G. Peake; October 1899, W. S. Gosset; Janu-
ary 1900, Geoffrey Phillpotts; and so on. Until they
married, they lived together at the Guinness house for
unmarried brewers at St. James’ Gate. At work, they
ate together in the brewers’ dining room. Off duty,
they seem to have been very active outdoors; they
skied, fished, sailed, golfed, cycled, and walked in the
Wicklow Hills, and visited and read and talked to-
gether. In some ways, their life was like an extension
of college.

As they got involved in research, of course, they
needed new facilities. Case and McMullen started with
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chemical analyses to try to identify and quantify what
it was that gave hops and barley their brewing quality.
Until then the criteria were qualitative, e.g., the “rub”
of hops or the “texture” of barley, which might be
“milky” or “steely.” So, in addition to the brewers’
and chemists’ laboratories, a new Guinness Research
Laboratory was opened in 1900, headed by the most
distinguished brewing chemist alive, Horace Brown.

The next questions concerned the raw materials,
barley and hops. Where could they be got best and
cheapest? What varieties of barley and hops, what
cultivation and manuring, what conditions of drying
and storing gave the best malting value of barley and
the best brewing value of malt and hops? So, in 1899,
Guinness started a program of barley plot experiments
through Henry Bennett, their Commission Maltster
at Ballinacurra, County Cork. He selected the farms
and supervised the experiments to compare different
varieties and cultivations and fertilizers. The variety
trials seemed most promising and these experiments
were extended, with cooperation from other maltsters
and farmers in every barley-growing district in Ire-
land. The new Ministry of Agriculture in Ireland was
officially in charge and in 1904 appointed a barley
expert, Herbert Hunter, who made his headquarters
with Henry Bennett. Together they toured the barley
experiments several times during the growing season.
The Grand Tour was shortly before harvest—Grand
because brewers from Dublin as well as Bennett and
Hunter attended this tour which lasted 2 weeks; they
spent long days in the barley fields with the farmers
and local maltsters (and were entertained in style by
the maltsters afterward), while they saw for them-
selves the condition of experimental plots and of the
barley that would soon be harvested and sent to
St. James’ Gate.

In 1901, an experimental malthouse was built at
St. James’ Gate, of a suitable size for malting each
experimental batch of barley separately. In 1903, an
experimental brewery was opened there. Now, barley

grown on experimental plots could be followed from .

seedcorn to harvest, through malting and brewing to
the final beer in a unique and comprehensive series of
observations (McMullen, 1908).

" At the same time, enquiries were going forward
regarding varieties and cultivation of hops, and how
best to dry and store them. Many years later, Rupert
Guinness, the second Lord Iveagh, recalled 1902 when
he had gone on a cycle tour of Kent hop gardens with
Case and McMullen to see what they could discover
about hop culture. They had dropped in at the new
Wye Agricultural College and introduced themselves
to the Director, A. D. Hall. Following up this visit in
1904, the first Lord Iveagh and La Touche visited Hall
and arranged to rent two hop farms nearby, putting

R. A. Fisher, 1912

one of Hall’s graduates in as manager. Later, these
farms were bought and gradually added to, until Guin-
ness was one of the largest hop growers in England.
But it all started for the young research brewers to do
research on what hops to grow, and how, to get the
best flavor and the longest life for their beer, and to
find out how much it cost (Brown, 1980).

The life of the beer was important because Guinness
is a naturally conditioned beer—it has no additives or
preservatives nor, of course, is it pasteurized—and it
has to remain potable while it is exported to Africa or
the Far East, or stored in the barrel at varying tem-
peratures before reaching the consumer.

Now, can you imagine half a dozen energetic and
bright researchers given a free hand to explore the
whole subject of brewing from a condition of almost
total ignorance? And given the experimental labora-
tories, barley fields, hop gardens, malthouse, and
brewery for their experiments. What happens next?
Well, of course, they studied available literature, and
found some of it useful. Case read about a new analysis
of hops for soft resin content and tried it. He found
the quantity of soft resin in the hops paralleled Guin-
ness’ qualitative assessment of hop “condition.” The
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condition of hops stored at ambient temperatures
deteriorated and their soft resin content fell as soft
resin was converted to hard resin. If the hops were
cooled in storage, both hop condition and soft resin
content fell less. Thus, soft resins looked like a good
predictor of hop condition, and the brewers began
routine analysis of hop soft resin content. Guinness
found this measure very valuable for assessing hops
before purchase. In particular, American hops were
cheaper than European and it turned out they had a
naturally high soft resin content.

Similarly, in 1902, studies were published in which
malting quality of barley was shown to depend on
nitrogen content. The brewers began routine analyses
of barley for nitrogen, in addition to their records of
yield, moisture, size of barleycorns, and the old qual-
itative assessments for mellowness and texture.

Reading led to analysis, experiments, and measure-
ments. They began to accumulate data and, at once,
they ran into difficulties because their measurements
varied. The effects they were looking for were not
usually clearcut or consistent, as they had expected,
and they had no way of judging whether the differ-
ences they found were effects of treatment or accident.
Two difficulties were confounded: the variation was
high and the observations were few. As a result, for
example, when Case reported his hop-cooling experi-
ments in 1898, he pointed out “the weak link between
examination or analysis and the brewing value,” that
is, between treatment and effect, and said “most of
the results . .. require substantiation by irreproacha-
ble figures,” which his obviously were not. He con-
" cluded, “The comparative value in terms of life be-
tween the cooled and uncooled hops may be regarded
provisionally as of the order of about 10%” (Brown,
1980). He was not sticking out his neck, although a
10% difference is quite a lot.

Other brewers, on starting their experiments, found
the same difficulty. They had no way of taking account
of the variation in interpreting their data. After trying
to correlate fertilizer treatments with barley plot
yields, E. G. Peake ended up recommending that each
farmer should find out the manurial needs of his own
land, because “the results were most irregular and
varied with every farm.” Peake tried to correlate
spring rainfall with yield of barley from Rothamsted
data that A. D. Hall also had analyzed. By taking a
slightly different period than Hall had for the rainfall,
Peake managed to discern correlations in the opposite
direction to those found by Hall, and had to give up,
concluding that “the whole subject of the effect of
weather ... deserves further careful investigation”
(McMullen, 1908).

In the case of the barley plots, the variation was
excessive. First, it was obvious that alien barley was
intermixed in the seed, for perhaps 10% of plants in a

plot of a short, late-maturing variety would grow tall
and mature early, and so on. Next, plants even from
seed genuinely of one variety showed many smaller
variations. Old Irish was the most heterogeneous va-
riety. Unlike the others which had been selected orig-
inally from a single plant or small stand of plants, Old
Irish was an indigenous Irish variety that had never
been selected. It retained the variability accumulated
throughout its ancestry, and made an extremely un-
even and unsatisfactory crop.

This cause of variation, at least, could be eliminated.
Barley is usually self-fertilized. In 1904, therefore,
Bennett and Hunter began propagation of each variety
of interest in pure lines from single grains of barley.
In 1907 they had enough pure-line seed to sow all the
experimental plots, and on the Grand Tour everyone
marvelled at the wonderfully even growth of the fields.
But genetic variability was a special case. One could
not eliminate variations of rainfall, bird damage, soil
chemistry, temperature (which affected brewing beer
as well as growing crops), or any of the unrecognized
variables affecting their data. They needed some way
to decide which differences to ignore and which to
take seriously.

The young research brewers worked well together—
some were very close friends. Each seemed to fit into
his own role in brewery affairs. And to them it seemed
natural to take their numerical problems to Gosset.
He had done some mathematics at Oxford and seemed
less scared of mathematics than they were. (In a report
on the theory of error, he observed, “It may seem
strange that reasoning of this nature had not been
more widely made use of, but this is due, first, to the
popular dread of mathematics.”) He was always ready
to listen to them, and very quick to grasp their con-
cerns. He would always do his best to come up with
an answer, going back to first principles and arguing
through to a solution (McMullen, 1938), and he was
not satisfied until he reached it. So, statistical prob-
lems came to him. He got hold of Airy’s textbook on
the theory of errors, and studied and annotated his
copy in the margins. In 1903 he could calculate stand-
ard errors. In 1904 he wrote a report on the subject
for the brewery. This report led directly to his being
sent to consult Karl Pearson about his difficulties,
Professor Pearson being the great name in biometrics
in those days. In 1905, Gosset was using a homemade
measure of correlation, based on examination of the
difference between Y (A + B)?and ¥, (A — B)? at the
time he visited Pearson and learned about the product-
moment correlation coefficient (Pearson, 1938).

One great difficulty in interpreting their experimen-
tal data was that the samples were always small. For
instance, the barley experiments started with four
farms each growing one plot of each variety. The
estimate m of the mean based on a sample of four is
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obviously not exact, and the error in the estimate s of
the standard deviation cannot be ignored. This Gosset
recognized. For him, the main question was exactly
how much wider should the error limits be to make
allowance for the error introduced by using the esti-
mates m and s instead of the parameters p and o.
Pearson could not answer that question for Gosset in
1905, nor the one that followed, which was: what level
of probability should be called significant?

The meeting took place in July 1905 during Gosset’s
summer holiday in England when he cycled about 20
miles from his parents’ home to Pearson’s summer
home, and they had a long talk, which Gosset found
very helpful. Later, he recalled that Pearson “was able
in about half an hour to put me in the way of learning
the practice of nearly all the methods then in use.”
He went back to Guinness and practiced those meth-
ods for the next year as acting Brewer-in-Charge of
the Experimental Brewery, where analysis of the col-
lected data became a major concern. The meeting was
so successful, in fact, that Guinness arranged for Gos-
set to spend a year in Pearson’s department at Uni-
versity College, London, “to take up the study of the
law of error, the working of which we have found of
great service in the brewery.” Gosset had found his
vocation.

During the academic year 1906-1907 at Pearson’s
laboratory, Gosset worked out the exact answer to his
question about the probable error of the mean and
tabulated the probability values of his criterion z =
(m — u)/s for samples of N = 2, 3, ..., 10. He tried
also to calculate the distribution of the correlation
coefficient by the same method but managed to get
the answer only for the case when the true correlation
is zero. It is almost a miracle that he got so far, for
his mathematics had to be helped out by inspired
guesses.

Gosset quietly returned to Guinness in 1907, to
become Brewer-in-Charge of the Experimental Brew-
ery for the following 7 years.

He was just in time to provide the answer to
McMullen’s prayers. The first series of barley experi-
ments was coming to a close. The results of 7 years of
work were to be analyzed and reported to Guinness.
McMullen prepared the text, with assistance from
Jackson on the taxonomy and identification of bar-
leys, from Peake on matters of soil and weather, from
Hunter on genetics and barley breeding, while Gosset
took over the entire statistical analysis: there were
barley yields, measurements and assessments for
different varieties, different farms and districts, and
different seasons; there were malting assessments and
brewing results for the same barley lots. Gosset finally
analyzed barley yield and quality together in terms of
value per acre, and at every opportunity he quoted the
odds (from his newly calculated ¢ table)—it was the

natural way for him to express probabilities, especially
in the native land of horse racing! (McMullen, 1908).

And Guinness were delighted. Now, they knew that
Archer was the best barley for Ireland and they wanted
to grow it all over the island. They discovered 1,000
barrels of pure-line Danish Archer seed was available
to buy. They bought it all. Then, through their Com-
mission Maltsters, they distributed it as seed to chosen
farmers together with 300 barrels of Danish Archer
seed they had grown in Ireland, guaranteeing a mini-
mum yield, all of it to be bought back at harvest. The
next year they had some 10,000 barrels to distribute
as seed, which was grown and bought back as before.
After that, they had enough to distribute to any
farmer who wanted to grow it in the ordinary way.
For many years thereafter, most barley seed in Ireland
was selected by brewers at the Grand Tour reserving
the cleanest fields for seed, to be harvested and stored
apart and distributed by their maltsters. Maltsters
continued as seedsmen after World War I when
Archer gave way to a new variety, the hybrid Spratt-
Archer, which Hunter, at his first attempt at making
a hybrid cross, had created in 1908. Between the wars,
90% of the barley grown in Ireland was Spratt-Archer,
as was most of what was grown in England too
(Hoctor, 1971; Hunter, 1882-1959).

In his spare time in 1908, Gosset prepared his papers
on the probable error of the mean and of the correla-
tion coefficient for publication (Student, 1908a and
1908b). Guinness had earlier agreed to permit publi-
cation. As the Board minutes recorded, “It was decided
by La Touche that such publication might be made
without the brewers’ names appearing. They would be
merely designated “Pupil” or “Student.” So Gosset
took the pseudonym Student. He continued statistical
researches in his spare time, because they were not
strictly brewery business. And, in his spare time also,
he made himself the trusted friend of E. S. Beaven.
Beaven was a self-made man and a rugged individu-
alist who had no patience at all with statistics and
statisticians. But Gosset showed himself so genuinely

" interested in Beaven’s work that soon he had Beaven

eating out of his hand so far as statistics went (Beaven
papers).

Beaven was a maltster at Warminster, Wilts, cele-
brated for barley breeding, which was his passion. In
1904, when Guinness became interested in the subject,
Beaven had become a Commission Maltster for Guin-
ness and, in 1919, he became Guinness’ buyer of all
imported barley, but he always regarded the barley
breeding as his private affair. At that time, he had
already selected and bred pure lines of several varieties
and, with his friends from the new Cambridge Uni-
versity Agriculture Department, Rowland Biffin and
T. B. Wood, he had started to make crosses between
varieties in the hope of creating new and better
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barleys. They had become keen geneticists and breed-
ers since the rediscovery in 1900 of Mendel’s paper on
hybridization. In 1904, Guinness sought their advice
on the best direction for the barley research in Ireland.
In 1907, Gosset came into Beaven’s life just in time to
help him develop the nursery experiments needed to
test several of Beaven’s hybrids against each other
and against standard varieties. In 1912 and 1913,
Gosset even managed to run cooperative experiments
with Hunter and Bennett at Ballinacurra, Biffin at
Cambridge, and Beaven at Warminster, all testing
their own against the others’ selected seed. He did the
analyses himself and, analyzing always in terms of
differences between pairs of neighboring plots, man-
aged to evolve a test of significance for these experi-
ments—an extension of Student’s test, producing
much the same numerical results as an F test (Beaven
papers).

So we arrive at Cambridge in 1912 when R. A. Fisher
was introduced to Gosset. Fisher was an undergradu-
ate at Gonville and Caius College, Cambridge, and his
tutor was F. J. M. Stratton, the astronomer. Biffin
was a Fellow of the same College and had interested
Stratton in analyzing a field experiment for T. B.
Wood. Gosset had met him in their company. In April
1912, Fisher’s first paper was published, “On an
Absolute Criterion for Fitting Frequency Curves,” in
which he introduced the idea of the likelihood function
and the method of maximum likelihood but, without
the word “likelihood,” his presentation was rather
confusing. Gosset read it and thought it “A neat but
as far as I could understand it, quite unpractical and
unserviceable way of looking at things.” In June,
Fisher sat his final examinations for the mathematics
degree. He must then have talked to Stratton about a
discrepancy he had found between the formula for
standard deviation in his own paper and in Student’s.
Maximum likelihood gave a denominator n instead of
n — 1 in this equation. Stratton told him to write to
Gosset about it. He wrote to introduce Fisher, and
Fisher sent his proof. The rest of the story is given as
Gosset wrote of it to Pearson on 12 September 1912
(Pearson, 1968):
 This [proof], Stratton, the tutor, made him send

me and with some exertion I mastered it, spotted

the fallacy (as I believe) and wrote him a letter
showing, I hope, an intelligent interest in the matter
and incidentally making a blunder. To this he re-
plied with two foolscap pages covered with mathe-
matics of the deepest dye in which he proved, by
using n-dimensions that the formula was, after all,

VY (x — m)%/(n — 1) and, of course, exposing my

mistake. I couldn’t understand his stuff and wrote

and said I was going to study it when I had time. I

actually took it up to the lakes with me—and lost

it! Now he sends this to me [the mathematical proof

of Student’s distribution]. It seemed to me that if
it’s all right perhaps you might like to put the proof
in a note. It’s so nice and mathematical that it
might appeal to some people.
And he said, “Would you mind looking at it for me. I
don’t feel at home in more than three dimensions even
if I could understand it otherwise.”

That’s Gosset for you—his humorous account of a
chapter of accidents, his frank inability to deal with
stiff mathematics, and his generous appreciation
nevertheless of the “nice and mathematical” proof
that deserved publication if it was “all right.” In
contrast, Pearson, who might have understood it, did
not choose to publish the note. (Pearson did publish
it, however, in 1915, when Fisher included it in his
paper on the sampling distribution of the correlation
coefficient, again derived by representing the sample
in n-dimensional space.)

Let us turn now to Fisher and ask why he should
be involved with applied mathematics when it was
despised by pure mathematicians. After all, as Strat-
ton wrote on Fisher’s behalf when he was looking for
a job in 1919, Fisher “could have been a first class
mathematician had he stuck to the ropes, but he would
not.” Why?

Fisher was the seventh child of a fine arts auctioneer
in the West End of London. Always brilliant at math-
ematics, he had won a scholarship in mathematics to
Harrow and later to Gonville and Caius College, Cam-
bridge, where he won a first class honors degree in
mathematics. Unlike Gosset, he had no contact with
experiments or experimenters up to that time. Instead,
he had a consuming desire to make himself useful, to
serve his country and humankind in a significant,
practical way. Pure mathematics, although it may be
a source of the greatest intellectual gratification to its
professor, is not a subject of immediate practical
utility.

Fisher had nearly decided to take biology instead of
mathematics at Cambridge, because he could see its

_ importance, and he was seriously interested in evolu-

tion and genetics. He was especially interested in
human genetics and that brought him at once to
statistical considerations because few human charac-
ters are dichotomous, being controlled by a single pair
of genes like the characters Mendel investigated in
garden peas—for example, tall or short plants, green
or yellow peas. Variables such as human height, skin
color, and intelligence have continuous distributions
and must therefore be controlled by multiple pairs of
genes. To deal with the populations of genes in human
heredity, one must deal with probabilities. One can
state what happens only in statistical terms.

It seems that as soon as he felt he could choose,
Fisher veered to biological applications of mathemat-
ics. Having succeeded in forming the Cambridge
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University Eugenics Society during his second under-
graduate year, he was chairman of the undergraduate
committee in 1911-1912. At the November 1911 meet-
ing he was the speaker on the subject of Mendelism
(i.e., genetics) and Biometry (i.e., Pearson’s statistical
methods of dealing with continuous variables), which
he explained, saying both were necessary for human
genetic research. He mentioned Maxwell’s theory of
gases to illustrate the necessity of speaking of gene
populations in terms of probabilities. We have noticed
that his first paper was on fitting frequency curves.
We have seen how quick he was not only to prove
Gosset’s distribution in 1912 but to realize the impor-
tance of determining the sampling distributions of
other statistics in common use and to go on to find
the sampling distribution of the correlation coefficient
in 1915 and a series of other distributions thereafter.
As a graduate student at Cambridge in 1912-1913, he
chose to study the theory of errors with Stratton and
quantum theory with the astronomer, James Jeans.
A very important early paper of Fisher took up a
question that had been fought over for a decade:
whether, in fact, human inheritance was compatable
with Mendelian principles. Biometricians were
divided: Pearson said not, and rejected genetics;

G. Udny Yule thought it might be compatable but

could not prove it; geneticists just assumed all inher-
itance was Mendelian. Fisher brought his mathemat-
ical genius to bear on the problem and proved that
the inheritance of continuous variables was entirely
consistent with Mendelian principles—in fact, that
Mendelian principles must result in precisely the
numerical relationships that existed. The way he
proved it was as important as the result because, in
order to deal with intractable sample correlations,
he formulated the problem in a different way
and introduced the concept of analysis of variance
(Fisher, 1918).

Although Fisher’s biological interests stimulated
him to do these important mathematical researches
even while he was a school teacher during World
War I, it was after he became the statistician at
Rothamsted Experimental Station in 1919 that he
really, as he put it, found his feet in research. Papers
poured from his hand, many of them containing fun-
damental new work. Between 1921 and 1926 the num-
ber of his publications rose from 13 to 55 papers, and
he wrote Statistical Methods for Research Workers
(1925). Rothamsted is the oldest agricultural research
institution in Great Britain. Fisher was presented with
data—Ilots of data from long-term experiments with
wheat and roots and grass plots and farm rotations.
His first job was to analyze the manurial experiment
with wheat on Broadbalk field where the same fertil-
izers had been applied to the same plots for 67 years.
He was asked, could anything more be done with the

data than A. D. Hall had done some years before?
Besides, there were about a dozen staff when Fisher
went there, all busy with research projects.

The activities at Rothamsted, ‘the interests and
problems of the staff, the discussions over a cup of
tea, the data, all were a great stimulus to Fisher’s
ingenuity and inventiveness. His papers were all a mix
of new developments of statistical theory and practice.
There was one big paper “On the Mathematical Foun-
dations of Theoretical Statistics” (1922) but even in
that he inserted the first nonlinear experimental de-
sign, which he had created for one of his colleagues at
Rothamsted. The series of studies in crop variation
were ostensibly applied papers. “Studies in Crop Var-
iation I” was “An examination of the yield of dressed
grain on Broadbalk” (1921). That contains orthogonal
polynomials and the analysis of variance procedure
and one or two other statistical innovations. “Studies
in Crop Variation II: The manurial response of differ-
ent potato varieties” (1923) introduces the analysis of
variance table with the new z test and its validity is
stated to be conditional on randomization of the plot
treatments. These ideas are all just slipped in without
fanfare. A paper on “The influence of rainfall on the
yield of wheat at Rothamsted” (1924) includes a short
essay on problems of analysis of meteorological data
and the derivation of the null distribution of the
multiple correlation coefficient in addition to its
advertised content, not to mention the use of what
would today be called transfer functions in the anal-
ysis. This was conceived as “Studies in Crop Variation
III” but the prefix was dropped when the paper became
unsuitable for publication in an agricultural journal
merely.

When Fisher brought together all this new material
in the book Statistical Methods for Research Workers
(1925), it was not as a development of theory but in
terms of methods that experimenters could use in their
work, whose principles they could understand, even if
the mathematical workings were beyond them. Fisher
set forth his philosophy in the preface:

For several years the author has been working in

somewhat intimate cooperation with a number of

biological research departments; the present book
is in every sense the product of this circumstance.

Daily contact with the statistical problems which

present themselves to the laboratory worker has

stimulated the purely mathematical researches
upon which are based the methods here presented.

Little experience is sufficient to show that the tra-

ditional machinery of statistical processes is wholly

unsuited to the needs of practical research. Not only
does it take a cannon to shoot a sparrow, but it
misses the sparrow! The elaborate mechanism built
on the theory of infinitely large samples is not
accurate enough for simple laboratory data. Only by





52 J. F. BOX

systematically tackling small sample problems on
their own merits does it seem possible to apply
accurate tests to practical data. Such at least has
been the aim of this book.
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BIOMETRIKA.

THE PROBABLE ERROR OF A MEAN.

By STUDENT.

Introduction.

ANY experiment may be regarded as forming an individual of a *“ population”
of experiments which might be performed under the same conditions. A series
of experiments is a sample drawn from this population.

Now any series of experiments is only of value in so far as it enables us to form
a judgment as to the statistical constants of the population to which the experi-
ments belong. In a great number of cases the question finally turns on the value
of a mean, either directly, or as the mean difference between the two quantities.

If the number of experiments be very large, we may have precise information
as to the value of the mean, but if our sample be small, we have two sources of
uncertainty:—(1) owing to the “error of random sampling ” the mean of our series
of experiments deviates more or less widely from the mean of the population, and
(2) the sample is not sufficiently large to determine what is the law of distribution
of individuals. It is usual, however, to assume a normal distribution, because, in
a very large number of cases, this gives an approximation so close that a small
sample will give no real information as to the manner in which the population
deviates from normality: since some law of distribution must be assumed it is
better to work with a curve whose area and ordinates are tabled, and whose
properties are well known. This assumption is accordingly made in the present
paper, so that its conclusions are not strictly applicable to populations known not
to be normally distributed; yet it appears probable that the deviation from
normality must be very extreme to lead to serious error. We are concerned here
solely with the first of these two sources of uncertainty.

The usual method of determining the probability that the mean of the popula-
tion lies within a given distance of the mean of the sample, is to assume a normal
distribution about the mean of the sample with a standard deviation equal to
s/Nn, where s is the standard deviation of the sample, and to use the tables of
the probability integral.

Biometrika vt 1





2 The Probable Error of a Mean

But, as we decrease the number of experiments, the value of the standard
deviation found from the sample of experiments becomes itself subject to an increas-
ing error, until judgments reached in this way may become altogether misleading.

In routine work there are two ways of dealing with this difficulty: (1) an
experiment may be repeated many times, until such a long series is obtained that
the standard deviation is determined once and for all with sufficient accuracy.
This value can then be used for subsequent shorter series of similar experiments.
(2) Where experiments are done in duplicate in the natural course of the work,
the mean square of the difference between corresponding pairs is equal to the
standard deviation of the population multiplied by v/2. We can thus combine
together several series of experiments for the purpose of determining the standard
deviation. Owing however to secular change, the value obtained is nearly always
too low, successive experiments being positively correlated.

There are other experiments, however, which cannot easily be repeated very
often; in such cases it is sometimes necessary to judge of the certainty of the
results from a very small sample, which itself affords the only indication of the
variability. Some chemical, many biological, and most agricultural and large
scale experiments belong to this class, which has hitherto been almost outside the
range of statistical enquiry.

Again, although it is well known that the method of using the normal curve
is only trustworthy when the sample is “large,” no one has yet told us very
clearly where the limit between “large ” and “small ” samples is to be drawn.

The aim of the present paper is to determine the point at which we may use
the tables of the probability integral in judging of the significance of the mean of
a series of experiments, and to furnish alternative tables for use when the number
of experiments is too few.

The paper is divided into the following nine sections:

I. The equation is determined of the curve which represents the frequency
distribution of standard deviations of samples drawn from a normal population.

II. There is shown to be no kind of correlation between the mean and the
standard deviation of such a sample. '

III. The equation is determined of the curve representing the frequency
distribution of a quantity z, which is obtained by dividing the distance between
the mean of a sample and the mean of the population by the standard deviation
of the sample.

IV. The curve found in I is discussed.

V. The curve found in IIL is discussed.

VI. The two curves are compared with some actual distributions.

VII. Tables of the curves found in III. are given for samples of different size.

VIII and IX. The tables are explained and some instances are given of their
use. .

X. Conclusions.
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SectioN I

Samples of n individuals are drawh out of a population distributed normally,
to find an equation which shall represent the frequency of the standard deviations
of these samples,

If s be the standard deviation found from a sample #, «,...z, (all these being
measured from the mean of the population), then

o= S@?) (S (w,))2 _S@) S (z?) 28 (w2) .

n n n n? n?

Summing for all samples' and dividing by the number of samples we get the
mean value of s? which we will write 52,

where g, is the second moment coefficient in the original normal distribution of #:
since @,, #,, etc., are not correlated and the distribution is normal, products in-

S(lz)

volving odd powers of 2, vanish on summing, so that =——->-*" is equal to 0.

If My represent the R* moment coefficient of the distribution of s? about the
end of the range where s*=0,

, -1
Ml =Il'2(n n )

Again sh= {'_S_'ﬁ?_) _ <§_§w_1))2}2

n n

S 2)\2 29 2) /8 )\ 2 S )\

- (S0 SR+ ()

S (w,“) 28 (w,‘-’wf) 28 (w,‘) 48 (wfwz’) S (%)
n? n? n® n® nt

+ 68 (-’? Lo )

+ other terms involving odd powers of z, ete,
which will vanish on summation.

Now S(z*) has n terms but S(z%,?) has 4n(n — 1), hence summing for all
samples and dividing by the number of samples we get

=t By ,(n=1 - 1) 27:;, o (n—1) — 1) /.4,4 W (1_17-;__1)
= ’;:—‘ {n*—2n -1} +";~’3 (n—1){n*—2n+ 3}.
Now since the distribution of « is normal, u, = 3u.?, hence
M/ =pt—— (n—1) {8n—3+n*—2n +38}= 2(11——1)—("}—4:-1)

n? n?
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In a similar tedious way I find:
M3’=,u.33(n —1)(n+1)(n+3) ’

nd

M/ = (n—l)(n+1)(n+3)(n+a)

ni

and

The law of formation of these moment coefficients appears to be a simple one,
but I have not seen my way to a general proof.

If now My be the R*™ moment coefficient of s? about its mean, we have

—p2® 1){(n+1) (n-1)}=2 2("n ,

My = {(’ﬂ D+l)(n+3) 3(r-1) 2(n=1) (n= 1)3}

n? n n® n?

=“23__(n;;1) R+4n+8—-6n+6—n*+2n—1} =8/1,23(1L:—~1—),
= = 1) (4 1) (n+3) (14 5) = B2 (n — 1P~ 12 (n — 1f = (n = 1)}

= 'u“’_‘_(ﬁ’_-_l) 3 24 9s 5 3 2
== (0 +9n2+23n+15—32n+82 — 1202+ 24n — 12 —n3+ 3n?—3n+1|

_ 12t (n—1)(n+3)
- _'“ﬁr"““ T .

Mg 8 M, 3(n+3)
Hence BI=M_:_“=’n-——1’ ﬂﬁ:]ﬁf”=. n—1

)

2B2—3BI-6=;% (6(n+8)—24—-6(n—1)}=0.

Consequently a curve of Professor Pearson’s type IIL may be expected to fit
the distribution of s2

The equation referred to an origin at the zero end of the curve will be

Y= C’w”e”’“’
o M, _4'#2 (n—1)n*
where v=2 M, 8n*us(n—1) - 2#2
” 4 n—1 n-3
and p= B -1= 9 1= 2

Consequently the equation- becomes

n-3

n-3 _nw
y=Cr? ¢ ),
which will give the distribution of s

© n-3

The area of this curve is C f z?%e ‘Zf‘ﬁdw I (say).
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The first moment coefficient about the end of the range will therefore be
@© 7_1_—_1 _nz __2 n_;l_ _nw nx
Of x 2 e 2Il~zd"@ 0[_7#2‘% 2 I3 2#2] f _—M$ 2 e 21‘2 dw
0 . — .
I - I

The first part vanishes at each limit and the second is equal to

n—1

/"2-[ ’n—].

T~ M

and we see that the higher moment coefficients will be formed by multiplying
successively by 1—7'—+—1 Mo, nto 3 —— Wa, etc., just as appeared to be the law of formation
of M;), My, M/, etc.

Hence it is probable that the curve found represents the theoretical distribu-
tion of s?; so that although we have no actual proof we shall assume it to do so in
what follows,

The distribution of s may be found from this, since the frequency of s is equal
to that of s* and all that we must do is to compress the base line suitably.

Now if % = ¢ (s?) be the frequency curve of s
and Yo=Y (s) » » ’ o S
then %d (s*) = pads,
or yods = 2y,sds,

Y2 = 281,
n=8 _nst

Hence Yy =20s(s?) 2 e
is the distribution of s. ot

This reduces to Yo=20s""2¢ %,

nat
Hence y=Aa2¢ " will give the frequency distribution of standard devia-
tions of samples of n, taken out of a population distributed normally with standard

deviation ¢. The constant 4 may be found by equating the area of the curve as
follows :—

nat
Area=A f an—te 2"’dw (LetI represent f zPe 2“‘da)

na?
Then — f w”"‘ e_r") de
”_"’_ r=0w 2 @ _”iz
=2 [ 2P=1¢ z«*] +°'_(p_1)f 2P—2¢ 2y
n 2=0 n 0

0.2
=Z(p-1) I,

since the first part vanishes at both limits.





6 The Probable Error of a Mean

By continuing this process we find

n—2
I,= (‘.’7;)—2“ (n—3)(n—5)...3.11,

o?\222
=(—)2 - —Jd)... .
or = (n) (n—-3)(n—->5)...4.21
according as n is even or odd.
But 71, is e ”’dw— /\/2

© _Mz 2 _1¥p=w 2
and 7, is f ze 2"dw—|:—a e 2 ] =2,

(1} n =0 n

Hence if n be even,

A= Area

(n—3)(n-5)...3. 1\/

'n-l ’

and if » be odd
Area

(n—38)(n—5)...4. 2( )”_1

Hence the equation may be written

4=

N 3 m\t 2
Y= m=3)n-5)...3.1 ’\/; ;}5) ® "¢ *(n even)
N sl _na?
o y=(n—3)(n—5')‘...4.2(’gz) P ate " (n odd)

where N as usual represents the total frequency.

SEctioN II.

To show that there is no correlation between (a) the distance of the mean of
a sample from the mean of the population and (b) the standard deviation of a
sample with normal distribution.

(1) Clearly positive and negative positions of the mean of the sample are
equally likely, and hence there cannot be correlation between the absolute value
of the distance of the mean from the mean of the population and the standard
deviation, but (2) there might be correlation between the square of the distance
and the square of the standard deviation.

Let ut= (“S—v—(?—f—‘))z and s*= 8@ _ (’&‘))2 .

n n
Then’if m), M, be the mean values of «* and s? we have by the preceding

(n—1) M
n

part M, = u, and m,' = et
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Now u?s? = S (:‘2) (S (w‘))z - (S ("’1))‘

n n

= (S (“'1’))2 +2 S (""'1%); S (z?) _ S (‘7;'1‘)
n w n
_ 62,

praate other terms of odd order which will vanish on summation.

Summing for all values and dividing by the number of cases we get

n—1 -1
)_’13_3/,22(&__),

Byppouoa+ mM, = 'u""#‘a( o) poe po

where R,:. is the correlation between u? and s2.

(n l) (n 1){3+n 3}='u22(n—1).

n?

-Ru*s‘lo'wlo'c’ + p?

Hence Ry:30430, = 0 or there is no correlation between u? and s

SEecrioN III.

To find the equation representing the frequency distribution of the means
of samples of n drawn from a normal population, the mean being expressed in
terms of the standard deviation of the sample.

ns?
s"%¢ 2" as the equation representing the distribution of s,

We have y= a’?“
the standard deviation of a sample of n, when the samples are drawn from a
normal population with standard deviation o.

Now the means of these samples of n are distributed according to the equation

2
NaN ’;‘:,
Ver o'

and we have shown that there is no correlation between 2, the distance of the
mean of the sample, and s, the standard deviation of the sample.

y=

Now let us suppose # measured in terms of s, z.e. let us find the distribution

of z2=-

If we have y, = ¢ (x) and y, = (2) as the equations representing the frequency
of # and of z respectively, then

dx
hdw =y, dz=y,~—,
o Yo =8Y.
* Airy, Theory of Errors of Observations, Part 11. § 6.
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222
_ Nwns -”.;f
v g
is the equation representing the distribution of z for samples of » with standard
deviation s.
Now the chance that s lies between s and s+ ds is:
s+ds ng?
f 00 s"2e T 348 ds

s
L] _ns?
n—2 5 202
f pre A ds

which represents the NV in the above equation.

Hence the distribution of z due to values of s which lie between s and s + ds is

8+d,g 0 _ns?(1+2%) stds _ mﬁ(l-ll-zﬁ)
— sn—l e 202 ds 2 f shle 20 g

ns? ns?

f o se T2 g o f s"te % ds
0 0

Hence

3

’

and summing for all values of s we have as an equation giving the distribution of z

7. ® _'ns2(1+z’)
— ‘. s le 202 (g
271' Jo

ns®

g ® 22
[ sn2¢ 20% g
0

Y =

By what we have already proved this reduces to

—92 n— 5 v
?/=%%T§':_§"'%'2(1+Z2) 2 if » be odd,

1n—2 n—4 4 NS
and to = a3 'm=E 3" 1(1+z) if n be even.

Since this equation is independent of & it will give the distribution of the
distance of the mean of a sample from the mean of the population expressed in
terms of the standard deviation of the sample for any normal population.

SecrioN IV.
Some Properties of the Standard Deviation Frequency Curve.
By a similar method to that adopted for finding the constant we may find the

mean and moments: thus the mean is at I"_‘,
n—2

n-2)(n—4) 2
n=38)(n—5)"1

i n—2)(n—4) 3
o m—-3)(n-5)"2

— (if n be even),

Vi
Vi

which is equal to

— (if n be odd).
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The second moment about the end-of the range is

Ly _(=1)a

1, n ’
The third moment about the end of the range is equal to
In+_1 _Lun Ly

= .
'[?L—2 '[n—l 1’1}—2

= ¢? X the mean,

The fourth moment about the end of the range is equal to
Toyy _(n— D(n+1) ot

1y, n?
If we write the distance of the mean from the end of the range %‘ and the

moments about the end of the range »,, ,, ete.

then 14 7 14 1 2 V. 1 4 n 1 4
_=— =— ¢ y = ——— = - ot,
1 '\/i ’ 2 n ’ 3 ‘\/n ) 4 2

From this we get the moments about the mean
o?
=T n—-1-D°
=" (n=1-D,

: o a*D
”‘3=m{nD—3(n_l)D+2D3}=n—n{2D2_2n+3}’

=Ty (1= 1= 4080 4 6 (n—1) D~ 3D = % n2 1 — D (3D~ 20+ 6)}

It is of interest to find out what these become when = is large.
In order to do this we must find out what is the value of D.
Now Wallis’s expression for 7 derived from the infinite product value of sin « is

2,42, 6...(2n)
2950 (In— L)

o

If we assume a quantity 6 (= ay +%" + etc.) which we may add to the 2n+1
in order to make the expression approximate more rapidly to the truth, it is easy

1
+ 16 — ete- and we get
1’( 1 1> 2. 4.6 ... (20)

R AR T A CIC S Or E §

to show that 8 = —%

. 1
From this we find that whether = be even or odd D? approximates to n— g +5,

when = is large.

* This expression will be found to give a much closer approximation to = than Wallis’s.
Biometrika vi
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Substituting this value of D we get

VA e
o 1 _7A 2n " 1607 8o+ 1 1 )
? 211( H) Ha= 4n? ’ """=~—1~—1_l§( on 16w/
Consequently the value of the standard deviation of a standard deviation which

we have found —
Vin \/ 1-L

curve by Professor Pearson (a'/’\/ 2n) when 7 is large enough to neglect the 1/4n in
comparison with 1.

) becomes the same as that found for the normal

Neglecting terms of lower order than ’I—L we find

2n -3 . 1 1
By T n(4n—3)’ B.=3 (l n ) (1 * 2n)
Consequently as n increases 3, very soon approaches the value 3 of the normal
curve, but B3, vanishes more slowly, so that the curve remains slightly skew.

Dueram I.  Frequency curve giving the distribution of Standard Deviations of samples of 10 taken
from .a normal population.

3 _10m
Equation y= 7 1; 3 129 :08 ¢ 207
/ N\

,P_._,__
//

MNeagn

I~
MNoge

‘-%3}/- T 760 [3 1950 160 1-750

Diagram I shows the theoretical distribution of the s.0. found from samples
of 10.

- —
) = O
P

_10a?

9
_N1* 2a 3a
T7.5.3 ‘

SecrioN V.

4 2
ne9 m— 4 3 ;rfnbeeven n
Some properties of the curve y= gy R 5 3 (1+2) 2.
: 4_s§ of n be odd
-2

. —_—4 ... ete. x cos™ @, which
n-3'n—>5%

affords an easy way of drawing the curve, Also dz = d6/cos? 6.

Writing z = tan 6 the equation becomes y=
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Hence to find the area of the curve between any limits we must find

11_—_32.71,-4:‘ ete. x [cos”—’ede

-3 'n-5
- - — n—3
_n .2.n ‘f...etv'. n Sfcos"“0d0+ cos Osmo'”
n=3 " n->5 n—2 n—2 |
_n—4n-6 n—3 1 »n-4 n-3
_n_5.n_7...etc.fcos 49d0+n_3 2T ebo. [eos 0sin 6],

and by continuing the process the integral may be evaluated.

For example, if we wish to find the area between 0 and @ for n=8 we have

area = g g —? .}r.{ocos“ 0de
=ig f cost 8d6 + 1 42 cos® @ sin 4
3w )y 5'3'w
_9 +}(09031n0+% 2 cos® @ sin 0+— g 2 cos® @ sin 6,
and it will be noticed that for n =10 we shall merely have to add to this same
expression the term ; (—: % L 0 sin 6.

The tables at the end of the paper give the area between — o and 2z
(or 4 =—7§ra‘nd 0 =tan™? z).

This is the same as 5 + the area between @=0, and @ =tan—'z, and as the
whole area of the curve is equal to 1, the tables give the probability that the
mean of the sample does not differ by more than 2z times the standard deviation
of the sample from the mean of the population.

The whole area of the curve is equal to

-0~

n—2 n-— 4~
n—8"n->5

. ete. x , cos™t 0dé,

iy oy

and since all the parts between the limits vanish at both limits this reduces to 1.

Similarly the second moment coefficient is equal to

n— +5
n;?-u...ebc.x[ cos”? 4 tan® 640
n—3 n->5 _

2
=n—2'n 4'. . ete xf+§(cos”“‘0—cos"‘20)d0
n=3n=-5"""] =
2
n—2 1
=a—s 1773

2--2
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Hence the standard deviation of the curve is 1/¥n—3. The fourth moment
coeflicient is equal to

o

+_
n=2 n-4 ... ete. x [ ? cos"—* @ tan* 0d6

n—3"n—->5 =
+T
_n=2 7:} ... ete, X f ? (cos™t0— 2 cos" 40 + cos"20) df
n—3 n—>5 -
_r=2n-4 20-2),,_ 8
“Tu-3"n—-5 n-38 T(m=3)(n-5)
The odd moments are of course zero as the curve is symmetrical, so
_ _3(n-3) 2
Bi=0 B=r g =345

Hence as n increases the curve approaches the normal curve whose standard
deviation is 1/V/n — 3.
B, however is always greater than 3, indicating that large deviations are more
common than in the normal curve.

Iz

Duscram II.  Solid curve y= .=.—cosl0g, .r/s': tan 6.

SR
EIN'S
3l

8
Q 7'

N

7z

— 7a®
VI.N 5

Broken line curve y=——
Ner.s

, the normal curve with the same s.p.

] \ 3\
1:58 1-08 58 0s ‘58 1-0s 158
Distance of mean from mean of population

I have tabled the area for the normal curve with standard deviation 1/V7 so as
to compare with my curve for n=10% It will be seen that odds laid according
to either table would not seriously differ till we reach z="8, where the odds are
about 50 to 1 that the mean is within that limit: beyond that the normal curve
gives a false feeling of security, for example, according to the normal curve it is
99,986 to 14 (say 7000 to 1) that the mean of the population lies between — o
and + 1-3s whereas the real odds are only 99,819 to 181 (about 550 to 1).

* See p. 19.
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Now 50 to 1 corresponds to three times the probable error in the normal curve
and for most purposes would be considered significant ; for this reason I have only
tabled my curves for values of n not greater than 10, but have given the n=9
and n=10 tables to one further place of decimals. They can be used as foundations
for finding values for larger samples*.

The table for n=2 can be readily constructed by looking out = tan™z in
Chambers’ Tables and then 5 + 6/ gives the corresponding value.

Similarly 4 sin 8+ ‘5 gives the values when n = 8.
There are two points of interest in the n =2 curve. Here s is equal to half

the distance between the two observations. tan“z:gso that between + s and
— s lies 2 x g X 71‘_ or half the probability, ie. if two observations have been made
and we have no other information, it is an even chance that the mean of the

(normal) population will lie between them. On the other hand the second moment-
coefficient is

+Z 2
-l-f 2tansodo=-1-[tano—eJ* —w,
™) _ ™ ™ +x

2 2

or the standard deviation is infinite while the probable error is finite.

SEcTiON VI. Practical Test of the foregoing Equations.

Before I had succeeded in solving my problem analytically, I had endeavoured
to do so empirically. The material used was a correlation table containing the
height and left middle finger measurements of 8000 criminals, from a paper by
W. R. Macdonell (Biometrika, Vol. 1. p. 219). The measurements were written
out on 3000 pieces of cardboard, which were then very thoroughly shuffled and
drawn at random. As each card was drawn its numbers were written down in a
book which thus contains the measurements of 3000 criminals in a random order.
Finally each consecutive set of 4 was taken as a sample—750 in all—and the
mean, standard deviation, and correlationt of each sample determined. The
difference between the mean of each sample and the mean of the population was
then divided by the standard deviation of the sample, giving us the z of Section ITI.

This provides us with two sets of 750 standard deviations and two sets of
750 Z's on which to test the theoretical results arrived at. The height and left
middle finger correlation table was chosen because the distribution of both was
approximately normal and the correlation was fairly high. Both frequency curves,
however, deviate slightly from normality, the constants being for height 8, = 0026,
B.=38'175, and for left middle finger lengths B,='0030, 8,=3140, and in consequence
there is a tendency for a certain number of larger standard deviations to occur
than if the distributions were normal. This, however, appears to make very little
difference to the distribution of 2.

* E.g. if n=11, to the corresponding value for n=9; we add Ix§x§x3x}costfsing: if n=13

we add as well % xIxixgx3x4cosfsing and so on.
+ I hope to publish the results of the correlation work shortly.
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Another thing which interferes with the comparison is the comparatively large
groups in which the observations occur. The heights are arranged in 1 inch groups,
the standard deviation being only 2:54 inches: while the finger lengths were
originally grouped in millimetres, but unfortunately I did not at the time see the
importance of having a smaller unit, and condensed them into two millimetre
groups, in terms of which the standard deviation is 2-74.

Several curious results follow from taking samples of 4 from material disposed
in such wide groups. The following points may be noticed :

(1) The means only occur as multiples of -25.

(2) The standard deviations occur as the square roots of the following types
of numbers n, n + ‘19, n + 25, n+ 50, n + 69, 2n + 75.

(3) A standard deviation belonging to one of these groups can only be
associated with a mean of a particular kind ; thus a standard deviation of 42 can
only occur if the mean differs by a whole number from the group we take as
origin, while 4/1'69 will only occur when the mean is at n + -25.

(4) All the four individuals of the sample will occasionally come from the
same group, giving a zero value for the standard deviation. Now this leads to an
infinite value of z and is clearly due to too wide a grouping, for although two men
may have the same height when measured by inches, yet the finer the measure-
ments the more seldom will they be identical, till finally the chance that four men
will have exactly the same height is infinitely small. If we had smaller grouping
the zero values of the standard deviation might be expected to increase, and a
similar consideration will show that the smaller values of the standard deviation
would also be likely to increase, such as ‘436, when 3 fall in one group and 1
in an adjacent group, or 50 when 2 fall in two adjacent groups. On the other
hand when the individuals of the sample lie far apart, the argument of Sheppard’s
correction will apply, the real value of the standard deviation being more likely to
be smaller than that found owing to the frequency in any group being greater on
the side nearer the mode.

These two effects of grouping will tend to neutralise each other in their effect
on the mean value of the standard deviation, but both will increase the variability.

Accordingly we find that the mean value of the standard deviation is quite
close to that calculated, while in each case the variability is sensibly greater. The
fit of the curve is not good, both for this reason and because the frequency is not
evenly distributed owing to effects (2) and (3) of grouping. On the other hand
the fit of the curve giving the frequency of z is very good and as that is the only
practical point the comparison may be considered satisfactory.

The following are the figures for height :—

Mean value of standard deviations; calculated 2:027 + 021
” » » observed 2026

_—

Difference = — ‘001
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Standard deviation of standard deviations :—

Comparison of Fit.

Calculated ‘8556 + 015

Observed -9066
Difference = + 0510

222
Theoretical Equation: y= 16 x 750 e .

Voma®

Saleinterms; | ® | ¥ | W o | w9§:§.§§‘22@3§3
Gevistionot| 2 | 8| 8 |8 | 8 | 8 | 83|28 |8|2/28|8|28|8|8/|28 8)|3
population | o |~ | @ [ & = v EEIE I O N RN B T B~ Bc T B N ) I‘P cp.g

: R | i ? KU B R B -~ N~ el
Calculated ! ‘
frequency | 13 |10}| 27 |453| 644 | 784 | 87 | 88 |614| 71 |58 |45 |33 | 23|15 |9} | 54| 7
Observed
frequency | 3 |14} | 24} |373| 107 | 67 | 73 | 77 |77h| 64 |52h|49 (35|28 | 124 |9 |11} 7
Difference | +1% | +4| 24| —8| +424 | -113| 14| 11| 4| =7 |-54{+ 44| +2| +5| —24| -} | +6| ©

whence y2=4806, P=-000,06 (about).

In tabling the observed frequency, values between ‘0125 and ‘0875 were
included in one group, while between "0875 and ‘0125 they were divided over the
two groups. As an instance of the irregularity due to grouping I may mention
‘that there were 31 cases of standard deviations 130 (in terms of the grouping)
which is *3117 in terms of the standard deviation of the population, and they were
therefore divided over the groups *4 to 5 and 5 to ‘6. Had they all been counted
in groups 5 to "6 x* would have fallen to 2985 and P would have risen to -08.
The x* test presupposes random sampling from a frequency following the given
law, but this we have not got owing to the interference of the grouping.

When, however, we test the z’s where the grouping has not had so much effect
we find a close correspondence between the theory and the actual result.

There were three cases of infinite values of z which, for the reasons given
above, were given the next largest values which occurred, namely + 6 or — 6.
The rest were divided into groups of 1; ‘04, ‘05 and ‘06, being divided between
the two groups on either side.

The calculated value for the standard deviation of the frequency curve was
1 (4 *017) while the observed was 1:039. The value of the standard deviation is
really infinite, as the fourth moment coefficient is infinite, but as we have arbi-

trarily limited the infinite cases we may take as an approximation ;/1_;66 from

which the value of the probable error given above is obtained. The fit of the
curve is as follows :—
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. , . . 2
Comparison of Fit. Theoretical Equation: y=;_cos*€, z =tan 6.
w9 w9 |w | w 9w (e8]
S I R I N S T - 0 S I B I o
0 T O T O O B T O S ol
Sealeofz/ 218|238 |8/8|8 |38 (8|28 |38 |8|s|5.
D :
. ~

NG R R AR LA AL Y
: !
Calculated i |
frequene((:iy 5 | 9|13k 34 (44} (7831119 | 141 |119| 78} | 44} (344 | 13} | 9 5
Observ [
frequency | 9 |14} |11}1 33 |43} 70§i119¢ 1514 [122| 674 | 49 (264! 16 (10 | 6 |
| ' [
- I !
Difference | +4| +5| —2| ~14| —-1| =8| +4 | +104| +3| =11 +41}‘—8 +21 | +3 +1}
| i

whence x?=12'44, P="56.

This is very satisfactory, especially when we consider that as a rule observa-
tions are tested against curves fitted from the mean and one or more other
moments of the observations, so that considerable correspondence is only to be
expected ; while this curve is exposed to the full errors of random sampling, its
constants having been calculated quite apart from the observations.

Diacram III. Comparison of Calculated Standard Deviation Frequency Curve with 750 actual

Standard Deviations.

100

//jﬂ\\\

Frequency per 35tha
8

20

AL

N
l §\§

1

-2

-3

-4

-5

8 7 8 .9 1.0 1 12 13 14 15 116 17 I8 19 .2:0 21 2-2 23 2:4 2°5
Scale of Standard Deviation of the Population

The left middle finger samples show much the-same features as those of the
height, but as the grouping is not so large compared to the variability the curves
fit the observations more closely. Diagrams IIL* and IV. give the standard devia-
tions and the 2’s for this set of samples. The results are as follows :—

* There are three small mistakes in plotting the observed values in Diagram III., which make the fit
appear worse than it really is.
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Mean value of standard deviations; calculated 2186 + ‘023
”» ”» B » observed 2'179

\ Difference = — 007
Standard deviation of standard deviations :—

Calculated ‘9224 + 016
Observed ‘9802

Difference = 4 ‘0578

] 923
Comparison of Fit. Theoretical Equation: y= waﬁe‘v_'.

N2 o®
x|lw [ e |

s?lgnm;sv,.%z?aﬁw@n%@ii??h_&éégﬁ
3ev'iat'i‘o=?orsssssssssssssssssg
population | o |~ @ o || w o | > |9 s | T | |P]|w |

: : ; ~ ~ ~ ~N |~ ~N |~ -
Calculated
frequene(:f' 13 | 104 |27 | 45} |64} | 784 |87 | 88 | 814 |71 |58 |45 [33 |23|156 | 9}
Obserwvi
frequency | 2 | 14 |273| 51 |64h| 91 | 94) | 684 | 654 | 73| 484 | 404 | 424 | 20 | 224 | 12
Difference | +3 | +3} | +4| +5§| — | +128 | +7h |- 195 | —16| +2| —94 | —44 | +94| -3 | +73 | +2}

whence x2=21'80, P="19.

Calculated value of standard deviation 1 (& 017)
Observed ” . ” ‘082

Difference =-—'018

Comparison of Fit. Theoretical Equation: y= 7% costd, z=tan0.

w |l v |wv w v w8
SIS |S|8 v ilw |y | v |88 |S |32
e:ézn.é.t".g"ﬁ'ﬁ?’.‘zééz%:’_
[ | | ! ! | P+ + + |+ + + | +
Scaleofz 2123|2188/ 28 /8/8|8/3|g!18|28|8|§8
S8l (B|S| 8 s 88 8 s 8 8 8]3
LA R R R R PR - LR
i
|
Calculated ‘
gf)qucnc 5 | 9| 13} |34} 44} | 78} |119|141|119 | 78} |44} | 343 [ 131 | 94 | 5
Serv
frequency | 4 | 154 | 18 334 (44 | 75 |122]138 1204 71 |461| 36 | 11 9 6
Difference | —1| +6 | +4%| =1| —4| -34| +3| =3 | +13| ~73 | 42| +13| -24| - 4| +1

whence x?=7:39, P=92.
A very close fit,
We see then that if the distribution is approximately normal our theory gives
us a satisfactory measure of the certainty to be derived from a small sample in
both the cases we have tested ; but we have an indication that a fine grouping is
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If the distribution is not normal, the mean and the standard

deviation of a sample will be positively correlated, so that although both will have
greater variability, yet they will tend to counteract each other, a mean deviating
largely from the general mean tending to be divided by a larger standard deviation
Consequently I believe that the tables at the end of the present paper may be
used in estimating the degree of certainty arrived at by the mean of a few
experiments, in the case of most laboratory or biological work where the distribu-
tions are as a rule of a ‘cocked hat’ type and so sufficiently nearly normal.

8 1 n odd \
, n—2 n—4 22 e
SectioN VII. Tables of —— — ... - cos"26do
n—3 n—>5 21 -3
S .= neven
17w
Jor values of n from 4 to 10 inclusive.
VT [
Together with —— f e % dz for comparison when n=10.
V2m) -
For comparison
z(:f) n=4 n=5 n=6 n="7 n=8 n=9 n=10 V7 (= L
8 (T f e 2 da;)
Nor | -
1 5633 5745 5841 5928 ‘6006 | ‘60787 | ‘61462 ‘60411
2 ‘6241 *6458 ‘6634 6798 ‘6936 | ‘70705 | ‘71846 70159
3 ‘6804 7096 7340 7549 7733 | 78961 | ‘80423 ‘78641
4 7309 7657 7939 ‘8175 ‘8376 | ‘85465 | ‘86970 85520
b 7749 8131 8428 8667 ‘8863 | 90251 | 91609 90691
‘6 8125 8518 8813 9040 ‘9218 | ‘93600 | ‘94732 94375
7 ‘8440 8830 ‘9109 ‘9314 ‘9468 | ‘95851 | ‘96747 96799
8 *8701 9076 9332 ‘9512 ‘9640 | ‘97328 | ‘98007 98253
‘9 8915 ‘9269 9498 ‘9652 ‘97566 | 98279 | -98780 99137
1-0 ‘9092 9419 ‘9622 9751 ‘9834 | 98890 | ‘99252 ‘99820
11 9236 9537 9714 9821 ‘9887 | -99280 | 99539 ‘99926
1-2 ‘9354 9628 9782 9870 ‘9922 | 99528 | ‘99713. 99971
1-3 9451 ‘9700 9832 9905 ‘9946 | 99688 | ‘99819 99986
14 ‘9531 ‘97566 ‘9870 *9930 ‘9962 | ‘99791 | -99885 99989
15 ‘9598 9800 ‘9899 ‘9948 ‘9973 | 99859 | ‘99926 09999
16 ‘9653 ‘9836 *9920 9961 ‘9981 | 99903 | ‘99951
17 9699 9864 ‘9937 ‘9970 ‘9986 | ‘99933 | ‘99968
18 ‘9737 0886 9950 9977 ‘9990 | 99953 | ‘99978
19 ‘9770 ‘9904 9959 ‘9983 ‘9992 | 99967 | ‘99985
20 9797 9919 ‘9967 9986 ‘9994 | ‘99976 | ‘99990
2-1 9821 9931 9973 ‘9989 ‘9996 | 99983 | 99993
22 9841 *9941 9978 9992 ‘9997 | -99987 | ‘99995
23 9858 | ' *9950 9982 ‘9993 ‘9998 | -99991 | -99996
24 9873 9957 9985 *9995 ‘9998 | 99993 | ‘99997
25 0886 9963 ‘9987 9996 ‘9998 | ‘99995 | 99998
26 9898 ‘9967 9989 9996 ‘9999 | -99996 | ‘99999
27 ‘9908 ‘9972 ‘9991 9997 ‘9999 | ‘99997 | 99999
28 9916 9975 9992 9998 ‘9999 | -99998 | -99999
2-9 9924 ‘9978 9993 9998 9999 | ‘99998 | 99999
30 0931 9981 ‘9994 ‘9998 — 99999 — —_
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SecrioN VIII. Explanation of Tables.

The tables give the probability that the value of the mean, measured from the
mean of the population, in terms of the standard deviation of the sample, will lie
between — o and 2. Thus, to take the table for samples of six, the probability
of the mean of the population lying between — o and once the standard
deviation of the sample is ‘9622 or the odds are about 24 to 1 that the mean of
the population lies between these limits.

The probability is therefore ‘0878 that it is greater than once the standard
deviation and ‘0756 that it lies outside + 1'0 times the standard deviation.

SkectioN IX. Ilustrations of Method.

Tllustration I. As an instance of the kind of use which may be made of the
tables, I take the following figures from a table by A. R. Cushny and A. R. Peebles
in the Journal of Physiology for 1904, showing the different effects of the optical
isomers of hyoscyamine hydrobromide in producingsleep. The sleep of 10 patients
was measured without hypnotic and after treatment (1) with D. hyoscyamine
hydrobromide, (2) with L. hyoscyamine hydrobromide. The average number of
hours’ sleep gained by the use of the drug is tabulated below.

The conclusion arrived at was that in the usual dose 2 was, but 1 was not, of
value as a soporific.

Additional hours' sleep gained by the use of hyoscyamine hydrobromide.

Patient 1 (Dextro-) 2 (Laevo-) Difference (‘2—1i
1. + 7 +19 +12
2. -16 + 8 + 24
3. - 2 +11 +13
4. -12 + 1 +13
5. -1 -1 0
6. + 34 + 44 +10
7. +37 + 55 +18
8. + 8 + 16 + 8
9. 0 + 46 + 46

10. +20 + 34 + 14

Mean + °75 Mean +2383 Mean + 1538
SD. 170 S.D. 190 S.D. 117

First let us see what is the probability that 1 will on the average give increase
of sleep; i.e. what is the chance that the mean of the population of which these

experiments are a samnple is positive. *1-_';(75 =44 and looking out z="44 in the
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table for ten experiment we find by interpolating between ‘8697 and 9161 that 44
corresponds to ‘8873, or the odds are ‘887 to '113 that the mean is positive.

That is about 8 to 1 and would 'correspond in the normal curve to about
1'8 times the probable error. It is then very likely that 1 gives an increase of
sleep, but would occasion no surprise if the results were reversed by further
experiments.

If now we consider the chance that 2 is actnally a soporific we have the mean
increase of sleep =%§- or 1:23 times the s.0. From the table the probability

corresponding to this is ‘9974, ie. the odds are nearly 400 to 1 that such is the
case. This corresponds to about 415 times the probable error in the normal
curve. But I take it the real point of the authors was that 2 is better than 1.
This we must test by making a new series, subtracting 1 from 2. The mean
value of this series is + 1'58 while the s.p. is 1°17, the mean value being + 135
times the s.0. From the table the probability is ‘9985 or the odds are about 666
to 1 that 2 is the better soporific. The low value of the s.D. is probably due to
the different drugs reacting similarly on the same patient, so that there is corre-
lation between the results.

Of course odds of this kind make it almost certain that 2 is the better soporific,
and in practical life such a high probability 'is in most matters considered as
a certainty.

Tllustration II. Cases where the tables will be useful are not uncommon in
agricultural work, and they would be more numerous if the advantages of being
able to apply statistical reasoning were borne in mind when planning the experi-
ments. I take the following instances from the accounts of the Woburn farming
experiments published yearly by Dr Voelcker in the Journal of the Agricultural
Society.

A short series of pot culture experiments were conducted in order to deter-
mine the causes which lead to the production of Hard (glutinous) wheat or Soft
(starchy) wheat. In three successive years a bulk of seed corn of one variety was
picked over by hand and two samples were selected, one consisting of “hard”
grains and the other of “soft.” Some of each of these were planted in both heavy
and light soil and the resulting crops were weighed and examined for hard and
soft corn.

The conclusion drawn was that the effect of selecting the seed was negligible
compared with the influence of the soil.

This conclusion was thoroughly justified, the heavy soil producing in each case
nearly 100 per cent. of hard corn, but still the effect of selecting the seed could
just be traced in each year.

But a curious point, to which Dr Voelcker draws attention in the 2nd year’s
report, is that the soft seeds produced the higher yield of both corn and straw. In
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view of the well-known fact that the varieties which have a high yield tend to
produce soft corn, it is interesting to see how much evidence the experiments
afford as to the correlation between softness and fertility in the same variety.

Further, Mr Hooker* has shown that the yield of wheat in one year is largely
determined by the weather during the preceding harvest. Dr Voelcker’s results
may afford a clue as to the way in which the seed is affected, and would almost’
Justify the selection of particular soils for growing seed wheat%.

The figures are as follows, the yields being expressed in grammes per pot.

Year 1899 1900 1901
.| Standard
Average Deviation|
Soil Light | Heavy| Light | Heavy| Light | Heavy
Yield of corn from soft seed 785 | 88914811355 7-48|15°39| 11328
N , hard , 7-27| 8:32|13-81|13:36| 797 | 1313 | 10'643

Difference ... ... .| +58| +57 |+1°00| +°19 | — 49 |+226| + 685 778 ‘88

Yield of straw from soft seed | 12-81 | 12-87 | 22-22 | 20-21 | 13°97 | 2257 | 17-442
y »  hard , |10°71|1248 | 2164|2026 | 11-71 | 1896 | 15-927

Difference ... v |[+2°10| +39 | 478 | —05 [+266 |+3'61| +1°515 | 1261 1-20

If we wish to find the odds that soft seed will give a better yield of corn on the
average, we divide the average difference by the standard deviation, giving us

z="88.

Looking this up in the table for n =6 we find p=-9465 or the odds are
‘9465 : 585, about 18:1.

Similarly for straw z = 120, p =-9782, and the odds about 45: 1.

In order to see whether such odds are sufficient for a practical man to draw a
definite conclusion, I take another set of experiments in which Dr Voelcker com-
pares the effects of different artificial manures used with potatoes on the large
scale.

The figures represent the difference between the crops grown with the use of
sulphate of potash and kainit respectively in both 1904 and 1905.

oewt, qr. Ib, ton cwt. qr. lb.

1904 +10 3 20:+1 10 1 26 . .
1905 + 6 0 8: .+ 13 2 8} (two experiments in each year).

* Journal of Royal Statistical Society, 1907.

+ And perhaps a few experiments to see whether there is a correlation between yield and * mellow-
ness’ in barley.
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The average gain by the use of sulphate of potash was 1525 cwt. and the
$.0. 9 cwt., whence, if we want the odds that the conclusion given below is right,
2=1°7 corresponding, when n =4, to p =-9698 or odds of 32:1; this is midway
between the odds in the former example. Dr Voelcker says ‘ It may now fairly be
concluded that for the potato crop on light land 1 cwt. per acre of sulphate of
potash is a better dressing than kainit.

As an example of how the tables should be used with caution, I take the
following pot culture experiments to test whether it made any difference whether
large or small seeds were sown.

Illustration I11. In 1899 andin 1903 “ head corn” and “tail corn” were taken
from the same bulks of barley and sown in pots. The yields in grammes were
as follows:

1899 1903
Large seed ...... 139 73
Small seed ...... 144 87
+°5 +6

The average gain is thus *55 and the s.D. ‘05, giving z=11. Now the table
for n=2 is not given, but if we look up the angle whose tangent is 11 in
Chambers’ tables,

tan—1 11 84°47 |
=_T0°_+ 5=W +'5= 971,

so that the odds are about 33:1 that small corn gives a better yield than large.
These odds are those which would be laid, and laid rightly, by a man whose only
knowledge of the matter was contained in the two experiments. Anyone con-
versant with pot culture would however know that the difference between the two
results would generally be greater and would correspondingly moderate the
certainty of his conclusion. In point of fact a large scale experiment confirmed
the result, the small corn yielding about 15 per cent. more than the large.

I will conclude with an example which comes beyond the range of the tables,
there being eleven experiments.

To test whether it is of advantage to kiln-dry barley seed before sowing, seven
varieties of barley were sown (both kiln-dried and not kiln-dried) in 1899 and four
in 1900 ; the results are given in the table.

It will be noticed that the kiln-dried seed gave on an average the larger yield
of corn and straw, but that the quality was almost always inferior. At first sight
this might be supposed to be due to superior germinating power in the kiln-dried
seed, but my farming friends tell me that the effect of this would be that the
kiln-dried seed would produce the better quality barley. Dr Voelcker draws the
conclusion “In such seasons as 1899 and 1900 there is no particular advantage in
kiln-drying before sowing.” Our examination completely justifies this and adds
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“and the quality of the resulting barley is inferior though the yield may be
greater.”

1bs. head corn per acre

Price of head corn in
shillings per quarter

cwts. straw per acre

Value of crop per acre
in shillings *

N.K.D.| K. D Diff. |N.K.D.| K. D. Diff. IN. K. D.| K. D.| Diff. |N.K.D.| K. D. | Diff.
1903 2009 +106 26% 263 0 19i 25 + 53 144 152 +11%
1935 1915 - 20 28 261 -11 22;‘} 24 +1z 152 145 -7%
1910 2011 4101 29% 281 1 23 24 +1 158 161 + 21}‘
18994 2496 2463 - 33 30 29 1 23 28 +5 204§ 199 | -5
2108 2180 | + 72 27% 27 -3 22% 22% 0 162 164 +2
1961 1925 - 36 26 26 0 194 19¥ - i 142 1391 | -~ 2%
2060 | 2122 | + 62| 29 26 | -3 | o241 | 22f| -23 | 168 | 155 |-13
1444 1482 + 38 29 2&% -1 154 16 +§ 118 117% —%
1900 || 1612 | 1542 | — 70| 28 28" | -1 | 18 174 | -4 | 1284 | 121 | -7}
1316 1443 | +127 30 29 -1 l4i 15 + lé 109 1163 | +7
1511 1535 + 24 28% 28 -1 17 17§ +i 120 120 +%
Average | 18415 | 18752 | +337| 28456 | 2755 | —-91] 1995 |21°05 | +1'10| 145°82 | 14468 |+1-14
Standard - . . .
eandard || _ — |e1 | — — |l = | = |2 | — — | 667
Standard
Devia.tion} —_ —_ 223 — -— 28 — —_ 80 — — 240
=8 ‘

* Straw being valued at 15s. per ton.

In this case I propose to use the approximation given by the normal curve

with standard deviation

s
V(n—3)

and therefore use Sheppard’s tables, looking up

the difference divided by —-. The probability in the case of yield of corn per
Y 78 p Y y

acre is given by looking u 3—3:—7=1'51 in Sheppard’s tables. This gives p =934,
g y g UP 553 1% g b

or the odds are about 14 :1 that kiln-dried corn gives the higher yield.

Similarly %=3'25, corresponding to p =-9994,* so that the odds are very

great that kiln-dried seed gives barley of a worse quality than seed which has not
been kiln-dried.

is large.

Similarly it is about 11 to 1 that kiln-dried seed gives more straw and about
2 :1 that the total value of the crop is less with kiln-dried seed.

* As pointed out in Section V. the normal curve gives too large a value for p when the probability
It matters little however to a conclusion of

this kind whether the odds in its favour are 1,660 : 1 or merely 416: 1.

I find the true value in this case to be p="9976.
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SEcTioN X.
Conclusions.

I A curve has been found representing the frequency distribution of standard
deviations of samples drawn from a normal population.

II. A curve has been found representing the frequency distribution of values
of the means of such samples, when these values are measured from the mean of
the population in terms of the standard deviation of the sample.

III. It has been shown that this curve represents the facts fairly well even
when the distribution of the population is not strictly normal.

IV. Tables are given by which it can be judged whether a series of experiments,
however short, have given a result which conforms to any required standard of
accuracy or whether it is necessary to continue the investigation.

Finally I should like to express my thanks to Professor Karl Pearson, without
whose constant advice and criticism this paper could not have been written.
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