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Tai et al. (2007) Background Information

e Evaluated gene transcriptional response to low temperature in
Saccharomyces cerevisiae using chemostate method
e Stated that chemostat was more effective for this study

o Transcriptional responses to low temperature and low specific

growth rate can be separated by using chemostat cultures instead
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Tai et al. (2007) Main Findings and Conclusions

The only indistinguishable group of genes that was
similarly regulated in low-temperature chemostats
and batch culture studies on low-temperature

adaptation were related to lipid metabolism
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Figure 4. Comparison of flh iansc pt ratio of 259 genes low-temperature transcriptome datasets with the
i cifically up- (n and

ammonium-limited chemostat

adaptation in response to environmental change i bevmee brckes show s onssent st s o s i, T T

Response to low temperatures by S. cerevisiae is not

entirely dependent on changes in transcription
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Tai et al. (2007) Chemostat Conditions
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Modeling Objectives

|[dentify the activation energy ‘b’ and frequency factor constant ‘a’ using the

arrhenius equation:
b

r=ae KT

Determine if efficiency of nutrient to biomass conversion is dependent on
residual glucose. If so, construct a function of efficiency in terms of residual

glucose
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Methods

Obtained parameters
from Tai et al. (2007)

‘ Established model for two A MATLAB
nutrient chemostat and '

input parameters from Tai
et al. (2007)

Solved for activation energy
Q and frequency factor constant

to find specific growth rate

ry = r*(y/(K+y))*(2/(L+2)) using arrhenius equation at Developed function for
dxdt = (ry)* - g*x 15,20,and 25C efficiency of glucose
conversion to biomass
dydt =q*(u-y)-epry’x ‘ as a function of residual
dzdt =qg*(v - z) - fp*ry*x glucose, to determine if

there was any change
from the original model
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Parameter Descriptions

r — specific growth rate

E — efficiency of conversion from glucose to biomass
F — efficiency of conversion from ammonia to biomass
q — dilution rate

u — glucose feed concentration

v — ammonium feed concentration

K,L — substrate concentration when the reaction velocity is equal to 1/2 of the max velocity for the reaction
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Solving for Ea (‘B’) and Frequency Factor Constant (‘A’)

0
0.5
Slope of In k vs 1/T =-8400.36
: Slope = -Ea/R = B/R
R ™ B = 69,840.59
2 | rate = (10_%'
A=4.979 x 10M1

0.00325 0.0033 0.00335 0.0034 0.00345 0.0035 0.00355
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Applying Growth Rates for Glucose Limited at Varying Temperature

12 degree Glucose limited 15 degree Glucose limited SSE = 0.0023527
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Efficiency as a Function of 'y’ (Residual Glucose)

E = my+b

Assumed relationship between efficiency and residual
glucose was linear
Used point slope formula to solve for slope

Inputted back into y - intercept formula to solve for b

12C

30C

E =0.363y + 14.107

E = 0.7004y + 14.252




Comparing Adjusted Efficiency to Original Model at 12 C

12 degree Gluc
SSE
1.8512e-05

limited

OSF
Vs

time

12 degree Glucose limited
SSE=

SSE=
0.069388

12 degree Ammonium limited

12 degree Ammonium limited
SSE =
0.069378

No significant
difference between
original model with E
denoted as 1/Y
compared to E as a
function residual
glucose at 12 C

time

Original

Adjusted




Comparing Adjusted Efficiency to Original Model at 30 C

30 degree Glucose limited
SSE =
2.9974e-05

30 degree Glucose limited
SSE =
3.0013e-05

30 degree Ammonium limited
SSE =
0.02401

30 degree Ammonium limited
SSE =
0.024008

No significant
difference between
original model with E
denoted as 1/Y
compared to E as a
function residual
glucose at 30 C

Original Adjusted
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Discussion

Both original and adjusted model show steady state being reached after 100 hours,
contradicting our initial calculation

Defining efficiency of the conversion of glucose to biomass as a function of residual
glucose did not improve the accuracy of the model

The sharp increase in glucose concentration upon starting the chemostat followed by
an abrupt decrease in the glucose limited culture may reflect fast rate of glucose
consumption followed by slower consumption as glucose levels decrease

When glucose is in excess, glucose consumption rate does not reduce the
concentration of glucose, as in glucose limited conditions

o Suggests glucose is a more valuable nutrient for yeast utilization
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Reflection

e Taietal. (2007) did not provide sufficient information to model the chemostat

conditions used to obtain their results
o Did not specify maximum growth rate (r) which was required for our
model

e Include equations for carbon dioxide and ethanol to determine if they have an
effect on efficiency of conversion of nutrients to biomass\

e Investigate sharp increase in glucose concentration upon starting the
chemostat followed by an abrupt decrease in the glucose limited culture at
30C
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