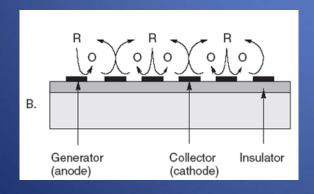
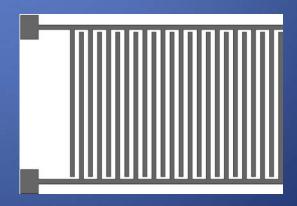
Nanotechnology in Biological Engineering II

THE EFFECT OF ELECTRICAL DOUBLE LAYER ON THE ELECTROCHEMICAL PROCESSES OF NANOMETER INTERDIGITATED ELECTRODES

Xiaoling Yang¹ and Guigen Zhang¹,²,³

¹Micro/Nano Bioengineering Laboratory, ²Nanoscale Science and Engineering Center, ³Faculty of Engineering


The University of Georgia, Athens, GA 30602

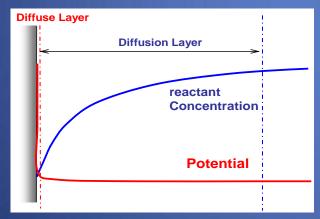

Motivation

- Electrochemical sensor plays an important role in clinical diagnosis:
 Features: High Sensitivity, Real-time detection, Simple operation
- Micro/nano interdigitated electrodes (Micro/Nano IDEs) based electrochemical biosensors are getting more and more popular:

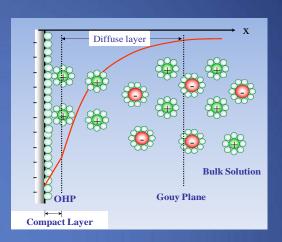
Features: small dimension, low sample volume, low cost

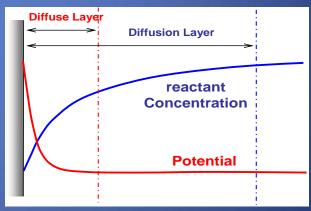
Application: Glucose sensor, immune sensor, gas sensor

Motivation

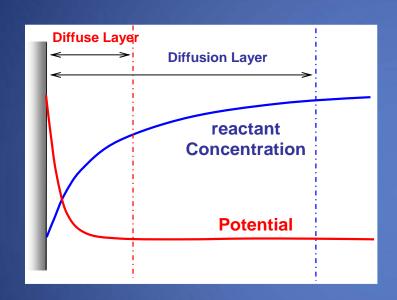

Problem:

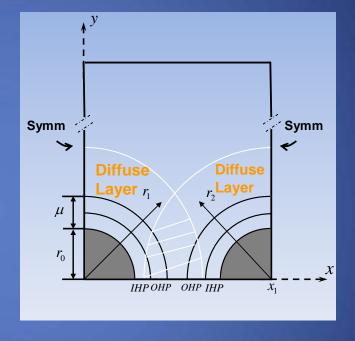
For sensing purpose, <u>IDEs</u> measure <u>faradic current</u>
When the electrodes get to nanometer scale, the <u>faradic response</u> at electrode may be affected <u>by electrical double layer (EDL)</u>.


EDL Effect on Single Electrodes


EDL formation: A charged electrode can attract oppositely charged species in the solution and forms EDL (compact layer and diffuse layer)

EDL effect


Micro electrodes: diffusion only

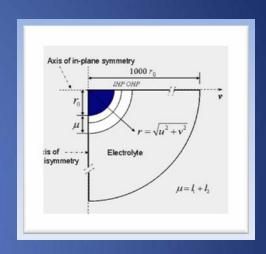


Nano electrodes: diffusion and electromigration

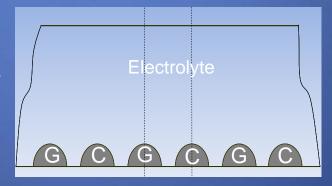
EDL Effect on Nano-IDEs

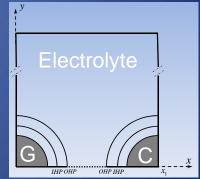
Diffuse layer and diffusion layer overlap

Diffuse layers overlap at two electrodes of nano-IDEs


For a widespread application of nano-IDEs, it is imperative to elucidate the effect of the EDL on the faradic reactions of nano-IDEs. But this problem is too complicated to be solved by analytical means.

Objective


 To investigate the EDL effect on the faradic reaction of nano-IDEs by a fully numerical method developed using COMSOL Multiphysics


Model Development

 Previously our group developed a fully numerical method by COMSOL Multiphysics using Nernst-Plank-Poisson equation to simulate EDL affected faradic reaction at single nanometer electrodes.*

 In this study we expand previous method to further address the issue at nano-IDEs.

r = 1nm

*Yang, X.; Zhang, G. *Nanotechnology* 2007, 18, 335201-335209

Model Development

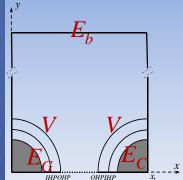
Initial Concentrations

$$O^z + e^- \longleftrightarrow_b R^{z-1}$$

- Oxidized species (OS) and Counter ion: 5mM
- Reduced species: 0mM
- Supporting electrolyte (SE):

SE is excess
$$\rightarrow$$
 C_{SF} = 500mM

Boundary Conditions


 Potential at electrode and bulk solution

$$-E_G$$
 = 0.3V to -0.4V at

$$-E_{C} = 0.3V$$

$$-E_b = OV$$

Current Flux

Butler-Volmer Equation

$$J_f = -J_b = k_0 \cdot \exp[-\alpha F(E - V - E^{0'})/RT] \cdot c_0$$
$$-k_0 \cdot \exp[(I - \alpha)F(E - V - E^{0'})/RT] \cdot c_R$$

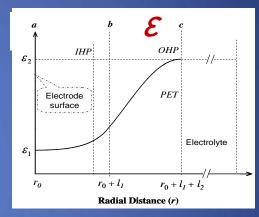
V: potential at OHP, i.e. the Position of Electron Transfer

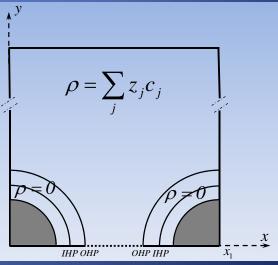
Model Development

--- Governing Equations

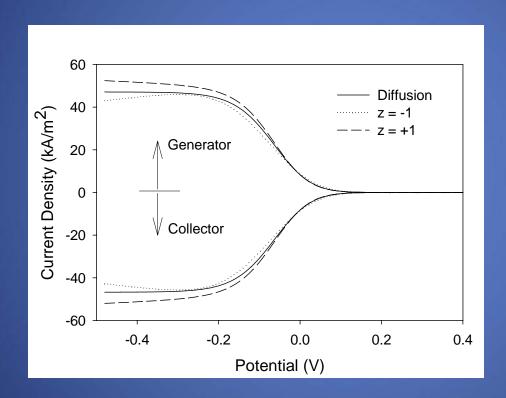
- Potential distribution
 - Poisson equation

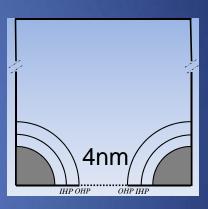
$$\nabla \left(\varepsilon \varepsilon_0 \nabla V \right) = -\rho$$

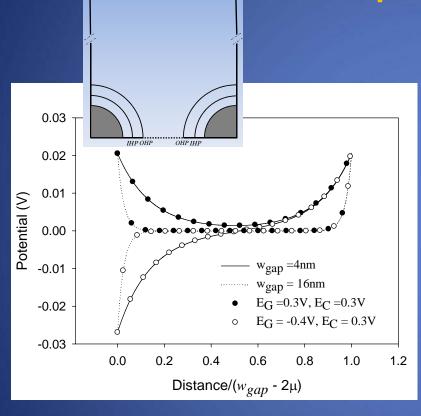

$$\varepsilon_1 = 6$$

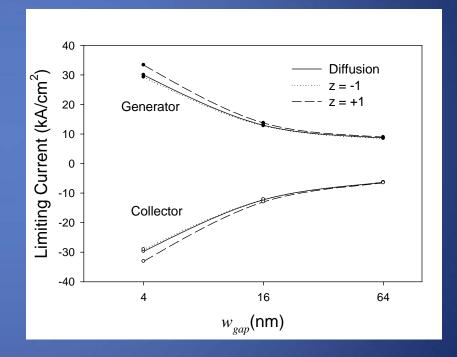

$$\varepsilon_2 = 78$$

Assume: perfectly smooth electrode surface; no specific adsorption


- Mass transport
 - Nernst-Plank equation

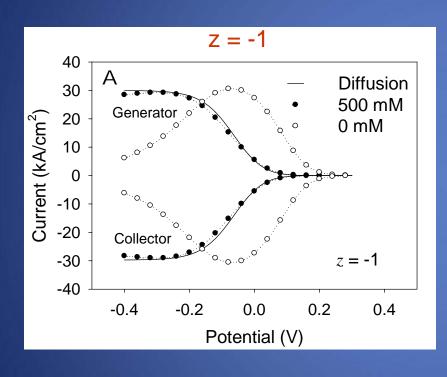

$$\frac{\partial c_{j}}{\partial t} = \nabla \left(D_{j} \nabla c_{j} + \frac{z_{j} F}{RT} D_{j} c_{j} \nabla V \right)$$

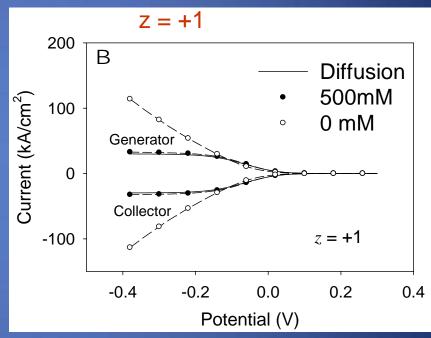

EDL Effect and the Charge Valences of Redox Species



EDL affected voltammetric curve deviated from diffusion controlled case, when inter-electrode spacing $\underline{w_{gap}} = 4$ nm

EDL Effect with Changing Gap Spacing




Potential Distribution at $w_{gap} = 4$ nm & 16nm

limiting current and w_{gap}

More diffuse layer overlap have more EDL effect!

EDL Effect and Supporting Electrolyte

The voltammetric curve deviate significantly from diffusion controlled case when supporting electrolyte is absent in the solution.

Conclusion

- The effect of EDL on the voltammetric performance of nano IDEs is dependent on
 - The charge valence of redox species
 - The gap spacing between electrodes
 - The concentration of supporting electrolyte
- This work demonstrates that a complete computer-modeling approach is well suited for elucidating the electrochemical processes of electrodes with complex geometries when <u>faradic</u> reactions and the EDL effect are of concerns.

Acknowledgement

National Science Foundation
The Faculty of Engineering at The University of Georgia.
My advisor Dr. Guigen Zhang
All my group members

Thank you!