
Biomaterials and Cell-Biomaterial Interactions

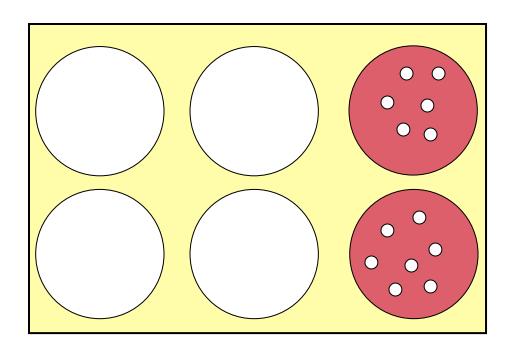
Module 3, Lecture 2

20.109 Spring 2011

Lecture 1 review

- What is tissue engineering?
- Why is tissue engineering?

- Why care about cartilage?
- What are we asking in Module 3?

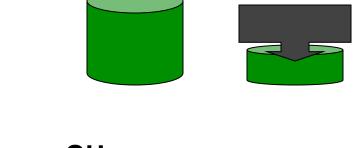

Topics for Lecture 2

- Introduction to biomaterials
 - properties
 - examples
- Cartilage composition
 - collagen
 - proteoglycans

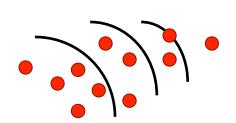
Module 3 learning goals

- Lab concepts/techniques
 - mammalian cell culture and phenotypic assays
- Short informal report
 - accountability to 20.109 community
- Discussions in lecture
 - engage with meta-scientific issues, ethics, etc.
- Research idea presentation
 - investigate literature independently
 - exercise scientific creativity
 - design experiments to address a specific question

Today in Lab: M3D2


0.5 mL beads, 6 mL media

0.5 mL beads, 6 mL media


- 1 condition per plate (2 plates total).
- 2 wells per plate (split 1 mL of beads). if contaminate 1 well on D3, still have 1 on D4.

Properties of biomaterials

- Physical/mechanical
 - strength
 - elasticity
 - architecture (e.g., pore size)
- Chemical
 - degradability
 - water content
 - toxicity
- Biological
 - motifs that cells recognize
 - release of soluble components
- Lifetime

The right material for the job

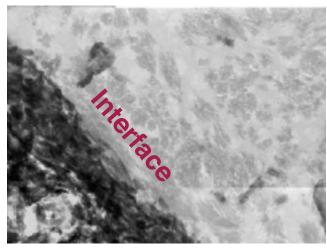
Metals

- Ti, Co, Mg alloys
- pros: mechanically robust
- applications: orthopedics, dentistry

Ceramics

- Al₂O₃, Ca-phosphates, sulfates
- pros: strength, bonding to bone
- applications: orthopedics, dentistry

Polymers


- diverse, tunable properties
- applications: soft tissues

General: B. Ratner, ed. *Biomaterials Science*, 1996.

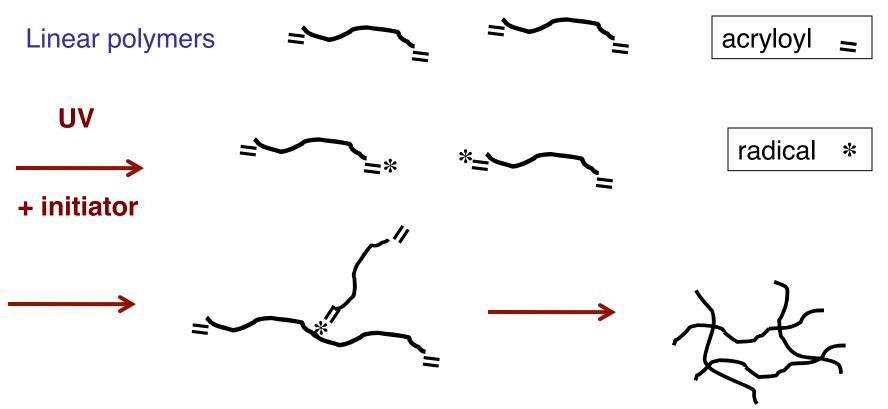
Image: Porter et al., Biomaterials 25:3303 (2004).

http://www.weisshospital.com/ joint-university/hip/metal.html

Si-HA

Bone

Polymers are diverse and tunable


- Linear polymers
 - repeated chemical unit
- Co-polymers
 - heterogeneous repeats
- As MW increases
 - entanglements
 - strength ♠
 - processability
- Chemical group(s) affects
 - hydrophilicity
 - stability
 - ease of chemical modification
 - mechanical properties
 - gas permeability

Poly(ethylene glycol)

Poly(lactic-co-glycolic acid)

[public domain image]

Free radical polymerization

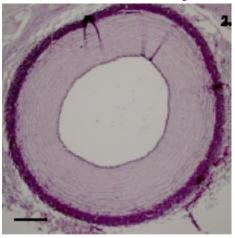
- Network structure
 - covalently cross-linked chains
 - water-swollen (if hydrophilic)

Network polymer

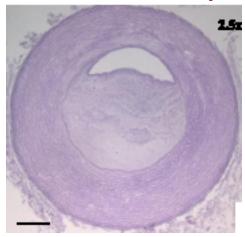
Properties of hydrogels

- Mimic soft tissues
 - water content
 - elasticity
 - diffusivity
- Synthesis at physiological conditions
 - temperature
 - pH
 - UV light: spatio-temporal control; safe
- Injectability
- Chemical modification

(Stachowiak & Irvine)

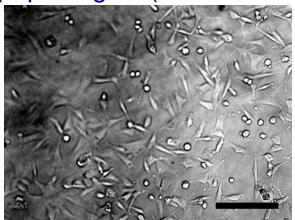

Review: Nguyen KT & West JL, Biomaterials 23:4307 (2002)

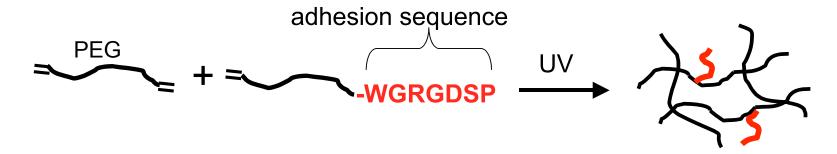
Materials must be biocompatible


- Avoid bio-incompatibility
 - immunogenicity
 - bacterial adhesion
 - clot formation
 - toxicity
- Material properties
 - sterility
 - resistance to protein adhesion
 - material and its degradation products non-toxic

Data from: Zavan B, et al., *FASEB J* **22**:2853 (2008).

Normal artery

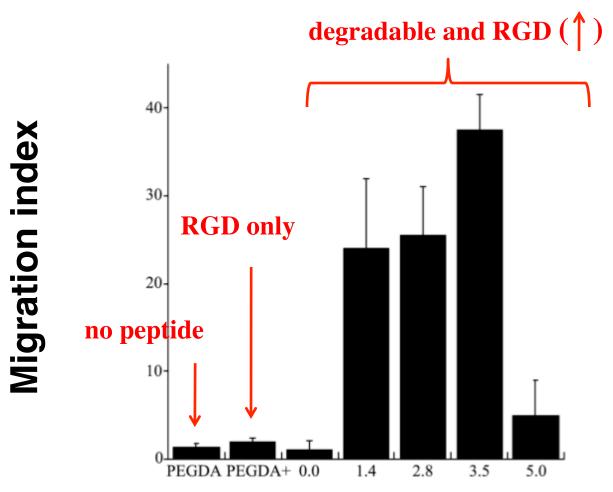

Occluded artery


Beyond bioinert: bioactive materials

- Attach proteins/peptides for
 - cell adhesion
 - degradability
- Release cytokines for
 - proliferation
 - differentiation
 - attraction

Fibroblasts on polymerpeptide gels (Stachowiak).

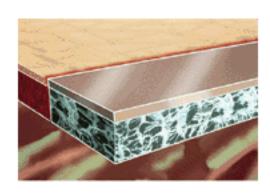
• e.g., West JL and Hubbell JA *Macromolecules* **32**:241 (1999)


Interlude: on synthetic biology

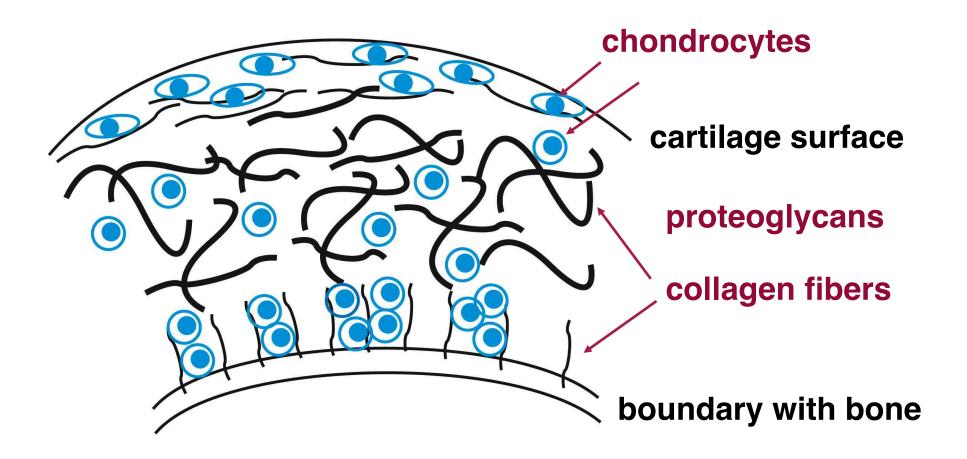
One aim of SB is to make biology easier to engineer. This could invite amateur innovation... or mischief... or could it?

Andy Ellington, of aptamer fame, writes: "In particular, I take issue with the notion that 'There is every reason to expect that garage innovation will be as important to biological technologies as it was to IT' Without revisiting my usual diatribe over whether the term 'synthetic biology' is meaningless, let's just look at the details of what is possible." What do you think?

http://ellingtonlab.org/blog/2011/01/23/on-regulation/


TE constructs to study cell migration

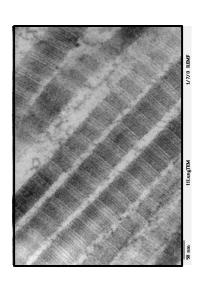
Gobin AS & West J, FASEB J 16:751 (2002)


Natural vs. synthetic polymers

- Natural pros/cons
 - built-in bioactivity
 - poor mechanical strength
 - immunogenicity (xenologous sources)
 - lot-to-lot variation, unpredictable

- Synthetic pros/cons
 - predicting biocompatibility is tough
 - mechanical and chemical properties readily altered
 - minimal lot-to-lot variation
- Synthetic advantages: tunable and reproducible

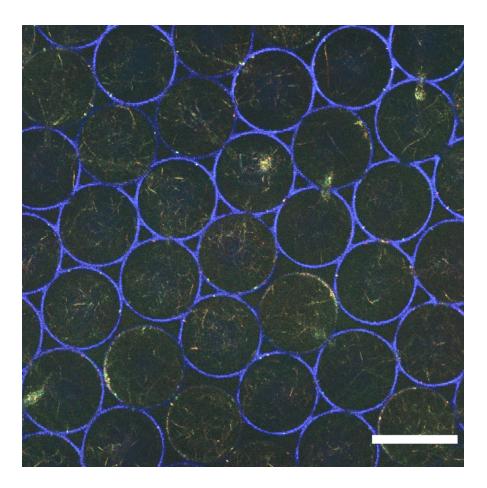
Revisiting cartilage structure



Water-swollen, heterogeneous, avascular and cell-poor tissue.

Structure of collagen(s)

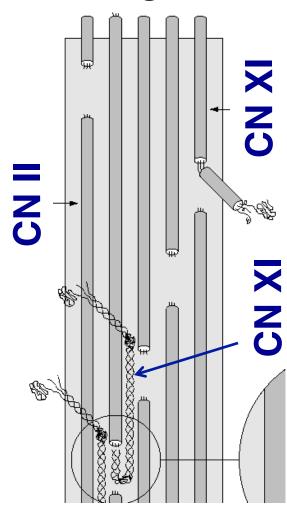
- 1° structure:
 - Gly-X-Y repeats
 - proline, hydroxyproline
- 3° structure: triple helix
 - Gly: flexibility
 - Hyp: H-bonding
- 4° structure: fibrils
 - many but not all collagens
 - cross-links via lysine, hydroxylysine
 - periodic banding observable


HYP residues

Molecular image made using *Protein Explorer* (PDB ID: 1bkv). Fibril image from public domain.

E. Vuorio & B. de Crombrugghe *Annu Rev Biochem* 59:837 (1990)

Macro structure of fibrillar collagen

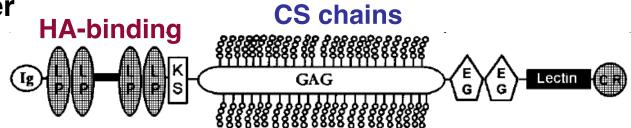


A. Stachowiak and D.J. Irvine, confocal reflection microscopy of collagen-filled synthetic scaffold.

Collagen composition in cartilage

- Collagen types vary in
 - location
 - glycoslyation
 - higher-order structure
 - homo- (II) or hetero- (I) trimers
- Cartilage collagens
 - Type II with IX and XI
 - exact roles of IX and XI unknown
 - inter-fibrillar cross-links
 - modulate fibril diameter
 - others(III, VI, X, XII, XIV)
- Little collagen turnover in adult cartilage

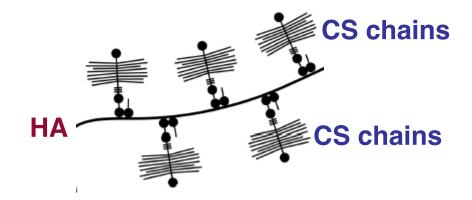
Proteoglycans are bulky and charged


- Proteins with GAG side chains
 - GAG is glycosaminoglycan
 - many charged groups: COO⁻, SO₃⁻
- Main cartilage PG is aggrecan
 - GAG is primarily chondroitin sulfate (CS)
 - aggrecans polymerize via hyaluronin (HA)

Chondroitin sulfate (public domain image)

Aggrecan monomer

R.V. lozzo *Annu Rev Biochem* 67:609 (1998)



PG form heterogeneous aggregates

- Monomer > 1M, aggregates > 100M Da
- Average size decreases
 - with age
 - with osteoarthritis
- Aggrecenase inhibitors may be a target
- · Under compression: water exuded, osmotic resistance

Aggrecan aggregate

C.B & W. Knudson Cell & Dev Bio 12:69 (2001)

Cartilage structure and function

Cartilage composition

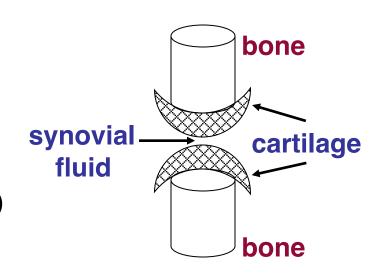
dry weight: CN 50-75%; PG 15-30%

water: 60-80%

– cells: 5-10% (v/v)

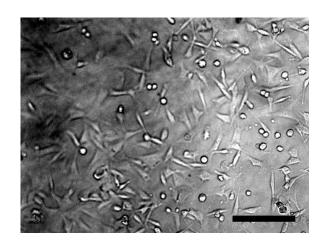
Requirements of a joint

- load transfer (bone/bone, bone/muscle)
- flexibility, lubrication


Role of PG

- high compressive strength (osmotic swelling)
- low permeability, friction coefficient reduces wear and tear

Role of CN


- high tensile strength (~GPa)
- contain swelling forces of PG

V.C. Mow, A. Ratcliffe, and S.LY. Woo, eds. *Biomechanics of Diarthrodial Joints* (Vol. I) Springer-Verlag New York Inc. 1990

Lecture 2: conclusions

- Diverse biomaterials are used in TE.
- Cell-material interactions can be (+), (-), or neutral.
- Hydrogels are useful for soft tissue engineering: they mimic such tissue and are easy to modify.
- The composition of cartilage supports its functions.

Next time... intro to statistics, and to standards in scientific communities.