
Does diversity increase within the amino acid sequences over time more within the rapid progressors compared to non-progressors?

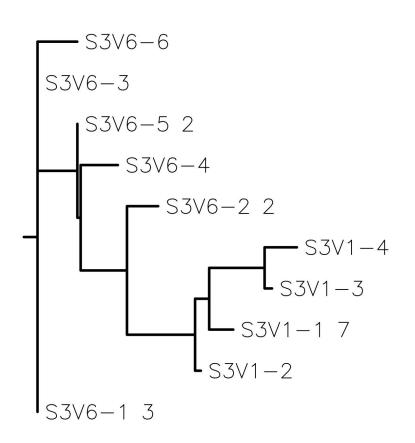
Mia Huddleston and Avery Vernon-Moore

Two subjects from the nonprogressor and rapid progressor groups were chosen comparing each of their first and last visit clones.

Group	Subject	Number of Clones	Number of Mutations
Nonprogressors	Subject 13	10	5
Nonprogressors	Subject 12	12	11
Rapid Progressors	Subject 3	10	9
Rapid Progressors	Subject 10	17	24

Sequence alignment of rapid progressors shows large number of mutations from first to last

Sequence alignment of rapid progressors shows large number of mutations from first to last

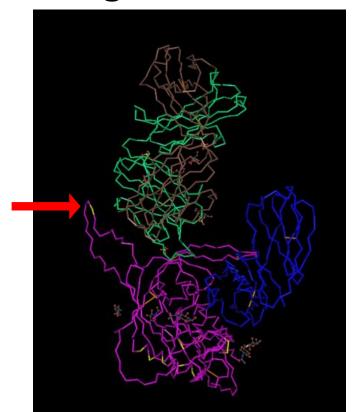

```
S3V6-6
          DIVIRSANFSDNAKTILVQLNETVVMNCTRPGNNTRKRVTLGPGRVYYTTGQIIGDIRKA
S3V6-3
          DIVIRSANFSDNAKTILVQLNETVVMNCTRPGNNTRKRVTLGPGRVYYTTGQIIGDIRKA
S3V6-1[3]
         DIVIRSANFSDNAKTILVQLNETVVMNCTRPGNNTRKRVTLGPGRVYYTTGQIIGDIRKA
S3V6-5[2] DIVIRSANFSDNAKTILVOLNETVVMNCTRPGNNTRKRVTLGPGRVYYTTGOIIGDIRKA
S3V6-4
          DIVIRSANFSDNAKTILVOLNETVVMNCTRPGNNTRKRVTLGPGRVYYTTGOIIGDIRKA
S3V6-2[2] DVVIRSANFTDNAKTILVOLNETVVMNCTRPGNNTRKRVTLGPGRVYYTTGOIIGDIRKA
S3V1-4
          DVVIRSANFTNNAKTILVOLNETVVMNCTRPGNNTRKRVTLGPGKVYYTTGOIIGDIRKA
S3V1-3
          DVVIRSANFTNNAKTILVOLNETVVMNCTRPGNNTRKRVTLGPGKVYYTTGOIIGDIRKA
S3V1-1[7] DVVIRSANFSDNAKTILVQLNETVVMNCTRPGNNTRKRVTLGPGKVYYTTGQIIGDIRKA
S3V1-2
          DVVIRSANFSDNAKTILVQLNETVVMNCTRPGNNTRKRVTLGPGKVYYTTGQIIGDIRKA
consensus DivirsanfsdnaktilvQlnetvvmnCtrpGnntrkrvtlGpGrvyYttGQiiGDirka
S3V6-6
          HCNLSRAGWNSTLERIAIKLREQFONKTIAFNOSS
S3V6-3
          HCNLSRAGWNNTLERIAIKLREOFONKTIAFNOSS
S3V6-1[3] HCNLSRAGWNTLERIAIKLREQFQNKTIAFNQSS
S3V6-5[2] HCNLSRADWNTLERIAIKLREQFQNKTIAFNQSS
S3V6-4
          HCNLSRADWNNTLERIAIKL-EQFQNKTIGFNQSS
S3V6-2[2] HCNLSRADWNNTLERIAIKLREOFONKTIAFNOSS
S3V1-4
          HCNLSRADWNNTLKRIAIKLREQFONKTIVFNQSS
S3V1-3
          HCNLSRADWNNTLKRIAIKLREQFONKTIAFNOSS
S3V1-1[7] HCNLSRADWNNTLKRIAIKLREQFQNKTIVFNQSS
S3V1-2
          HCNLSRADWNNTLKRIAIKLREQFQNKTIAFNQSS
consensus HCNLSRAdWNnTLeRIAIKLrEOFONKTIaFNOSS
```

Sequence alignment of non progressors shows less mutations per number of clones than rapid progressors from first to last visits.

```
S12V8-1
            EVVIRSENFT DNAKI I I VOLNET VE I NCTEP NNDTERS I PI GPGRAFYTT GE I I GD I ROA
S12V1-2
            EVVIRSENFT D MARII I VOLNETVE I NCTRP NN BT RRS IP I GPGRAF YTT GE I I GD I ROA
            EVVIRSENFADNARI I I VOLNETVE INCTEPNNETERS I PI GPGRAFYTTGE I I GD I ROA
S12V8-8
S12V1-3
            EVVIRSENFT DNARI I I VOLNET VE INCTEPNNITERS I PI GPGRAFYTT GE I I GD I ROA
S12V1-1[7] EVVIRSENFTDNARIIIVQLNETVEINCTRPNNNTRESIPIGPGRAFYTTGEIIGDIRQA
S12VB-2[2] EVVIRSRNFTDNAKIIIVQLNETVEINCTRPNNNTRRSIPIGPGRAFYTTGEIIGDIRQA
S12VB-3[2] EVVIRSRNFTDNAKIIIVQLNETVEINCTRPNNNTRKSIPIGPGRAFYTTGEIIGDIRQA
S12V8-4
            EVVIRSENFT DNAKI I I VOLNET VE INCTRPUNNTERS IP I GPGRAF YTT GE I I GD I ROA
            EVVIRSVNFTD NART I I VOLNT SVE I NCTRP N NTRRS IP I GP GRAF YTT GE I I GD I ROA
S12V1-4
S12VB-7
            EVVIRSENFTD NARIIIVQLNETVEINCTRPNNNTRESIPIGPGRAFYATGEIIGD IRQA
            EVVIRSENFT DNARI I I VOLNET VE INCTRPUNNTERS I PI GPGRAFYAT GE I I GD I ROA
S12V8-6
            EVVIRSVMFTDNARTIIVQLMETVEINCTRPNNTTRKSIBIGPGRAFYATGEIIGDIRQA
S12V8-5
consensus
            EVVIRSENFT DNAK I I I VOLNET VE INCTRPNN TRKS I DIGPGRAFYT TGE I IGD I ROA
S12V8-1
            HCNLSRARWNETLKQIVIKLREQFRNRTIVFSPSS
            HCNLSRARWNETLROIVIRLREOFRNRTIVFSPSS
S12V1-2
            HCNLSRARWNETLEQIVIRLREQFRNRTIVFSPSS
S12V8-B
S12V1-3
            BCNLSRARWNETLROIVIRLREOFRNRTIVFSPFS
S12V1-1[7]
           HCNLSRARWNETLROIVIRLREOFRNRTIVFSPSS
S12V8-2[2]
           HCMLSRARWNETLROIVIKLREOFRNRTIVFSPSS
            HCNLSRARWNETLRQIVIRLREQFRNRTIVFSPSS
S12V8-3[2]
S12V8-4
            HCNLSRARWNETLEGIVIRLREGFRNETIVFSPSS
S12V1-4
            BCNLSRARWNETLRQIVIKLREQFRNRTIVFSPSS
            HCTLSRAKWNETLKQIVIKLKEQFRNKTIVFSPSS
S12V8-7
            ECTLSRARMDETLEGIVIRLREGFRURTIVFSPSS
S12V8-6
            ECTLSRARWNETLROIVIRLREOFRNETIVESPSS
S12V8-5
            HCnLSRARWnETLROIVIRLREOFRNRTIVFSP .S
consensus
```

Sequence alignment of non progressors shows less mutations per number of clones than rapid progressors from first to last visits.

```
S13V1-1751
           EIVIRSENFTNNARIIIVQLRESVEINCTRPGNNTRRSINIGPGRAFYASRGIIGDIRQA
S13V1-2[3] EIVIRSENFTNNARIIIVQLRESVEINCTRPGNNTRRSINIGPGRAFYASRGIIGDIRQA
E-IVEIR
           EIVIRSENFTNNARIIIVQLRESVEINCTRPGNNTRRSINIGPGRAFYASRGIIGDIRQA
           EIVIRSENFTHNARI I IVOLKESVEINCTRPGNNTRRSINMGPGRAFYASRGIIGDIROA
S13V1-4
S13V5-1[4] EIVIRSENFTHNARIIIVQLKESVEINCTRPGHNTRRSINIGPGRAFYASRGIIGDIRQA
           EIVIRSENFTHNARI I I VOLKES VEINCTRPGHNTRRSINI GPGRAFYASRGII GDIROA
S13V5-2
           EIVIRFENFTNNARIIIVQLRESVEINCTRPGNNTRRSINIGPGRAFYASRGIIGDIRQA
S13V5-3
S13V5-4[2] EIVIRSENFTNNARIIIVQLRESVEINCTRPGNNTRRSINIGPGRAFYASRGIIGDIRQA
           EIVIRSENFTHMARIIIVOLKESVEINCTRPGNNTRRSINIGPGRAFYASRGIIGDIROA
S13V5-5
S13V5-6
           EIVIRSENFTHNARTIIVOLKESVEINCTRPGHNTRRSINIGPGRAFYASRGIIGDIRQA
           EIVIR ENFINNARIIIVQLEESVEINCTRPGNNTRRSINIGPGRAFYASRGIIGDIRQA
S13V1-1[5] YCHISKARWDHTLGQVAARLREQFRNATIVFHQSS
S13V1-2[3] YCHISRARWDHTLGQVAARLREQFRHATIVFHQSS
S1 3V1 - 3
           YCHI SKARWDNTIGOVAARLREOFRNAT IVFNOSS
S13V1-4
           YCNISKARWDNTIGOVAARLREOFRNATIVFNOSS
S13V5-1[4] YCNISKARWDNTLGOVAARLREOFRNATIVFNOSS
S13V5-2
           YONI SKARWDNTLGQVAARLREQFRNATIVFNQSS
E-2VE18
           YONI SKARWONTLGQVAARLREQFRNAT IVF NQSS
S13V5-4[2] YCHISKARWONTLROVAARLREOFRNATIVFNOSS
S13V5-5
           YONI SKARWONTIGOVAARLREOFRNATIVFNOSS
S1.375 - 6
           YONI SKARWONTLROVAARLREOFRNAT IVFNOSS
           YCNI SKARWDNTLJOVAARLREOFINAT IVFNOSS
```



Rooted trees of each subject's first and last visits were unhelpful in identifying diversity changes over time.

ClustIdist shows higher rate of diversity among rapid progressors than non-progressors by comparing the distances of mutations from the first visit to the last per subject.

Progressor Type	Subject	Distance between first and last visit
Rapid	3	0.010
Rapid	10	0.137
Non	12	0.010
Non	13	0.021

Mutations are identified and located using structure of gp120 that Kwong et al. discovered.

- Subject 10's mutations can be visible in yellow
- One mutation can be seen in the V3 loop

The types of mutations may affect how the protein function would differ.

Subject	Number of major mutations	Number of minor mutations	Number of clones
3	4	5	10
10	14	10	17
12	7	4	12
13	3	2	10

Data suggests higher diversity among rapid progressor amino acid sequences than non-progressors, but a larger sample size is needed to confirm results

- Using more subjects would create a larger sample size
- More data points per subject could increase statistical evidence

Acknowledgements

We would like to thank Dr. Dahlquist and the Loyola Marymount Department of Biology for their help.

References

Huang, C. C., Tang, M., Zhang, M. Y., Majeed, S., Montabana, E., Stanfield, R. L., ... & Wyatt, R. (2005). Structure of a V3-containing HIV-1 gp120 core. *Science*, *310*(5750), 1025-1028.

Kirchherr, J. L., Hamilton, J., Lu, X., Gnanakaran, S., Muldoon, M., Daniels, M., Kasongo, W., Chalwe, V., Mulenga, C., Mwananyanda, L., Musonda, R.M., Yuan, X., Montefiori, D.C., Korber, M.T., Haynes, B.F., & Musonda, R. M. (2011). Identification of amino acid substitutions associated with neutralization phenotype in the human immunodeficiency virus type-1 subtype C gp120. Virology, 409(2), 163-174. DOI: 10.1016/j.virol.2010.09.031

Markham, R.B., Wang, W.C., Weinstein, A.E., Wang, Z., Munoz, A., Templeton, A., Margolick, J., Vlahov, D., Quinn, T., Farzadegan, H., & Yu, X.F. (1998). Patterns of HIV-1 evolution in individuals with differing rates of CD4 T cell decline. Proc Natl Acad Sci U S A. 95, 12568-12573. dos: 10.1073/pnas.95.21.12568