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Outline

Complexity
Recognition of modules
— modularity in engineering
— modularity in nature
Origin of modularity
— nature of mutations

— generalization of copy, cut and
paste mechanisms

— elements of networks
— genetic motifs
Scalable design

— emergent behavior

— compositional evolution
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Complexity

* a fundamental problem of science, why does
matter growth in complexity?

* “"Complexity arises then ... components interact
with each other in ways ... more than uniform,
frequent elastic collisions. Interactions among
components can lead to all kinds of nonlinear
behavior.” [Herbert A. Simon, 2005]



Divergence of astrocytes for GFA
content depending on malignation
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Assembling by adhesion rules (DLA)
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Nearly decomposable and modular
systems

* “... the frequencies of interaction among elements in any
particular subsystem of a system are an order of
magnitude or two greater than the frequencies of
iInteraction between the subsystems. We call this ...
nearly decomposable (ND) system.” [Simon and Ando,
1961]

* “A system may be characterized as modular to the
extent that of its components operates primary according
to its own, intrinsically determined principles. Modules
within a system or process are tightly integrated but
relatively independent.” [Herbert A. Simon, 20035]



Modularity in electronics, optics and
DNA-nanotechnology
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Endohedral metallofullerenes

Co,@Cy, ab initio calculations:

along orientation across orientation

Method: DFT - density functional theory
GGA-PBE - generalized gradient approximation
[Perdew, Burke, Ernzerhof, 1996]

Calculation: the total spin magnetic moment, uB
Software: OpenMX v.3.5 [Ozaki, 2003]

2.19 pe/Co-atom 1.80 ps/Co-atom

* M~ <L>/N,

* where M is the magnetic moment per Me-atom of given complex
(uB), <L> is the average Me—C bond length in A, and N is the total
number of Me—C bonds in the complex

Kuznetsov, Comp. Mat. Sci. 2012
Kuznetsov, Am. J. Biomed. Eng. 2012



What is a module? (1)

“... we define a module as an assembly of biological structures that
fulfill a function in an integrated and context insensitive manner.
Function as defined here is not merely the interaction of molecules
but an interaction that yields a biological output which is
characteristic of the module. Furthermore, the application of the
module is flexible. To be recognized as a module, it has to be used
either in different processes in the same organism or in different
organisms, exploiting its invariant functional properties in the same
or different processes. A module is therefore characterized by its
reiterated use.”

Uwe Strahle, Patrick Blader
The Basic Helix-Loop-Helix Proteins in Vertebrate and
Invertebrate Neurogenesis. in Modularity and Evolution

Modularity is defined through a process that starts by recognizing
patterns, shapes, or events that repeat at some scale of observation

Modularity is a hallmark of biological organization and an important
source of evolutionary novelty

Modularity is a sign of the universal principle of economy in nature



What is a module? (2)

Module is a set of genes that act together to carry out a specific
function

The recognition of modularity came as a surprise:

* Try to find modules, relations between modules, the origin of
modules

* Try to understand the hierarchy of a modular system and a reason
of the entanglement within modules and between modules

The answer following questions could have given a key to control an
evolution process:

— How does a system evolve and fall?
— What is a limit of evolvability?

Evolvability is the ability to respond to a selective challenge by
producing the right kind of variation



Researches in modularity

Modularity is an old concept in the biological science:

Cuvier and Saint-Hilaire (18th century) — structural modules
representing parts of organisms

Joseph Needham (1930s) — development consists of distinct
processes that are operating in coordination

In a modern time (W. Fontana, G.P. Wagner, U. Alon and many

others):

A constant environment (that does not change over time) leads to
non-modular structures

The modular structure can spontaneously emerge if environment
changes over time

Variability in the natural habitat of an organism promotes modularity
Modularity can also dramatically speed up evolution

Adaptation of bacteria to new or changing environments is often
associated with uptake of foreign genes through horizontal gene
transfer (HGT)

HGT is an important force that contributes significantly to modularity



Natural modularity
dsr and sox gene clusters
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Nature of mutations

* change of topology of genetic networks and
* change of parameters

are induced in DNA sequences
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Modularity as a set of construction
rules, the cut and paste Argo-machine
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Kuznetsov et al, GWAL. 2006.



Elements of genetic networks:

decay (degradation of a transcription factor tr(b))
Ts,

null gate null(b) (constitutive transcription)
T.. (tr(b) | null(b)),

gene product tr(b) (protein transcription factor)
b. tr(b) + T,

neg gate neg(a,b) (negative regulation)
?a. 1. neg(a,b) + 1. (tr(b) | neg(a,b)),

pos gate pos(a,b) (positive regulation)
?a. 1. (tr(b) | pos(a,b)) + 1.. (tr(b) | pos(a,b)).

Kuznetsov, JCSB. 2009
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SPFik a
b

c (* Repressilator *)
] 1 . .
directive sample 50000.0
¢ neg b directive plot !a as "a"; !'b as "b"; !c as "c"
_m directive graph
neg neg val bind = 10.0 (* protein binding - r *)
val transcribe = 0.1 (* constitutive expression - epsilon

*)

val unblock 0.001 (* repression delay - eta *)
val degrade = 0.001 (* protein decay - delta *)

(* transcription factor *)
let tr(p:chan()) =

do !p; tr(p)

or delay@degrade

(* neg gate *)
let neg(a:chan(), b:chan()) =
do ?a; delay@unblock; neg(a,b)
or delay@transcribe; (tr(b) | neg(a,b))

50000
(* circuit *)

new al@bind:chan ()
new b@bind:chan ()

r=10.0;¢,=0.1; n, = 0.001; & = 0.001

run (neg(a,b) | neg(b,c) | neg(c,a))



bi = neg(a,b) | neg(h,c) | neg(c,d) | neg(da)
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Compositional mechanisms of
modularity; interaction, communication

recombination
hybridization
symbiotic
encapsulation

horizontal gene

transfer (HGT) Sperm Mediated Gene Transfer
(SMGT)
Control loach fry — mock analysis

‘hopeful monster’ Experimental B-gal-positive fry 72 h

: after the eggs fertilization by sperm
[GOIdSChmldt’ 1940] cells transfected with pcDNA3-/acZ

Andreeva et al, Russian Journal of Genetics. 2003



Design of complex systems: make
parts, repeat them, and change them

Recursive functions
* Fractals
* Agents

T(i+1) = |[T(i) + P(i)] / 2 * Rjmod(1024)
P(i+1) = T(i+1),

where T(i) is the color code of the
individual Spermatozoon and P(i) is the
color code of the individual Ovum at the
time i of breeding. R is the mutation
parameter on the interval ]0, 4]

10240 1 <

Each creature has a circular
genome consisting of 1024
‘genes’, only one of them is
active and coded by color
with mod(1024)

Kouznetsov, AMHSO. 2004



Emergent behavior depending on
mutation parameter

The system demonstrated ordered (R<=1) and complex (R>1) regimes
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Compositional evolution
by Richard Watson, 2006

Dependency of Few / weak Modular Arbitrary

variables interdependencies interdependencies interdependencies

Landscape /‘\ W I\ W WM\IMM

Algorithmic hill-climbing - divide-and-conquer | i stive search,

. accumulation of problem

paradigm . .. random search
small variations decomposition

Complexity KN NK KN

Evolutionary : compositional “impossible” /
gradual evolution . . _

analogy evolution intelligent design

N — # of variables, K — # of values for each variable




Agny simulator, S. Golutvin
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Conclusion

A module is the component which operates independent
of other components of the system

A functional modularity is the independence in space
and time

Modularity is driven by interaction and communication of
components

A set of modules can be combined in different ways
when the environment changes (HGT)

Origin of modularity is in the compositional evolution

Modularity expands parallel development and enhances
evolvability

Specific interaction between modules is a subject of
compositional design of complex systems

Modularity is the relationships between the whole and
the parts
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