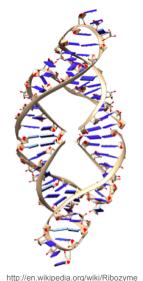
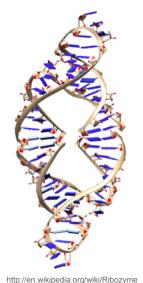
Protein-responsive ribozyme switches in eukaryotic cells

Andrew B. Kennedy, James V. Vowles, Leo d'Espaux, and Christina D. Smolke


Presented by Marianne Linz and Jennifer Thornton

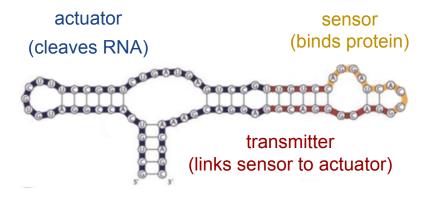
March 11, 2015

Synthetic biology would benefit from advances in protein-responsive genetic devices


- Proteins→Cell phenotype, behavior
- Protein-responsive tools for genetic control would be powerful
- Ribozymes could be these tools
 - Small molecule-responsive ribozymes had been made
 - Protein-responsive ribozymes had not

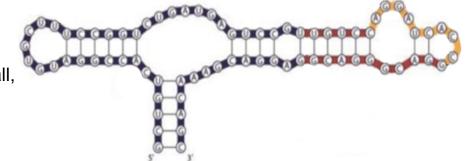
Ribozymes (ribonucleic acid enzymes): RNA molecules that catalyze biochemical reactions, behaving like protein enzymes

Synthetic biology would benefit from advances in protein-responsive genetic devices


- Proteins→Cell phenotype, behavior
- Protein-responsive tools for genetic control would be powerful
- Ribozymes could be these tools
 - Small molecule-responsive ribozymes had been made
 - **Protein-responsive ribozymes** had not

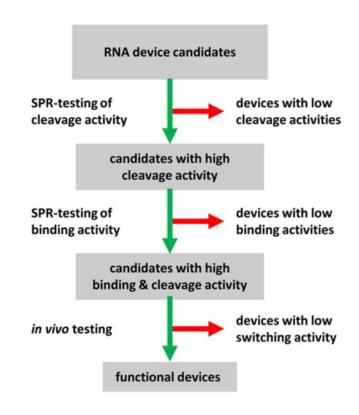
Ribozymes (ribonucleic acid enzymes): RNA molecules that catalyze biochemical reactions, behaving like protein enzymes

Created protein-responsive ribozyme switches that can control gene expression


They designed three switch components:

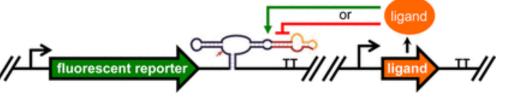
- Advantages:
 - Can either repress or enhance gene expression
 - Have components that can be modified
 - Work in mammalian cells, yeast, in vitro
 - Respond to protein binding

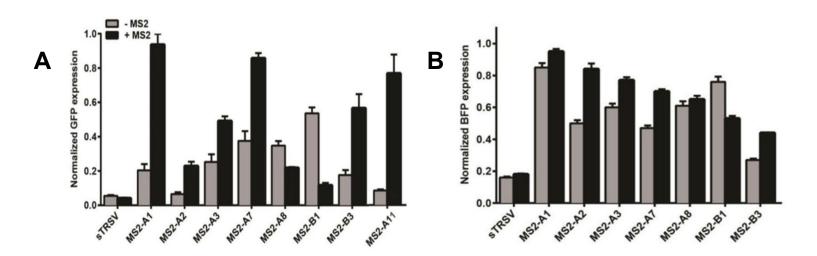
Multiple gene-ON and gene-OFF constructs were designed


- Created ON and OFF ribozyme switches
 - ON: ligand binding ↑ gene expression
 - OFF: ligand binding ↓ gene expression
- Modified pre-existing parts
 - Sensor: MS2 coat protein aptamer (small, well-characterized)
 - Actuator: sTRSV HHRz from tobacco ringspot virus

- Built two different types of transmitter domains
 - Separate transmitter mediating secondary structure switching (gene-ON)
 - Transmitter directing displacement of HHRz loop structure (gene-ON and -OFF)

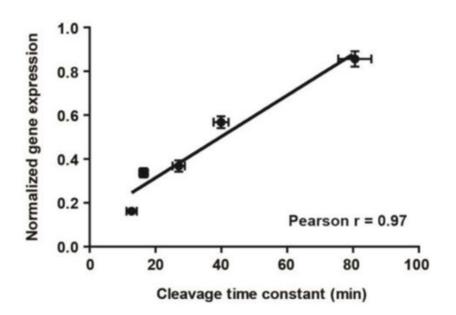
Device function was tested in vitro via two SPR assays

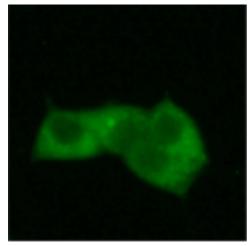

- SPR (Surface Plasmon Resonance)
 - Binding→Change in refractive index of sensor surface→Output signal
- RNA self-cleavage assay
 - Measured device cleavage when Mg²⁺ ions were added
 - RNA cleavage ↓ SPR signal
- Protein-RNA binding assay
 - Measured protein binding to devices stuck to the SPR surface
 - Protein binding ↑ SPR signal


Devices that passed *in vitro* testing were tested *in vivo* with fluorescent reporters

Promising devices placed in
 3' UTR of fluorescent reporters

Constructs placed in yeast and human / embryonic kidney cells




- Cell fluorescence measured in presence/absence of MS2 ligand
- Graphs show functionality in yeast (A) and human (B) cells, variability across device activity

Two further experiments revealed information about how ribozyme switches function

 In vitro gel-based RNA cleavage kinetics correlate with in vivo gene expression levels (mammalian results below) Experiments with localized MS2 ligands show ribozyme switches respond to nuclear and cytoplasmic ligand

2MS2mut-NES localizes to the cytoplasm as expected

Assumptions and Suggestions

- The group's claims rest on a few assumptions:
 - This would work with another protein→Used only one, virus coat protein MS2
 - Sensors for different proteins can be built→MS2 sensor found in nature already
 - Enough is known about ribozymes to implement→Mechanism not well understood
- Our suggestions:
 - Build devices for more proteins
 - Condense the methods section→Move to supplementary materials
- Still, we would recommend for publishing. The work was successful and could inspire further protein-responsive switch construction.

Conclusions and Significance

- New class of ribozyme switches has many advantages:
 - o Protein-responsive
 - Extendable to other proteins/genes
 - Allows for gene-ON and gene-OFF regulation
 - Can be applied to different cell types

 Yeast, mammals, etc.
- No further publications yet, but future work expected to:
 - Streamline switch development
 - Elucidate ribozyme switch mechanism of action
 - o Discover applications in gene therapy, diagnostic tools, cellular therapeutics, and more