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1

Diurnal temperature fluctuations occur in natural environments
2. Yeast respond to temperature fluctuations through gene expression

Temperature fluctuations cause physiological and transcriptional
responses in cells

4. Presence of glucose triggers concentration-dependent
transcriptional response

Temperature fluctuations impact the cell cycle in yeast
Carbohydrate concentrations fluctuate during DTC
Steady-state and DTC experiments showed similar results



1. Diurnal temperature fluctuations occur in natural environments

2. Yeast respond to temperature fluctuations through gene expression



Temperature changes affect cellular functions

e Temperature affects the cellular processes in microorganisms, leading to
decreased transcription and translation (Feller et al., 2003)

o Cells must adapt metabolically and physiologically in order to maintain
homeostasis (Madigan et al., 2006)

o Changes to membrane fluidity and induction of temperature-related
proteins (Thieringer et al., 1998)

e Chemostat and batch culture studies performed to study acclimation to
cold shock or heat shock



Diurnal temperature fluctuations are prevalent in

natural environments

e In natural environments:

o Temperature dynamics in a circadian changes, with high temperatures
during day and low temperatures during night

o Rate of adaptation is temperature-dependent

e Does the 24-hour cycle allow for cell acclimation to temperature, or is
there constant temperature shock?



Yeast must respond to diurnal temperature cycles

e Saccharomyces cerevisiae CEN.PK113-7D

o Optimal growth temperature is 30°C, with range of 4°- 40°C (salvado et al.,
2011)

o Often grows in exposed environments (Lodolo et al., 2008)

e Previous studies focus on acclimation to fixed temperature and the global
transcriptional response

o This study will focus on diurnal temperature cycles (DTC) (24h
sinusoidal temp cycle)



3. Temperature fluctuations cause physiological and transcriptional
responses in cells



Figure 1: Experimental temperature follows a

diurnal sinusoidal function
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Figure 2: Biomass remains constant while CO, and

glucose levels fluctuate based on temperature
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e Chemostat culture:

o Biomass remained
constant

o Temperature changed
cyclically

o 002 decreases in low
temperature, increase in
high temperature

o Residual glucose was
lowest at high
temperature



Figure 3: Temperature fluctuations cause changes in

glucose and CO,, while glycerol, lactate, and
succinate remain constant
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Figure 3: Temperature fluctuations cause changes in

acetate, while biomass, ethanol, and pyruvate
remain unchanged
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C: Biomass of culture remained
constant throughout with a deviation
of < 5%

D: Ethanol levels remained constant

G: Pyruvate levels were unaffected by
temperature

H: Acetate levels rhythmically varied

o Decreased concentration
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Average mean-normalized expression value

Figure 4. Shifts in expression for different clusters

of genes showed downregulation and upregulation
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1,102 genes showed significant
(p<0.002) changes

498 genes peaked at low
temperature

384 genes decreased at low
temperature

220 genes were unaffected by
decrease in temp, but showed
major increase after temp
increased

Clusters 3 and 5 showed a
decrease and increase,
respectively, compared to initial
transcript levels



Table 1: Overrepresented functional categories of

the clusters reveal differences in genes

TABLE 1 Functional enrichment analysis”

No. of significantly changed genes in Y Overrepresented functional

Cluster (no. of genes) and enriched functional category/total
profile Enriched functional category (MIPS functional category) no. of genes in functional category P value

.l (54) . Cell wall (42.01) 8/215 40x10°* Categorles

o Cluster 1: cell wall
organization

o Cluster 2: targets for

2 (146) . Mbpl 14/165 25 i 107 “ . .
Swi 2160 2710 transcription factors

{
T Y : Swid 11/144 42X 10°* . .

‘ X =~ | Ino2 5/31 61X 107 SW|4' SW|6’ Mbp1
BN |

L~ o Cluster 3: protein

2 a0 . | oy o1y 2y synthesis, ribosome

I'ranscription (11)

Protein with binding function or cofactor requirement (16} 81/1,049 .1 X10°° o .
: " ss/208 20 1072 biogenesis, mMRNA
. | Rapl 27/145 40x107"°
.

Sfpl 14/50 35x107% processes



Table 1: Overrepresented functional categories of

the clusters reveal differences in genes

No. of significantly changed genes in
Cluster (no. of genes) and enriched functional category/total

profile Enriched functional category (MIPS functional category) no. of genes in functional category P value

4(51) Basl 4/39 24%10°% 1
- il 2xv @ Qverrepresented functional

. - categories

| e e

o Cluster 4: targets of BasT,
target for transcription

5(333) Energy (2) 80/360 41x10°"
Mitochondrion (42.16) 31/170 55x10 " faCto r for G Cn4
: C compound and carbohydrate metabolism (1.05) 53/510 6.0 X 1077
| Transported compounds (substrates) (20.01) 56/585 39x10°° .
' e FelS b}i)nding (16.51.08) 4f5 35X 107 ©) CIUSter 5: energy
¢ 2 Protein folding and stabilization (14.01) 15/95 L.ox10* . .
> | Mitochondrial transport (20.09.04) 15/100 19% 1074 metabolism/ conservation
S A9 - Hap4 19/57 27 x 107"
| Hsfl 15/55 75X 107" .
| Hap3 9/26 36X 107° .
,,,,,,, Hape ol a0 o Cluster 6: cellular functions
4 .
Umeé6 17/131 42X 10 and protectlons
6 (220) Metabolism (1) 87/1,530 13X 1077 .
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4. Presence of glucose triggers concentration-dependent
transcriptional response
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Figure 5a,b: Upregulated and

downregulated genes overlap with
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e Presence of glucose triggers

concentration-dependent transcriptional response
(Gancendo et al., 2008)

e Studies: Kresnowati et al. and Van den Brink et al.

e Half of upregulated genes were common to the
studies

o 109 genes consistently upregulated

e One-third of downregulated genes were common to
the studies

o 186 genes consistently downregulated



Figure 5c¢: Glucose-responsive genes are not

uniformly distributed to clusters
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Figure 5d: Overrepresented functional categories of DTC

specific genes overlap with glucose-responsive genes

e 410 DTC specific genes

No. of significantly changed
Enriched functional category (ies) (MIPS genes in enriched fun.cat./ total
Cluster functional category or GO category) no. of genes in fun.cat. P value
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Table 2: Reducing p-value stringency narrowed DTC specific

genes and functional categories to six major cellular processes

TABLE 2 Functional enrichment analysis of DTC-specific genes”

Enriched functional category(ies)
(MIPS functional category or GO

No. of significantly changed genes
in enriched functional category/
total no. of genes in functional

Cluster category) Genes category Pvalue
1 None
2 ER-to-Golgi transport ERP2, ERP1, YIP3, RER1, SHR3, 6/72 8.1X107°
(20.09.07.03) CHS7
Membrane lipid metabolism PLB2, DPM1, CDS1, CST26, 6/83 1.8% 1074
(01.06.02) CHOI, OPI1
RNA polymerase III transcriptional NHP6A, NHP6B, YBRO90C 3/13 oy ar ) |
preinitiation complex assembly
(GO:0070898)
Swid MNNS, CIS3, PCL1, SVSI, HTAL/ 8/144 9.4 X107
HTA2, PCL2, YHPI, GIC1
Swi6 MNNS, CIS3, PCL1, NRM1, SVS1, 8/160 20x10°*
PCL2, YHPI, GIC1
Mbpl SEN34, MNNS, SEC14, PCLI, 8/165 24X10°*
NRM1, HTAI/HTA2, YHPI,
GIC1
Ino2 FAS2, CDSI, KNHI, OPI1 4/31 25%X107*
Ino4 YIP3, FAS2, CDS1, CHOI 4/33 3.2 X10™*
Tecl MNNS, PCLI, SVS1, PCL2, CHS7 5/64 45X 10°*
3 None
4 Degradation of glycine GCV2, GCVI 2/5 2.7:%1107%
(01.01.09.01.02)
C-1 compound catabolism GCV2, GCVI 2/6 4.1%X10°*
(01.05.05.07)
Basl MTDI, ADE17, GCV2, GCV1 4/39 4.8 X 107°
Gend SNOI, GCV2, HIS3, ICY2, YMCI, 6/182 34X10°*
GNP1
5 Metabolism of arginine ARG7, ARG1, CPA1 3/20 44X 107
(01.01.03.05)
Arg8l ARGI, CPAIL, CUP9 3/22 59x10°*
6 Opil DAKI, YOP1 2/23 17X 107

e Number of DTC specific genes was
narrowed to 253

e Functional categories:

O

Phospholipid metabolism
ER-to-Golgi transport

RNA polymerase lll transcription
One-carbon metabolic processes
Amino acid metabolism

Cell cycle progression



5. Temperature fluctuations impact the cell cycle in yeast



Figure 6a: At low temperatures, cells stop dividing,

but continue to grow in size

Cell concentration (cells.mL?)

14

1.2

10

08

0.6

0.4

0.2

0.0

9 12

Time (h)

15

18

21

24

e Temperature decrease:

o 22% decrease in cell
number (®) and 16%
increase in cell size (°)

e Temperature increase:

o Cell number increase,
cell size decreases

(01/2.) @1mesadwa) g (wrl) azis |92

e Cells stop dividing, but
continue growth at low temp



Figure 6b: Accumulation of budding cells occurs at

low temperatures
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Figure 6¢: Changes in expression of genes involved

in cell cycle control occurred across timepoints
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Figure 6d: Budding index levels for cells in a fixed

temperature environment
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6. Carbohydrate concentrations fluctuate during DTC

/. Steady-state and DTC experiments showed similar results
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Figure 7a,b: Trehalose and
glycogen levels fluctuate, while

orecursors are temp dependent
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unaffected by temperature

and
glucose-6-phosphate were inversely
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Table 3: Physiological characteristics were similar
between steady state and DTC cultures, except for

glycogen concentration

TABLE 3 Physiological characteristics of S. cerevisiae grown in glucose-limited anaerobic chemostats®

Residual Glycogen concn Trehalose conen
Geoz (mmol - g Carbon glucose (mg glucose (mg glucose

Experimental Temp Y, (gglucose- g qs (mmol - g [dry Gpon (mmol - g [dry [dry weight] ! recovery concn equivalent - g [dry equivalent - g [dry Cell size
condition (°C) [dry weight] ") weight] ' -h™1) weight] "'-h™!) -h™Y) (%) (mM) weight] %) weight] 1) (m) BI (%)
SS 30 0.08 = 0.004 =21 L 015 3.2 +0.22 3.7 £0.10 85+£.22 0.2 £ 0.03 3802 2902 3.6 = 0.11 30°x 33

12 0.09 = 0.001 =18 = 0.01 2.8 £ 0.01 3.4 = 0.02 101 = 0.4 2.1 £0.04 121.1 £ 5.7 2803 44 = 0.14 65+ 1.8
DTC 30 0.08” -2.13¢ ND 39 = 0.12 ND 0.2 £ 0.01 65 = 0.7 145 £ 0.4 4.0 = 0.04 28 £0.2

12 0.09" -1.96° ND 3.0 £ 0.11 ND 2.6 £ 0.07 50.5 = 3.6 7.7 x£0.6 4.4 * 0.05 7264

e Cultures grown at 12°C or 30°C fixed temperature (steady-state (SS))

e The values for biomass yield, specific uptake and production rates, and residual
glucose concentration were similar between the two experiments

e Glycogen concentration varied
o Higher glycogen than trehalose in steady state cultures

e Increase in Bl for DTC culture at 12°C



PC2

Figure 8: Principal component analysis reveals similarity

between SS and DTC at 30°C, and a distinction at 12 °C
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Figure 9a,b: Half of the number of genes showed

significant change in expression in SS cultures
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Mean-normalized expression values
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Discussion & Conclusion

e Rhythmic variation of residual glucose concentration impacted transcriptional
response

e Functional categories of genes with significantly changed expression levels include
phospholipid metabolism (Tronchoni et al,, 2012) , cell wall synthesis

o Cyclic variation of acetate — acetyl coenzyme A, a precursor to fatty acid
synthesis (Kozak et al., 2014)

o Intracellular transport, Swi4 and Swi6é — constant cell wall maintenance
e Cell cycle was affected by temperature, contrary to previous studies (vVanoni et al., 1984)
e Temperature was likely not a main factor in glycogen and trehalose concentrations
e Steady-state and diurnal temperature cycle cultures were similar physiologically

e Future study: Mimic the variance in growth rate that occurs in natural environments
where DTC occurs.
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