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Question 1:  A numerical exploration of the Lorenz system 

We first consider the three dimensional Lorenz system shown below. 
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To get a good understanding of the system, we can start by finding the fixed points of the 
system by setting all of the equations to zero such that ݔሶ ൌ ሶݕ ൌ ሶݖ ൌ 0.  We obtain that the 
fixed points are: 
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From the form of the fixed points, it can be seen that (0,0,0) is always a fixed point, but the 
other fixed point only appears when r > 1.  When r < 1, the fixed points are imaginary and are 
not seen on the phase plane.   

We can also calculate the Jacobian of the system to obtain the stability analysis of the system.  
The Jacobian is as follows: 
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From this point, we can calculate the eigenvalues of the system via Matlab to determine the 
stability of all the fixed points.   In the table below, we change the value of r and determine 
the eigenvalues of the jacobian for both the (0,0,0) fixed point and the other two fixed points.  
In the following analysis we fix the values of ߪ and b: 

ߪ ൌ 10, ܾ ൌ 8/3 

r = 10 Fixed Point Eigenvalues 
 0         0         0 5.4659, -16.4659, -2.6667 
 4.8990    4.8990    9.0000 -12.4757, -0.5955 - 6.1742i, -0.5955 + 6.1742i 
 -4.8990   -4.8990    9.0000 -12.4757,  -0.5955 - 6.1742i, -0.5955 + 6.1742i 
 

For r = 10, we can see that (0,0,0) is a saddle node and the other fixed points are considered 
attracting spirals since two of the eigenvalues are imaginary.  Thus, the two fixed points other 
than (0,0,0) will be the attractors of the system since it can be seen that the real component of 
the imaginary eigenvalues are negative.  This negative real component signifies that the 
spirals are inward towards the fixed point. 



r = 24.5 Fixed Point Eigenvalues 
 0         0         0 10.7865, -21.7865, -2.6667 
 7.9162    7.9162   23.5000 -13.6523, -0.0072 - 9.5814i,  -0.0072 + 9.5814i 
 -7.9162  -7.9162   23.5000 -13.6523, -0.0072 - 9.5814i,  -0.0072 + 9.5814i 
 

For r = 24.5, the situation is the same as for r = 10 with (0,0,0) being a saddle node and the 
other fixed points being attracting spirals.  Again, the two fixed points other than (0,0,0) will 
be the attractors of the system. 

r = 25 Fixed Point Eigenvalues 
 0         0         0 10.9393, -21.9393, -2.6667 
 8     8    24 -13.6825, 0.0079 - 9.6721i, 0.0079 + 9.6721i 
 -8    -8    24 -13.6825, 0.0079 - 9.6721i, 0.0079 + 9.6721i 
 

For r = 25, we have a slightly different case than for r = 10 or 24.5.  Here we again see that 
(0,0,0) is a saddle node, but the other two fixed points have become repelling spirals as the 
real component of the eigenvalues have become positive meaning that they exponentially 
grow away from the fixed point.  Later when we take a look at the phase plane and the 
bifurcation, we can see that this value of r is greater than the Hopf bifurcation point.  
Furthermore, since our fixed points have become unstable, there are no longer any long-term 
attractors of the system after the Hopf bifurcation.   

r = 45 Fixed Point Eigenvalues 
 0         0         0 -2.6667, 16.1852, -27.1852 
 10.8321, 10.8321, 44.0000 -14.6165, 0.4749 -12.6619i, 0.4749 +12.6619i 
 -10.8321, -10.8321, 44.0000 -14.6165, 0.4749 -12.6619i, 0.4749 +12.6619i 
 

r = 220 Fixed Point Eigenvalues 
 0         0         0 -2.6667, 41.6195, -52.6195 
 24.1661   24.1661  219.0000 -17.2826, 1.8080 -25.9337i, 1.8080 +25.9337i 
 -24.1661  -24.1661  219.0000 -17.2826, 1.8080 -25.9337i, 1.8080 +25.9337i 
 

For r = 45 and 220, we have a similar situation for when r = 25.  Since we see the positive 
real value in the eigenvalue corresponding to two fixed points which are not (0,0,0), they are 
no longer stable fixed points.  Again, for these values of r, there are no long-term attractors of 
the system.   

We can see a definite change of behavior between r values of 24.5 and 25.  This Hopf 
bifurcation occurs at the r value: 

ݎ ൌ ுݎ ൌ ߪ ൬
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For our specific values of b and ߪ, we find that ݎு ൌ 24.736.  In the phase plane analysis, we 
can see this change of behavior occurring in figure 1.  We can see that for r = 10 and 24.5, we 
get a spiral getting attracted to the fixed points (which are the long-term attractors of the 
system).  For r > 24.5, we see that there are no longer any long-term attractors, but the 
behavior is chaotic and does not seem to follow a patter except that the trajectories seem to 



remain in a bounded area around unstable fixed points.  For r = 10 and 24.5, it can be seen 
that the trajectories depend on the initial conditions and will either go to the positive or 
negative fixed point (figures 2a and 2b).  

 
Figure 1.  Phase plane x vs. y for various r values 

 

We can further visualize the chaotic nature of the system by plotting the time evolution as 
shown in figure 3.  Chaotic behavior can be seen starting with r = 25.  From our numerical 
analysis above, we know that for r = 24.5, the system will continue to be periodic and we 
predict that the long-term behavior will be similar to what is occurring already.  For r > 24.5, 
we see a chaotic behavior which is aperiodic but bounded between values, two key elements 
a chaotic system has.   

Another key element a chaotic system has is sensitivity to initial conditions.  This is 
demonstrated by taking two initial values which are very close together.   

I1 = (8.8756, 16.1229, 11.5828) 

I2 = (8.8757, 16.1230, 11.5829) 
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Figure 2a. Initial Condition (0,1,0)
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Figure 2b. Initial Condition (0,-1,0)
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Figure 3.  Time evolution of the Lorenz system 

The plots of the two initial conditions are shown superimposed in figure 4 (blue 
corresponding to initial conditions I1 and red dashed line corresponding to initial conditions 
I2).   

 

We can see that at approximately when time = 15, the two trajectories begin to diverge 
significantly.  We can calculate the difference to calculate the Lyapunov exponent of the 
system which is derived from knowing that as time approaches 0, the two trajectories will be 
very close.  As time increases, the two trajectories begin to diverge and the distance between 
the two is bounded by the elliptical volume in which the trajectories are contained.  The 
Lyapunov exponent, ߣ, gives the rate of exponential divergence of the two trajectories and 
gives the limit to which we can predict the behavior of the system. By considering two 
neighboring trajectories, numerical studies have shown that the following relationship holds 
true. 
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Plotting ݈݊ԡߜ଴ԡ vs t (figure 5), we obtain a curve that is close to a straight line with a positive 
slope ߣ.  A straight line is then fit to the curve to find the value of the slope.  The significance 
of the positive slope is that the trajectories are always diverging.  If the slope were to be 
negative, then the trajectories would be considered converging and the system cannot be 
considered chaotic.  In our system,  ߣ was found to be equal 0.74.  The fact that it is positive 
correlates with the idea that our system is indeed chaotic. 

 

Question 2:  Period doubling and chaos in an oscillatory system 
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Figure 5. Finding the Lyapunov Exponent


