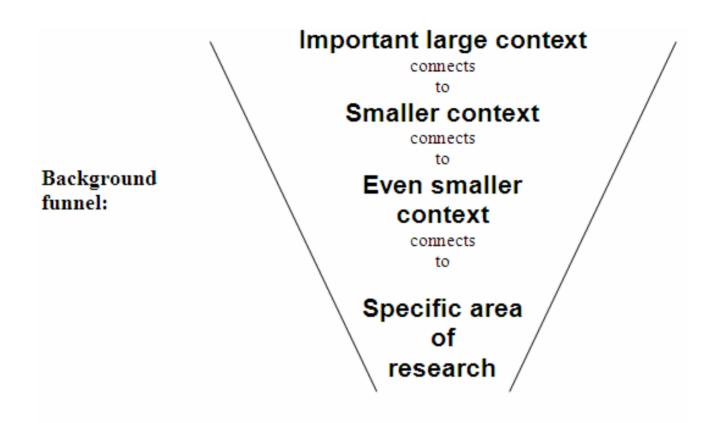
What is I M R D Anyway?

```
N E E I S S S S C T O N O N
```

Susan Ruff 20.109 Spring 2007

Lab Reports (& Research Articles) tell a story.

INTRODUCTION What you studied, and why it's important.


METHODS How you studied it.

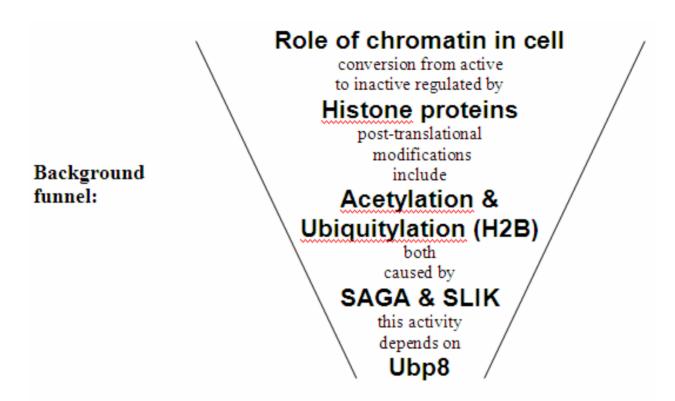
RESULTS What you saw.

DISCUSSION Your interpretation of what you saw.

All examples are taken from or based on "The Deubiquitylation Activity of Ubp8 Is Dependent upon Sgf11 and Its Association with the SAGA Complex" by Kenneth K. Lee, et al., *Molecular and Cellular Biology*, Feb. 2005, p. 1173-1182.

INTRODUCTION What you studied, and why it's important.

GAP: What is not known about the specific area of


research?

Purpose: What is the purpose of this research (and

how does it help to fill the identified gap?)

Approach: What is done to achieve the stated purpose?

INTRODUCTION What you studied, and why it's important.

GAP: Little is known about UBPs.

Purpose: Understand how Ubp8 deubiquitylates H2B

in context of SAGA.

Result: Identified Sgf11

Revised purpose: Understand relationship between Ubp8 &

Sgf11 & how it relates to SAGA & SLIK.

Approach: [See article for two specified tests.]

MATERIALS & METHODS

How you studied it.

Professionally written:

S. cerevisiae strains. The genotypes of strains used for this study are listed in Table 1. Individual TAP-tagged strains and deletion strains were obtained from Open Biosystems. TAP-tagged strains with deletions were obtained by crossing and dissecting individual TAP-tagged strains and deletion strains.

Less professional:

We first obtained individual TAP-tagged strains and deletion strains from Open Biosystems. These strains are listed in Table 1. Then we crossed and dissected these strains to obtain TAP-tagged strains with deletions, which are also listed in Table 1.

Write methods topically, not chronologically. Past tense passive voice is acceptable.

RESULTS What you saw.

Tell your story, but avoid interpreting results.

...The purification of Ubp8 looked similar to purifications of SAGA (Fig. 1A, compare lanes 2 and 3). In order to confirm this, we performed mass spectrometry analysis (MudPIT) of the purification product and confirmed that Ubp8 is only associated with proteins that were previously identified in the SAGA, SLIK, and ADA HAT complexes (Fig. 1C) (22)...

DISCUSSION Your interpretation of what you saw.

...One possibility is that SPT20 may help to tether Ubp8 and Sgf11 to SAGA, since the loss of SPT20 increases H2B ubiquitylation levels, but not quite to the extent of a Ubp8 deletion (10).

If another reasonable researcher could dispute a claim, that claim belongs in the Discussion.

Design figures and tables carefully.

Readers skim by looking only at figures, tables, and captions. Tell your story.

Introduce each figure by number in the text.

The figure legend explains each part of the figure.

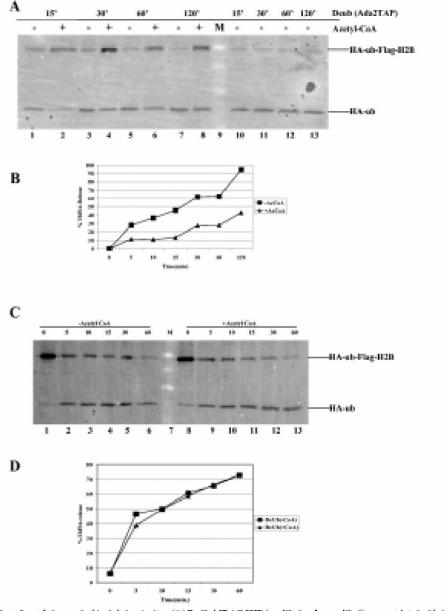


FIG. 5. Effect of scatplation on destriquiplation in vitro. (A) Perified FLAC-H2B (modified and tennedified) was analysised with Ad a2-TAP 1gd if a for 60 min prior to being subjected to destripulyisation with wild-type SACIA for the indicated times. HAT storps were done other in the presence or in the absence of acatyl-CoA. Lance 10 to 13 did not have nontyl-CoA and Ada2-TAP 2gd if a sea control for destripulyisation in the absence of acatyl-CoA. Lance 10 to 12 did not have nontyl-CoA and Ada2-TAP 2gd if a sea control for destripulyisation. (C) Simultaneous acatylation and destripulyisation of particle HLAC-H2B with wild-type SAGIA. Lance 1 to 6, destripulyisation in the absence of acatyl-CoA; lance 7, molecular weight market; here 8 to 13, destripulyisation in the presence of acatyl-CoA. (D) Semignostripulation analysis of the effect of sinulmanous acatylation and destripulyisation by SAGIA. Acatylation was monitored by the incorporation of [Pi]postyl-CoA, and destripulyisation was monitored by the release of HA-subspirin from FLAG-sub-PHA.

Design figures and tables carefully.

TABLE 1. S. cerevisiae strains used for this study

Strain	Genotype	Reference or source
By4741	$his3\Delta 1$ leu2 $\Delta 0$ met15 $\Delta 0$ ura $3\Delta 0$	Open Biosystems
YKL101	mata his3Δ1 leu2Δ0 met15Δ0 ura3Δ0:Ada2-TAP::HIS3 MX6	Open Biosystems
YKL134	mata his3Δ1 leu2Δ0 met15Δ0 ura3Δ0:Ada2TAP::HIS3 MX6 ubp8Δ::KANMX6	This study
YKL128	mata his3Δ1 leu2Δ0 met15Δ0 ura3Δ0:Ada2-TAP::HIS3 MX6 sgf11Δ::KANMX6	This study
YKL117	mata his3Δ1 leu2Δ0 met15Δ0 ura3Δ0:Ubp8-TAP::HIS3 MX6	Open Biosystems
YKL132	mata his3Δ1 leu2Δ0 met15Δ0 ura3Δ0:Ubp8-TAP::HIS3 MX6 sgf11Δ::KANMX6	This study
YKL138	mata his3Δ1 leu2Δ0 met15Δ0 ura3Δ0:Sgf11-TAP::HIS3 MX6 ubp8Δ::KANMX6	This study
YKL60	mata his3Δ1 leu2Δ0 met15Δ0 ura3Δ0:gen5Δ::KANMX6	Open Biosystems
YKL120	mata his3Δ1 leu2Δ0 met15Δ0 ura3Δ0:ubp8Δ::KANMX6	Open Biosystems
YKL97	mata his $3\Delta 1$ leu $2\Delta 0$ met $15\Delta 0$ ura $3\Delta 0$ sgf 11Δ ::KANMX6	Open Biosystems
YKL136	mata his3Δ1 leu2Δ0 met15Δ0 ura3Δ0:gen5Δ::KANMX6 ubp8Δ::KANMX6	This study
YKL116	mata his3Δ1 leu2Δ0 met15Δ0 ura3Δ0:gen5Δ::KANMX6 sgf11Δ::KANMX6	This study
YKL137	mata his3Δ1 leu2Δ0 met15Δ0 ura3Δ0:ubp8Δ::KANMX6 sgf11Δ::KANMX6	This study
YKH045	MATa ura3-1 leu2,3,-112 his3-11,-15 trp1-1 ade2-1 htb1-1 htb2-1 pRS314 (Flag-HTB1-CEN-TRP1) pRG145 (GAPDHprom-3HA-UB14-URA3 integrative)	10
YKH046	MATa ura3-1 leu2,3,-112 his3-11,-15 trp1-1 ade2-1 htb1-1 htb2-1 pRS314 (Flag-htb1K123R-CEN-TRP1) pRG145 (GAPDHprom-3HA-UB14-URA3 integrative)	10
YKH047	MATa ura3-1 leu2,3,-112 his3-11,-15 trp1-1 ade2-1 htb1-1 htb2-1 pRS314 (Flag-HTB1-CEN-TRP1) ubp8Δ::KanMx pRG145 (GAPDHprom-3HA-UB14-URA3 integrative)	10
YKL142	MATa ura3-1 leu2,3,-112 his3-11,-15 trp1-1 ade2-1 htb1-1 htb2-1 pRS314 (Flag-HTB1-CEN-TRP1) sgf11Δ::LEU2 pRG145 (GAPDHprom-3HA-UB14-URA3 integrative)	This study
YKL143	MATa ura3-1 leu2,3,-112 his3-11,-15 trp1-1 ade2-1 htb1-1 htb2-1 pRS314 (Flag-HTB1-CEN-TRP1) gen5Δ::LEU2 pRG145 (GAPDHprom-3HA-UB14-URA3 integrative)	This study
Fy2034	MATa HA-SPT7-TAP::TRP1 ura 3Δ0 leu 2Δ1 his 3Δ200 gen 5::HIS3 trp 1Δ63 lys2-173R2	33
YJW589	MATa HA-SPT-TAP::TRP1 ura3Δ0 leu2Δ1 his3Δ200 gen5DBr::KANMX6 irp1Δ63 lys2-173R2	Mark Chandy

Unlike for figures, the table number and title go on top of the table.

Lab Reports (& Research Articles) tell a story.

INTRODUCTION What you studied, and why it's important.

METHODS How you studied it.

RESULTS What you saw.

DISCUSSION Your interpretation of what you saw.

The story should be cohesive.

The title and abstract must attract your audience.

Title About 10 words long. Include important keywords.

Abstract Less than 250 words.

Introduction

Purpose

Results

Covalent modifications of the histone tails and the cross talk between these modifications are hallmark features of gene regulation. The SAGA histone acetyltransferase complex is one of the most well-characterized complexes involved in these covalent modifications. The recent finding that the removal of the ubiquitin group from H2B is performed by a component of SAGA, Ubp8, is intriguing as it assigns two posttranslation modification processes to one complex. In this work, we characterize the association of Ubp8 with SAGA and the effect that acetylation and deubiquitylation have on one another in vitro and in vivo. We found not only that Ubp8 is a part of the SAGA complex, but also that its deubiquitylation activity requires Ubp8's association with SAGA. Furthermore, we found that the Ubp8 association with SAGA requires Sgf11 and that this requirement is reciprocal. We also found that the acetylation and deubiquitylation activities of SAGA are independent of one another. However, we found that preacetylating histone H2B inhibited subsequent deubiquitylation. Additionally, we found that increasing the ubiquitylation state of H2B inhibited the expression of the ARG1 gene, whose repression was previously shown to require the RAD6 ubiquitin ligase. Taken together, these data indicate that the expression of some genes, including ARG1, is regulated by a balance of histone H2B ubiquitylation in the cell.

Conclusion

Do not write the sections in order.

Order of sections in paper

Possible order of writing

Title

Authors

Abstract

Introduction

Materials and Methods

Results (inc Figs & Tables)

Discussion

Acknowledgements

References

Figures and Tables

Results

Discussion

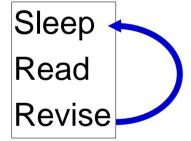
Materials and Methods

Introduction

References

Authors

Acknowledgements


Abstract

Title

Plan time to set the paper aside.

Allow time over several days.

Write.

Print & proofread.

Writing Help

The Writing Center

web.mit.edu/writing

The Mayfield Handbook of Scientific and Technical Writing https://web.mit.edu/course/21/21.guide/www/home.htm

Academic Integrity at the Massachusetts Institute of Technology: A Handbook for Students http://web.mit.edu/due/handbook.pdf

"The Science of Scientific Writing" by Gopen & Swan A Google search will generate many hits.

20.109 wiki

20.109 writing Instructor

Harlan Breindel breindel@mit.edu