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Abstract. The fluctuation spectrum of giant unilamellar vesicles is measured using a high-resolution con-
tour detection technique. An analysis at higher q vectors than previously achievable is now possible due to
technical improvements of the experimental setup and of the detection algorithm. The global fluctuation
spectrum is directly fitted to deduce the membrane tension and the bending modulus of lipid membranes.
Moreover, we show that the planar analysis of fluctuations is valid for spherical objects, even at low wave
vectors. Corrections due to the integration time of the video camera and to the section of a 3D object by
the observation plane are introduced. A precise calculation of the error bars has been done in order to pro-
vide reliable error estimate. Eventually, using this technique, we have measured bending moduli for EPC,
SOPC and SOPC : CHOL membranes confirming previously published values. An interesting application
of this technique can be the measurement of the fluctuation spectra for non-equilibrium membranes, such
as “active membranes”.

PACS. 87.16.Dg Membranes, bilayers and vesicles – 05.40.-a Fluctuation phenomena, random processes,
noise and Brownian motion – 07.60.Pb Conventional optical microscopes

1 Introduction

The mechanical properties of lipid membranes have been
extensively studied over the last two or three decades [1]
starting with the pioneering work by Helfrich [2–4]. These
membranes are classically described as fluctuating 2-
dimensional sheets. Their elastic energy depends on two
main parameters: the bending modulus κ and the tension
σ [2,5]; this approach was recently supported by derivation
of the energy based on the microscopic behaviour of the
membrane, including the effect of the finite resolution of
the microscope in measurement of the membrane area [6].
In particular, the bending modulus of membranes has been
measured for systems of varying complexity (see [7] and
references therein), from the simple one-component lipid
to polymerised membranes [8,9] or membranes interact-
ing with proteins [10]. Vesicles in the micrometer regime
(also called “giant” vesicles) have been a popular system
for measuring the fluctuations, since their size is suitable
for direct observation using light microscope and for ma-
nipulation. Different techniques have been used over the
years: micropipets [11], a sensitive technique for κ mea-
surement but providing only an integrated measurement
of the fluctuation spectrum(1), tether formation [12], elec-

a e-mail: jacques.pecreaux@curie.fr
(1) In micropipet experiments the measured excess area un-
crumpled by the aspiration can be calculated from the integral

tric fields [13], measurement of flickering, as in the case of
red blood cells with direct methods [14] or more sophisti-
cated ones [15–17]. Recently, Lee et al. also proposed an
all-optical measurement of the bending modulus based on
weak optical deformations of vesicles [18]. Unfortunately,
none of these methods gives a direct measure of the fluctu-
ation spectrum. From a detailed analysis of the contour of
the vesicles, this spectrum was measured using more and
more accurate methods: starting from only a portion of a
contour [19–21], or detection of a piece of a planar mem-
brane [22], the contour of the vesicle was later completely
detected using the position of the intensity minimum in
phase contrast [23–27], and eventually more precise meth-
ods [28,29], but the number of accessible modes with a
reasonable signal-to-noise ratio remained in general lim-
ited. This is however sufficient in most cases for measuring
κ and the spontaneous curvature of the membrane [30], or
intermonolayer friction [31]. Nevertheless, for active mem-
branes(2), the fluctuation spectrum has been predicted to
be modified by the activity of membrane proteins [32–34]
and a more complex spectrum is expected. In this case, the
difference between the spectrum of the passive membrane

of the fluctuation spectrum between a minimal q⊥ vector de-
pending on the membrane tension and a molecular cut-off.
(2) Membranes with incorporated proteins which can be acti-
vated by some source of energy, as ion channels or ion pumps.



278 The European Physical Journal E

and the active membrane should be more detectable at
high mode (conversely, at small scale). In this perspec-
tive, we have developed a refined contour analysis, based
on the Fourier analysis initially proposed by Döbereiner et
al. [29] which provides a measurement of the fluctuation
spectrum with a high resolution up to high-q modes and
should be in principle extendable to non-equilibrium mem-
branes. Moreover, the technique is not limited to spherical
vesicles. In Section 2, we describe in detail the technical re-
quirements to achieve a good spatial resolution and a good
signal-to-noise ratio during the acquisition. The principles
of our contour detection and of our analysis are given in
Section 3, including the incorporation of the integration
time and the fitting procedure. In Section 4, we present our
measurements performed on classical lipid membranes, in
order to test our technique, and compare them with those
obtained by other groups with different techniques.

2 Methods

2.1 Vesicles preparation

We studied vesicles made up either of Egg Phosphat-
idylCholine (EPC), or Stearyl Oleoyl PhosphatidylCho-
line (SOPC) or a mixture of SOPC and Cholesterol
(SOPC : CHOL) (Avanti Polar lipids) at a molecular ratio
of 1 : 1. The lipid solutions in chloroform are kept under
argon at −20 ◦C in order to limit the oxidation of lipids
and the formation of lysolipids. The classical electroforma-
tion technique originally developed by Angelova et al. [35,
36] and modified by Mathivet et al. [37] was used to pre-
pare the Giant Unilamellar Vesicles (GUV): a thin layer of
lipid solution is deposited on a conducting Indium Tin Ox-
ide (ITO)-coated glass microscope plate (Thomson LCD).
The complete evaporation of the solvent is achieved after
one night under vacuum. A chamber made of two plates
with the dry lipids deposited and a 1 mm Teflon spacer
is built and filled with a 50 mM sucrose (Sigma-Aldrich)
solution. The growth of the 5 to 50µm diameter vesicles is
obtained after 3 hours at 1.1 V and 20 Hz. With this type
of preparation, the majority of the vesicles are unilamellar
and with very few defects (internal vesicles or thin tethers
bound to the membranes). We only use freshly prepared
vesicles to avoid any change of bending modulus due to
vesicle aging [38,36].

2.2 Observation chamber preparation

The observation chamber consists of two cover slips sepa-
rated by a parafilm spacer, which after heating to 150 ◦C,
holds them together. The final inner thickness of the cham-
ber is of the order of 500µm. In fact, due to the physical
constraints associated with the use of an oil condenser and
an immersion objective on our microscope, the total thick-
ness of the chamber must be limited to 1 mm. It is initially
filled with a slightly hyper-osmotic (typically 54 mM) glu-
cose (Sigma-Aldrich) solution. Vesicles are then carefully

transferred from the formation chamber into the obser-
vation chamber using a glass pipet of 0.4 mm inner di-
ameter (Vitrocom) with a gentle aspiration and injection
(overpressure/depression in the pipets of the order of a
few tens pascals). The small osmotic pressure difference
between the vesicle interior and the bulk solution leads
to more flaccid vesicles. Glucose and sucrose are classi-
cally used for phase contrast microscopy experiments to
enhance the contrast of the vesicles because of their dif-
ferences in refraction index (respectively, 1.3354 for the
sucrose solution at 50 mM and 1.3342 for the glucose at
54 mM) and also for accelerating their sedimentation on
the bottom of the chamber due to their slight difference in
density (1001.6 kg/m3 for glucose solution at 54 mM and
1004.8 kg/m3 for sucrose at 50 mM). The sugar solutions
are filtered beforehand to remove any particle which could
perturb the contour recognition. Moreover, their osmotic
pressure is also checked with an osmometer (Roebling).
In order to avoid evaporation, the chamber is closed ei-
ther with sealing paste (Vitrex) or mineral oil. Actually,
the surface-to-volume ratio must be kept constant during
the acquisition, and over longer periods; undesirable teth-
ers, small buds or other shape transformations [27] could
appear if the osmotic pressure varies. The temperature in
the chamber is measured with a small thermocouple (type
K, Farnell) and varies between 23 ◦C and 25 ◦C for all our
experiments.

The observation of freely fluctuating vesicles requires
the inhibition of their adhesion to the bottom glass sub-
strate using the repulsive effect of grafted PEG molecules.
For this reason, before assembling the chamber, the bot-
tom cover slip is first cleaned with a mixture of sul-
furic acid (70%) and hydrogen peroxide (30%), then
coated with Mercaptopropyltrimethoxysilane (ABCR) in
methanol, with a small amount of water and acetic acid.
The second stage, is grafting PEG on silane by soaking
a silanized cover glass in phosphate buffer saline (PBS)
solution (pH = 7.4) of Methoxy-(PolyEthylene Glycol)n-
Maleimide (MW = 5000) (Shearwater Polymers) [39].

2.3 Experimental setup

The experimental setup has been optimized to provide
the high contrast required for an accurate contour de-
tection. For this reason, the phase contrast microscopy
experiments are performed with an inverted microscope
(Axiovert 135, Zeiss), equipped with an oil immersion
condenser (Numerical Aperture (NA) = 1.4) and an oil
immersion 100× objective (Plan-Apochromat, NA = 1.4,
Zeiss), both with a high numerical aperture.

The light source is a 175 W xenon lamp (Eurosep). Its
high power and its continuous spectrum allow for the use
of coloured high-pass filters (for instance, yellow or red)
necessary for some future experiments and still to keep a
good contrast at a standard shutter aperture rate. Nev-
ertheless, and even for pure lipid vesicles, we do not use
white light, but a yellow filter to reduce the illumination
spectrum because this improves the accuracy of the con-
tour detection in phase contrast microscopy.
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The image acquisition is performed using a digital
CCD camera (Pulnix TM1040) for a good signal-to-noise
ratio. Moreover, another advantage of a digital camera is
to allow for a better spatial positioning of pixels, avoiding
the jitter problem associated to the analogic-digital con-
version when an analog camera is connected to a frame
grabber, which creates a non-negligible error on the x-
coordinates of the pixel. The images are acquired with a
frame grabber (Matrox, Meteor II Digital) in a PC (bipro-
cessor Intel Xeon 1.5 GHz machine) at 30 frames per sec-
onds in progressive scan (non-interlaced) mode, but not
stored as images files on the hard disk. The contour de-
tection of the vesicles (see Sect. 3.1) is performed in real
time and the contours are stored on the hard disk. An
experiment includes several series of 2000 contours.

3 Detection and analysis procedures

3.1 Contour detection

In order to extract directly the fluctuation spectrum of
the membranes from the contour analysis, we have first
to detect the position of the membrane with a good pre-
cision, and reconstruct the full contour without artefacts.
In the early approaches by Faucon et al. [24] or Sackmann
et al. [23,27], the membrane position was assigned as cor-
responding to the minimum of intensity of the grey level
profile and the contours were projected on spherical har-
monics for analysis (the accuracy of the detection was,
respectively, about 100 nm for Faucon et al., and up to
250 nm for Sackmann et al.). A more accurate detection
was later developed by Döbereiner et al. using more pre-
cisely the sigmoid-shape of the grey level profile across the
membrane in phase contrast microscopy [29] (see Fig. 1),
leading to a spatial precision better than a pixel (accu-
racy of the detection 86 nm). More general shapes other
than spherical could be analysed with a projection of the
contours in polar coordinates r(θ) in Fourier series. This
technique has been mainly used so far for a quantitative
shape analysis of vesicles and a phase diagram determi-
nation [29,40], or for the physical measurement of the pa-
rameters of lipids [30], for which only the first four modes
are required. Döbereiner’s method [29] has been further
improved in this work to achieve a better spatial resolu-
tion. Instead of using a single horizontal or vertical grey
level profile and choosing the one that gives the largest
slope, which leads to artefacts in the area where the con-
tour is not close to a horizontal or vertical line, we use a
weighted mean in four directions of the grey level profiles
(see App. A). The detection is more robust and minimizes
short-wavelength detection noise and backtracking. Even-
tually, the speed of the contour acquisition has been im-
proved and 30 contours per second are treated and stored.

As previously, the principle of the detection is based on
a well-known property of phase contrast microscopy: be-
cause of the refraction index difference between the inte-
rior of the vesicle and the bulk, the vesicle appears darker
than the background and a halo is present on both sides of
the contour (see [43], pp. 71-72; [44]). The microscope is
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Fig. 1. (a) Image of a giant vesicle in phase contrast. The reso-
lution of the photo is 11 pixels per micron. (b) Grey level profile
along a horizontal line AB of the image (a) (length 29.4µm).
One can see two maxima in the slope corresponding to the
position of both intersections with the contour. (c) Zoom in
the profile (b) corresponding to the grey area. The profile is
locally fitted by a line (continuous thick line); the dashed line
corresponds to the mean grey level Ī0 of the section. The inter-
section of these two straight lines gives the estimated position
of the membrane in the direction of the profile (for the next
point algorithm). Note, inside the circle, that the minimum in-
tensity in the halo can be split into two peaks due to the noise
of detection; this can lead to accuracy loss if the membrane is
localized by the minimum of intensity as in [41,42] or [27].

classically modeled by a “4f” system (Abbe’s theory) [45].
The objective and ocular are represented by one lens, re-
spectively; the sample is in the object focus plane of the
first lens, the image focus of the first lens is coincident with
the object focus of second lens; the image is detected in the
image focus plane of the second lens. The phase contrast
setup is of the Zernike type: in the focus plane, between
the two lenses, a λ/4 phase plate of diameter a with an
attenuation coefficient d is positioned. The plate is incor-
porated in a transparent disc of diameter b (see [44] for
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further details), with (x′, y′) coordinates in object plane,
and (x, y) coordinates in image plane. The transmittance
t of the vesicle is given by

t(x′, y′) = exp(iφi) if x′ > 0 ,
= exp(iφe) if x′ < 0 ; (1)

φi is the phase shift of rays diffracted by the interior of
the vesicle, and φe by the outside. This function models
a refractive-index discontinuity due to the difference of
sugar inside and outside the vesicle; here the vesicle is
modeled only in one dimension as the boundary between
two semi-infinite regions (x′ < x′0 and x′ > x′0) with dif-
ferent refractive indices. With ∆φ = φi − φe, according
to [44], the intensity in the image plane is given by

I(x) =
∣∣∣∣d cos

(
∆φ

2

)
+

2
π

sin
(
∆φ

2

)
× [(id− 1) Si(2πa(x− x0)) − Si(2πb(x− x0))]

∣∣∣∣2 , (2)

where Si(z) =
∫ z

0

sin(t)
t

dt is defined as the integral sine

function, x is the abscissa in the image focal plane, and
i is the imaginary symbol such that i2 = −1. We have
assumed that the membrane is at the position x′ = x′0
(parallel to the y′-axis). When x is close to x0, the cor-
responding position of the image of the membrane, equa-
tion (2), can be linearised and becomes

I(x) �
x→0

d2 cos2
(
∆φ

2

)

+4
d cos

(
∆φ
2

)
sin
(

∆φ
2

)
(−2πa + 2πb)

π
(x− x0) . (3)

This linear behaviour of the intensity close to x = x0

is the basis of our recognition algorithm. Note that the
membrane position does not correspond to the minimum
of intensity.

An experimental example of a grey level profile of a
vesicle across the membrane is given in Figure 1. We have
decided to assign the position of the membrane as follows:
the high-slope part of the sigmoid is fitted by a straight
line and the average grey level Ī0 along a 30 pixel line
centered on the sigmoid, is calculated. The position x0 of
the membrane is then fixed by the intersection of the fit-
ted line, and the horizontal line I = Ī0. This procedure,
taking advantage of the high slope of the section, provides
a spatial resolution of a tenth of a pixel, better than the
microscopy resolution [46], and thus a very good precision
for the mode amplitude. Step by step as described in Ap-
pendix A, the next points of the contours are identified,
and the contour can be fully detected. If the detected con-
tour is not closed, the contour is discarded. Eventually, the
contours are stored on the hard disk as a table containing
the coordinates (x̃i, ỹi) (see App. A for further details on
this notation) for each point of the contours and time.

When all the contours have been detected, a last test
on the contour length is performed to further discard de-
fective contours. The length of the contours L is measured

as follows: x̃i and ỹi are the Cartesian coordinates of the
contour, with i ranging from 1 to N , and the curvilinear
distance dsi is

dsi =
√

(x̃i+1 − x̃i)2 + (ỹi+1 − ỹi)2 . (4)

As the contour is closed, we have

ds0 = dsN =
√

(x̃1 − x̃N )2 + (ỹ1 − ỹN )2 . (5)

The length L of the contour is obtained with

L =
N∑

i=1

dsi . (6)

We compute the time average of L, 〈L〉; thus, the length of
each contour is compared to 〈L〉(3). Any contour longer or
shorter than 〈L〉 by more than 10% is discarded. Actually,
since the number of lipids in the bilayer is constant and
the maximum excess area available is 8% for a zero-tension
membrane with a bending rigidity of 4×10−20 J, the length
of the contour cannot change to this extent for physical
reasons.

3.2 Discrete Fourier analysis

The next stage is the transformation from Cartesian co-
ordinates (x̃i, ỹi) to polar coordinates (ri, θi). The center
of the vesicles (x̃c, ỹc) is defined as the average of the po-
sition of all points i in the contour, weighted by the sum
of the distance between points i − 1 and i, and between
points i and i + 1:

x̃c =
1

2L

N∑
i=1

x̃i(dsi−1 + dsi) . (7)

A similar relation holds for ỹc. The transformation from
(x̃i, ỹi) to (ri, θi) is then straightforward (see Eq. (C.4)
and (C.5) in App. C for further details).

The last stage consists in the projection of these con-
tours on Fourier series following an algorithm detailed in
reference [47], pp. 140-156. The contour can be developed
in Fourier modes,

r(θ) = R

(
1 +

∞∑
n=1

an cos(nθ) + bn sin(nθ)

)
(8)

with R the radius of the contour defined as

R =
1
4π

N∑
i=1

(ri + ri+1) × (θi+1 − θi) . (9)

The ultimate goal of this analysis is a measure of the
fluctuations of the position of the membrane with respect

(3) In the following, 〈a〉 denotes the time average value of a
over a long period of time, and according to the ergodic hy-
pothesis, the ensemble average over the possible states.
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Fig. 2. Correspondence between the planar (sx, u(sx)) and
polar (r, θ) coordinates systems. s is the curve abscissa along
the contour (dashed line), sx is the curve abscissa along the
circle C corresponding to the average position of the membrane
(full line), and u(sx) is the local displacement of the membrane
with respect to this circle C. sx = θ〈R〉 and u(sx) = R(θ)−〈R〉.

to its average position; therefore, we must not measure the
modulus cn =

√
a2

n + b2n but its fluctuations, i.e. 〈c2n〉 −
〈cn〉2.

Vesicle fluctuation spectra in spherical geometry were
calculated by Milner and Safran [48]. As we are not in-
terested in the shape of the vesicle but only in its fluctu-
ations, we choose to work with the equations valid for a
planar membrane. The errors due to curvature and closed
topology of the membrane are important only for the
first modes, and are nevertheless negligible compared to
tension terms. The complete justification is given in Sec-
tion 3.3. We will use below the fluctuation spectrum, cal-
culated for planar membranes by Helfrich [49]:〈

|u(q⊥)|2
〉

=
kBT

σq2
⊥ + κq4

⊥
, (10)

where u(r⊥) is the local displacement in the normal di-
rection to the membrane (z-direction) with respect to its
mean position. q⊥ = (qx, qy) is the wave vector corre-
sponding to r⊥ = (x, y), the coordinates of the projection
of a point of the membrane on the (x, y)-plane. σ is the
membrane tension, κ the bending rigidity modulus, T the
absolute temperature and kB the Boltzmann constant.

Experimentally with microscopy experiments, only the
fluctuations of the vesicle in the plane of its equator are
accessible. We then measure

〈
|u(qx, y = 0)|2

〉
=

kBT

2σ

 1
qx

− 1√
σ

κ
+ q2

x

 . (11)

Only projections of the contours on discrete Fourier se-
ries can be measured whereas Fourier transforms are cal-

culated in the theory. This final transformation has also
been introduced in our analysis. If R is quasi-constant
for all contours of a given experimental run, we take as
a reference R ∼ 〈R〉 (mean over all the contours of the
series). We show in the following that a surprisingly good
description is provided by the choice of a = 2π〈R〉, since
the membrane has a finite size; one can assume u(z) (4)

(see Fig. 2) to be defined for z ∈
[
−a

2
,
a

2

]
. This computa-

tion works also in non-spherical case, except for the first
modes. We define the Fourier transform of u(z) as

ũ(qx) =
1√
a

∫ a/2

−a/2

u(z) exp(−iqxz)dz . (12)

Since discrete complex Fourier series are defined by

cn =
1

〈R〉
2
a

∫ a/2

−a/2

u(z) exp
(
−i2πn

a
z

)
dz , (13)

the transformation from the experimentally determined
series |cn| =

√
a2

n + b2n to the Fourier transform ũ(qx) pro-
vided by the theory is easily obtained after the change of
variable qx = n

〈R〉 and〈
|ũ(qx)|2

〉
=

π〈R〉3
2

(〈|cn|2〉 − 〈|cn|〉2) . (14)

3.3 Comparison between the fluctuation spectrum for
planar membrane and for spherical geometry

Figure 3 shows the comparison between the fluctuation
spectra for a planar membrane Spl(n) (see Eq. (15)) and
for a spherical fluctuation spectrum Ssh(n) (see Eq. (16)).
According to equation (11) and (14), the adimensional
fluctuation spectrum for a flat membrane in discrete
Fourier series is given by

Spl(n) =
1

π〈R〉3
kBT

σ

 〈R〉n − 1√
σ

κ
+

n2

〈R〉2

 . (15)

To obtain the fluctuation spectrum in a spherical geom-
etry, we use the equations derived in [24]. We transform
the result in Fourier series in the equatorial plane as done
in [23,27]. We then obtain the adimensional fluctuation
spectrum:

Ssh(n) =
n=nmax∑

n=p

2n + 1
π

(n− p)!
(n + p)!

(P p
n(0))2

kBT

κλn
(16)

with P p
n(x) the associated Legendre polynomials as de-

fined in reference [50], p. 694 and where

λn = n2(n + 1)2 − (2 − σ̄)n(n + 1) (17)

(4) z is the curve abscissa on the circle of radius 〈R〉 and u is
the distance of the membrane to this circle.
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Fig. 3. Ratio ρ of the adimensional fluctuation spectrum in the
planar case Spl(n) (see Eq. (15)) over the adimensional fluc-
tuation spectrum in spherical geometry Ssh(n) (see Eq. (16)).
No relevant difference is observed except for the first 3 modes.
Insert: fluctuation spectra, � for the spherical-geometry spec-
trum and • for the planar-geometry one. The plot is dis-
played for a tension σ = 10−8N/m and a bending modulus
κ = 22 × 10−20 J, which are the values giving the largest gap
between both geometries.

with σ̄ =
σ〈R〉2
κ

. We have followed the equations given

in [24], and we have neglected the spontaneous curvature
and made the hypothesis of quasi-spherical vesicles. In
order to compare both spectra, we can compute eventually

ρ =
Spl(n)
Ssh(n)

.

The comparison of Spl(n) and Ssh(n) leads us to con-
clude that there is no relevant difference for modes number
larger than 5 (the error is equal to or smaller than the ex-
perimental error). Thus we can safely use the fluctuation
spectrum for a planar membrane.

3.4 Camera integration time

As previously mentioned by other authors [38], the aper-
ture time of the shutter of the camera introduces a fur-
ther limitation in the analysis. Fluctuations with a life-
time shorter than the integration time of the camera are
not correctly fitted. Consequently, the fluctuation lifetime
τm given by [51]

τm(q⊥)−1 =
(

1
4ηq⊥

)
(σq2

⊥ + κq4
⊥) (18)

and the integration time of the camera (τ = 33 ms ) must
be compared. If we denote qC

⊥ the q⊥ value for which τm =

qx (m  )-1

<|
u(

qx
,y

=0
,t)

|²
> 
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6
 

Fig. 4. Effect of the integration time on the fluctuation spec-
trum according to our theoretical analysis. The tension is
σ = 10−7N/m and the bending modulus κ = 10 × 10−20 J.
From top to bottom, + corresponds to an infinitely short in-
tegration time, the three other ones correspond to integration
times: � τ = 0.008 s, � τ = 0.016 s and • τ = 0.03 s.

τ , then

qC
⊥σ =

4η
στ

(19)

in the tension-dominated regime (σq2
⊥ 
 κq4

⊥), and

qC
⊥κ = 3

√
4η
κτ

(20)

in the bending-rigidity–dominated regime (σq2
⊥ � κq4

⊥).
The estimated order of magnitude for these wave vec-

tors, with σ = 10−7 N/m, κ = 10−19 J, τ = 33 ms,
η = 0.001 kg/m · s, gives similar values

qC
⊥σ = 1.33 × 106 m−1 and qC

⊥κ = 1.1 × 106 m−1 (21)

We see in Figure 4, that the spectrum is already affected
by this limitation for small q vectors, as previously men-
tioned by other authors [24,28] showing that this can ab-
solutely not be neglected in the fitting procedure. The
correction due to the integration time has been explicitly
incorporated in our data processing [38,24] (see the details
in App. B) and our data have been fitted using〈

|ū(qx, y = 0))|2
〉

=
1
π

∫ ∞

−∞

kT

4ηq⊥
τm

τ2
m(q⊥)
τ2

×
[

τ

τm(q⊥)
+ exp

(
− τ

τm(q⊥)

)
− 1
]

dqy . (22)

Méléard et al. [38] set up an experiment to bypass
this difficulty using pulsed-light microscopy; however, this
goes together with a severe deterioration of resolution, and
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noise increase due to speckle. Some tests varying integra-
tion time between 8 ms, 16 ms and 30 ms were achieved.
Tension measurement is not very sensitive to integration
time variations even if the correction is not included in
the fit. This is expected since low-q⊥ modes only are domi-
nated by tension (with long lifetime). On the contrary, the
slope of the curve at high q⊥ is sensitive to time integra-
tion variations (see Fig. 4), and so are bending modulus
measurements. The corrected fitting expression (Eq. (22))
gives results essentially independent of integration time in
the above-mentioned range (results not shown).

Note that the rotational motion of the vesicle is smaller
and can be neglected. The rotational relaxation time of

a spherical vesicle of radius R is Tr =
8πηR3

kT
[52]. In

the bending-rigidity–dominated regime, for a fluctuation

mode of wavelength q⊥,
Tr

τm(q⊥)
= 2π(q⊥R)3

κ

kT
. This is

much larger than one (> 1000) for all the relevant exper-
imental modes discussed in this paper (n ≥ 5).

3.5 Fitting procedure of the fluctuation spectrum

In our experiments, the values of κ and σ are deduced

from the fit of the full plot of
〈
|ũ(qx)|2

〉
=

π〈R〉
2

(〈|cn|2〉−
〈|cn|〉2) versus qx =

n

〈R〉 , using equation (22). This is the

main difference with previous papers, where κ is gener-
ally calculated as the average of values calculated for each
mode, discarding the first modes and the last ones [24,28].

For reasons already exposed in Section 3.2, the five first
modes are not fitted. The fit should be also limited in the-
ory at high-q mode by the pixelisation of the images; fluc-
tuation with a wavelength shorter than pixel size (90 nm)
and the optical resolution are not detected. The corre-
sponding high-q cut-off is of the order of a few 107 m−1,
higher than what is experimentally accessible.

We have quantified experimentally the noise due to
the camera, to the frame grabber and also to the lim-
ited precision with floating point computations. A drop of
ink dried on glass cover slip has been used as a model
for a fixed object in the focal plane. We have mea-
sured 〈|u(qx, y = 0, t)|2〉 < 10−22 m3 for all spectra. Con-
sequently, this value fixes the lower limit for our detection
and every fluctuation amplitude smaller than this is dis-
carded.

The pixelisation of the image has, in addition, gen-
eral consequences. First, the pixelization of the lateral
membrane position sets a lower value for the detection of
fluctuation wavelength (� 4 pixel). Second, the pixeliza-
tion in the direction orthogonal to the membrane leads
to additional and more subtle limitations. As shown in
Section 3.1, the profile analysis of the transmitted image
allows to detect the membrane position within a tenth of
the pixel size. This means that the membrane position
in this direction, has a random component of a tenth of
a pixel. For a biological polymer, it has been shown [53]
that this noise introduces a component in the fluctuations
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Fig. 5. Variation of the fluctuation amplitude 〈ũ2(qx)〉 with
wave vector qx for a SOPC : CHOL vesicle over the full qx-
range. A high-q increase of

〈|ũ(qx)|2
〉
is observed due to the

finite uncertainty in the contour determination as discussed in
the text, starting here at q = 4× 106m−1.

increasing with the mode number and dominant at high
n. A similar analysis can be done for a membrane. In fact,
our definition of the fluctuations can be related to the
variance of the amplitude cn. The noise due to the de-
tection contributes to the fluctuations, according to the
expression:

〈|umes(qx, y = 0)|2〉=〈|uth(qx, y = 0)|2〉 +
π〈R〉3

2
var(cn),

(23)
where umes corresponds to the measured fluctuations and
uth to the theoretical value (deduced from the theoreti-
cal expression of the fluctuation spectrum). The last term
has been computed for a series of experimental points in
Appendix C and is the variance of cn computed as

var(cn) =
∑

l(c
l
n − c̄n)2

L− 1
, (24)

where l indexes the L contours and c̄n is the mean value
of cln over the L contours. The variation with n cannot be
extracted in a straightforward manner, but the variance
increases with n, leading to an increase of the fluctua-
tions with n as observed experimentally in Figure 5. This
contribution of the noise due to the fluctuation spectrum
should be in fact a general consequence of the discrete de-
tection of the contours. However, the crossover between
the decreasing fluctuation spectrum at small wave vector
and the increasing contribution of the noise due to the
detection at high q⊥ will depend directly on the error on
the detection. This is an additional argument for the de-
velopment of a protocol optimizing the precision of the
detection of the contour.

These two effects are in fact the main limitations of
the analysis at high q vectors. Practically, the fits are
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restricted to amplitudes 〈|ũ(qx)|2〉 larger than 10−22 m3

and before a levelling of the spectrum (for instance, in
Fig. 5, the fit is limited to q⊥ < 4 × 106m−1).

3.6 Precision of the fit

The uncertainties in the mean-square amplitude determi-
nation have been calculated according to a procedure de-
scribed in Appendix C. The standard deviation for the
amplitudes 〈|ũ(qx)|2〉 has been precisely derived and after
fitting, we obtain the standard deviation for the tension
and bending modulus, from the standard deviation for the
position of the experimental points defining the contour;
then, it is clear that it is essential to have a high precision
on the contour position to obtain precise results.

This calculation allows to weigh each point
(qx, 〈|ũ(qx)|2〉) with its precise error bar during the
fitting procedure of the fluctuation spectrum, in-
stead of allocating the same value to every point that
overestimates the error for first modes (low qx) and
underestimates it for high modes (high qx).

We explicitly incorporate the precision on the ampli-
tudes of the modes in the calculation of the error bars.
This can lead to error bars apparently similar to or higher
than what is published usually, but most of the time, the
authors produce only the χ2 of the fits as a measure of
the precision of their data, which is obviously an underes-
timation.

3.7 Effect of gravity

We have estimated the gravitational effect on our measure-
ments. Due to the density difference between the interior
and the exterior of the vesicle, it tends to sediment on the
bottom of the chamber and be deformed. This effect is
particularly important for the shape analysis [29] as it af-
fects mostly the first deformation modes. Experimentally,
we choose to use moderate sugar concentrations to limit
this problem, although a better optical contrast can be
achieved with higher concentrations.

Intuitively, the larger vesicles are more deformed than
the smaller ones. Henriksen et al. [54] have calculated a cri-
terion for the maximal size of the vesicle below which the
gravity effect can be neglected. Neglecting spontaneous
curvature, gravity is negligible if

g0 � (12 + Σ) (25)

with g0 = ∆ρgR4/κ and Σ =
σR2

κ
. This condition is

equivalent to the following condition for the radius:

R � Rmax =

√√√√√√√
σ

κ
+

√(σ
κ

)2

+
4∆ρg
κ

12

2∆ρg
κ

. (26)

For our vesicles, the bending modulus is larger than or
equal to κ = 6.4 × 10−20J, and the tension is typically
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Fig. 6. Variation of the amplitude of the fluctuations〈|ũ(qx)|2
〉
versus the wave vector qx for a SOPC vesicle. Er-

ror bars have been computed according to the discussion of
Appendix C. The solid line corresponds to the fit of the
data using equation (22), with σ = 1.74 × 10−7N/m and
κ = 9.44× 10−20 J.

larger than or equal to σ = 2 × 10−8 J m−2. For 50 mM
sucrose and glucose solutions, ∆ρ = ρin − ρout = 1005.0−
1002.0 = 3 kg/m3 [55]. We obtain Rmax = 25µm. The
selected vesicles for our analysis have a radius ranging
between 2.5 and 25µm; gravity therefore should have no
effect on our measurements.

4 Results and discussion

In order to test our technique, we have measured the bend-
ing rigidity modulus κ and the tension σ for different lipid
compositions: EPC, SOPC and SOPC : CHOL (1 : 1),
for which data exist in the literature. We have obtained
spectra analysable for the first 20 to 30 modes (in dis-
crete Fourier representation). We have used our expres-
sion based on a fluctuation spectrum in a planar geome-
try and taking into account the camera integration time
(Eq. (22)), with the different limitations described above
for the fit of our data. The fit quality is excellent, as dis-
played in a typical example (Fig. 6). We discard the first
five modes, as explained in Section 3.2.

In order to measure the error bar for each measure-
ment, we have first assumed that the standard deviation
for the position of contour points is 0.1 pixel. This corre-
sponds to the error bars on the mode amplitudes plotted
in Figure 6. For each experiment, the standard deviation is
then calculated according equation (C.22) in Appendix C.
It highly depends on the size of the vesicle (the precision
increases with the vesicle size; as much as possible, large
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Table 1. Bending modulus of EPC, SOPC, SOPC : CHOL.

Lipid Bending modulus Standard deviation
κ (10−20 J) σκ (10

−20 J)

EPC 4.25 0.87
SOPC 12.6 2.6
SOPC : CHOL 29.6 3.3

vesicles have been selected) and on the quality of the fit.
We have tested the reproducibility of our measurements.
The acquisition has been performed sequentially on the
same vesicle: 2000 contours were acquired, and after a
10 s pause another series of contours was stored, and so
on. This procedure was repeated 10 times. Curves for dif-
ferent series are found superimposed (data not shown).

In these conditions, for each vesicle, we have computed
the average value of the bending modulus κ̄ over several
series of contours, weighted by the inverse of standard
deviation. We have measured M series of contours for a
vesicle indexed by i, with a bending modulus κi and a
standard deviation for this value of σi

κ. We computed the
weighted mean of the bending modulus as

κ̄ =

∑M
i=1

κi

(σi
κ)2∑M

i=1

1
(σi

κ)2

. (27)

Under these conditions, measurements with the highest
errors contribute less. A distribution of κ values has been
measured for a series of typically 10 vesicles.

The mean κ value for every lipid composition is even-
tually deduced as the average value over the vesicles,
weighted as above. The values found for the bending rigidi-
ties are reported in Table 1. These results are in good
agreement with data previously obtained with different
techniques (see Tab. 2 for comparison). The error bars
have not been reported in Table 2 on purpose, as the
methods of calculation are quite different among the pa-
pers and most often underestimate the errors. Besides, our
experiment aimed at measuring fluctuation spectra rather
than bending moduli; therefore we obtained a lower ac-
curacy than recent experiments specially designed for κ
measurement [30].

The fits of our data produce values of the tension rang-
ing between 2 × 10−8 N/m and 10−6 N/m. This tension
range is similar to typical values found by other authors
with spectral-analysis methods [27,24] and to the lowest
tensions accessible in micropipet experiments [11].

5 Conclusion

The method of contour analysis presented here provides
a direct measurement of the fluctuation spectrum of vesi-
cles. Although we have given a detailed analysis in the
case of spherical vesicles, it is not restricted to that case:

Table 2. Bending modulus of EPC, SOPC, SOPC : CHOL
found by other authors.

Lipid Bending Technique Ref.
modulus

κ (10−20 J)

EPC 10–20 Correlation functions [19]
EPC 4–5 Vesicle contour analysis [24]
EPC 11.5 Vesicle contour analysis [28]
EPC 8 Contour analysis [22]
EPC 2.5 Electric field [13]
EPC 6.6 Vesicle contour analysis [41]

SOPC 20 Tethers on vesicle [12]
SOPC 9 Micropipets [11]
SOPC 14.4 Vesicle contour analysis [27]
SOPC 12.7 Vesicle contour analysis [41]
SOPC 18.1 Vesicle contour analysis [42]
SOPC 12.7 Vesicle contour analysis [30]

SOPC :CHOL 24.6 Micropipets [11]
ratio 1 : 1
SOPC :POPS : 36 Tethers on vesicle [56]
CHOL ratio
39.2 : 0.8 : 60

high-q modes do not depend on the actual shape. The
vesicles fluctuation spectrum has been measured for clas-
sical lipid compositions, EPC, SOPC and SOPC : CHOL.
We have adapted the theoretical expression of the fluctu-
ation spectrum for planar membranes to our experimental
conditions, and obtained a very good fit of our data sets
with this expression. The bending rigidity moduli deduced
from these fits are in very good agreement with previous
data from other groups, and the membrane tensions range
from 2× 10−8 N/m to 10−6 N/m, which is reasonable. We
have improved the contour analysis technique in two ways.
First, the fluctuation spectrum can be fitted up to high
mode numbers and not only for the first modes as in ref-
erences [15,24,28,29]. Second, the precision of the exper-
iment is high enough to allow for a real fit of the spec-
trum by a theoretical equation and not only a derivation
of the bending modulus by an average of values found for
each mode (excluding first modes and high modes) as in
references [27,23,20,21,19]. This is the first step for mea-
suring more complex fluctuation spectra as expected, for
instance, for non-equilibrium vesicles. New spectra with
different scaling laws of the wave vector have been pre-
dicted for active membranes [32,33]. With our new de-
velopment of the spectral analysis, we should be able to
measure directly the spectra of active membranes (mem-
branes containing ion pumps such as the light-activated
proton pump, the bacteriorhodopsin [34]) and not only an
effective temperature.
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tations. This work was supported by the association Procope
and an ACI (Action Concertée Incitative) “Physico-Chimie de
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pour la Recherche contre le Cancer).

Appendix A. Principle of the contour
detection

We detail here the consecutive steps for our contour de-
tection protocol. We have first to find one point of the
contour. A horizontal section through the diameter of the
vesicle is performed giving the grey levels profile. Over an
interval of 11 points, the shape of the profile is linearly fit-
ted and the slope measured (see Fig. 1). This operation is
repeated for each point along the section. The point of the
series giving the highest slope is assigned to be the first
point of the contour (x̃−10, ỹ−10) (see Fig. 1). Actually,
the first points are discarded to allow for the algorithm to
have “a few points delay” to find very well the membrane
position and because the general direction of the contour
is arbitrarily fixed for the first points (see below); we dis-
card typically ten points. In the following, we denote by
(x̃i, ỹi) the position of the membrane (corresponding to
fractions of pixels) and (xi, yi) the pixel position (with
integer values).

The principle to find the next point is the following
(see Fig. 7). It must be applicable to any point of the
contour. For this reason, we must, for each point, explore
the horizontal and vertical axes (x and y) and the diago-
nal axes (v andw) in the vicinity of the origin to find the
next point in the different sections. We give here only the
details of the detection on the x-axis; this procedure is
reproduced for the other 3 axes. We name the initial pixel
position (xi, yi). Let us assume that (xi, yi) is the origin
of a local system of coordinates. The orientation in the y-
direction (positive or negative) is fixed by the orientation
of the past 10 points (for the first 10 points, it is arbi-
trarily fixed in the positive direction). For this proof, we
suppose that the position of the next point corresponds to
y > yi. The horizontal profile through the point (xi, yi+1)
is plotted. The x value x̄i corresponding to the intersec-
tion of the horizontal line representing the mean grey level
value over 30 points centered around (xi, yi + 1), and the
fitted line on the 11 points of the grey level profile cen-
tered around (xi, yi + 1) is computed (see Fig. 1 (c)). The
slope Sx

i of the fitted line is recorded. The same analysis
is done along the vertical axis for (xi +1, yi) and the point
(xi + 1, ȳi) corresponding to a slope Sy

i is measured. The
equivalent analysis is further performed for the diagonal
axes (v, w), taking into account that the spacing between
the discrete points is increased by a

√
2 factor. This pro-

vides 2 sets of 4 values, one along x and one along y. The
position (x̃i+1, ỹi+1) of the membrane is eventually fixed
by the average of the 4 values weighted by the different

(a)

(b) (c)

x

y
v

w

Fig. 7. Principle of contour detection. Zoom on the contour
of the vesicle (a). The contrast has been enhanced for clarity.
Pixels marked with a white square with black contour are the
already detected points of the contour of the vesicle. The next
point is searched along the x and y axes (b) and v and w
axes (c).

slopes:

x̃i+1 =
[
Sx

i (xi ± 1) + Sy
i (x̄i) + Sv

i (±
√

2/2 − w̄i/
√

2)

+Sw
i (∓

√
2/2 + v̄i/

√
2)
] 1
Sx

i + Sy
i + Sv

i + Sw
i

,

(A.1)

ỹi+1 =
[
Sx

i (ȳi) + Sy
i (yi ± 1) + Sv

i (±
√

2/2 + w̄i/
√

2)

+Sw
i (±

√
2/2 + v̄i/

√
2)
] 1
Sx

i + Sy
i + Sv

i + Sw
i

.

(A.2)

To proceed to the next point (xi+2, yi+2), we assign the
membrane position (x̃i+1, ỹi+1) to a position on the pixel
grid (xi+1, yi+1) by taking the pixel closest to (x̃i+1, ỹi+1)
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excluding the pixel (xi, yi), or taking a point in the direc-
tion of the tangent of the contour defined by the last 10
points, or using the highest-slope direction to determine
the next point. This operation of finding a next point is
repeated 700 to 2000 times, the number of pixels in a con-
tour of a vesicle depending on its size, to reach a quasi-
superposition (within pixel accuracy) of the last point and
the point (x0, y0).

Appendix B. Effect of the integration time

The Langevin equation for a fluctuating membrane is
given by [34,51]

∂u(q⊥, t)
∂t

+ τm(q⊥)−1 u(q⊥, t) =

λp

[
fth(q⊥, t) +

1
2πηλp

∫
fh(q, t) · k

q2
dqz

]
, (B.1)

where

τm(q⊥)−1 =
(
λp +

1
4ηq⊥

)
(σq2

⊥ + κq4
⊥) (B.2)

is the relaxation rate of the membrane, λp the permeation
of the membrane, η the viscosity of the solvent, fh is the
volume thermal noise and fth the surface thermal noise
and q⊥ = ‖q⊥‖.

In our system, λp � 10−12 m3/Ns, η � 0.001 kg/m · s,
and q⊥ < 5× 106 m−1, then the viscous relaxation should
be dominant in our experimental q-range:

λp � 1
4ηq⊥

. (B.3)

We use the following notations for the different average
values of the variable a: 〈a〉 being the ensemble average
over possible states and ā the average over the integration
time. The correlation function is then given by

〈|u(q⊥, t)u(q′
⊥, t

′)|〉 = 4π2 kT

4ηq⊥
δ(q⊥ + q′

⊥)

×τm(q⊥) exp
(
− t′ − t

τm(q⊥)

)
(B.4)

(we have removed a transient term). The average of the
correlation function over the period of integration on the
CCD τ leads to

〈|ū(q⊥, t)ū(q′
⊥, t)|〉 =

2
τ2

∫ t1=t+τ

t1=t

∫ t2=t+τ

t2=t1

4π2 kT

4ηq⊥
δ(q⊥ + q′

⊥)

×τm(q⊥) exp
(
− t2 − t1
τm(q⊥)

)
dt2dt1 (B.5)

and eventually to

〈|ū(q⊥, t)ū(q′
⊥, t)|〉 = 8π2 kT

4ηq⊥
δ(q⊥ + q′

⊥) × τm

×τ2
m(q⊥)
τ2

[
τ

τm(q⊥)
+ exp(− τ

τm(q⊥)
) − 1

]
. (B.6)

The correction factor due to the integration is similar
to the factor calculated by Faucon et al. [24]. If we inte-
grate to the calculation the projection on the equatorial
plane, we obtain the following integral:

〈|ū(qx, y = 0, t))|2〉 =
1
π

∫ ∞

−∞

kT

4ηq⊥
τm

τ2
m(q⊥)
τ2

×
[

τ

τm(q⊥)
+ exp

(
− τ

τm(q⊥)

)
− 1
]

dqy . (B.7)

It has been calculated using the Gauss-Laguerre
quadrature, or the Romberg integration methods with the
algorithms provided in reference [47], pp. 140-156. These
algorithms are not directly applied on the integral (B.7),
but with the changed variables described below in the case
of Romberg method:

ξ =
τ

τm(q⊥)
− τ

τm(qx, qy = 0)

=
τ4η
√
q2
x + q2

y

σ(q2
x + q2

y) + κ(q2
x + q2

y)2
− τ4η

√
q2
x

σ(q2
x) + κ(q2

x)2
. (B.8)

Then with

ξ0 =
τ

τm(qx, qy = 0)
=

τ4η
√
q2
x

σ(q2
x) + κ(q2

x)2
(B.9)

and ξ̃ = ξ + ξ0, we have

α =
[
τ
[
τ2σ3 + 216κξ̃2η2

+12
√

3ξ̃η

√
τ2σ3 + 108κξ̃2η2

κ
κ

1/3

, (B.10)

qy =
1
3

[
3α
κτ

+
3σ2τ

κα
− 3

3κq2
x + 2σ
κ

]1/2

. (B.11)

We have eventually

〈|ū(qx, y = 0, t)|2〉 =
2kT
π

×
∫ ∞

0

1

ξ̃3

(
exp(−ξ̃) + ξ̃ − 1

)
× dξ
qy

(
3κ(q2

x + q2
y) + σ

) , (B.12)

to which the algorithms are applied.
In the case of Gauss-Laguerre quadrature, the new

variable is
ζ =

qy

qx
, (B.13)

leading to

τm =
4ηqx

√
1 + ζ2

σq2
x(1 + ζ2) + κq4

x(1 + ζ2)2
, (B.14)

〈|ū(qx, y = 0, t))|2〉 =
∫ ∞

0

2
π

kTτ3
m

τ2

1

4ηqx

√
1 + ζ2

×
(

τ

τm
+ exp

(
− τ

τm

)
− 1
)
qxdζ . (B.15)
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Appendix C. Uncertainty calculation

We assume that the uncertainty on the position (x̃i, ỹi)
of one point of the contour can be modeled by a Gaus-
sian, with zero mean value (ignoring systematic errors)
and variance σ2

0 . First, we compute the center of the con-
tour, (x̃c, ỹc) by

x̃c =
1

2L

N∑
i=1

x̃i × (dsi−1 + dsi) (C.1)

and idem for ỹc, where

S =
N∑

i=1

si and si =
√

(x̃i+1 − x̃i)2 + (ỹi+1 − ỹi)2 .

(C.2)
The error on x̃c is then a Gaussian of zero-mean and vari-
ance σ2

0 , and the same on yc. We will now compute the
centered coordinates, x̂i = x̃i − x̃c and ŷi = ỹi − ỹc. The
variance of x̂i is then

σx̂i
= σŷi

=
√

2σ0 . (C.3)

The next step is the transformation of Cartesian coordi-
nates to polar coordinates. For the point (x̂i, ŷi), polar
coordinates are (ri, θi), where

ri =
√
x̂2

i + ŷ2
i (C.4)

and

θi =


arctan

ŷi

x̂i
if x̂i > 0 ,

arctan
ŷi

x̂i
+ π if x̂i < 0 and ŷi > 0 ,

arctan
ŷi

x̂i
− π if x̂i < 0 and ŷi < 0 .

(C.5)

The standard deviations are given by, according to refer-
ence [57], pp. 532-537,

σri
=

√
2σ0 (C.6)

and

σθi
=

√
2σ0

ri
(C.7)

and covariances

cov(ri, θj) � δij
2σ2

0

ri
, (C.8)

cov(ri, rj) � 0 for i �= j , (C.9)
cov(θi, θj) � 0 for i �= j . (C.10)

We have supposed that the errors on each point coordi-
nates are independent. Then we compute the mean radius
and sine and cosine discrete Fourier series for the equa-
tions (assuming the point i = 0 is the point i = N and
i = N + 1 the point i = 1 ):

R =
1
2π

N∑
i=1

(
ri + ri+1

2

)
(θi+1 − θi) , (C.11)

an =
1
πR

N∑
i=1

(ri cos(nθi) + ri+1 cos(nθi+1)
θi+1 − θi

2
,

(C.12)

bn =
1
πR

N∑
i=1

(ri sin(nθi) + ri+1 sin(nθi+1)
θi+1 − θi

2
,

(C.13)
which leads, for the variance, to

σ2
R =

N∑
i=1

(
θi+1−θi−1

4π

)2

2σ2
0 +

N∑
i=1

(
ri−1−ri+1

4π

)2 2σ2
0

r2i

+
N∑

i=1

θi+1 − θi−1

4π
ri−1 − ri+1

4π
2σ2

0

ri
, (C.14)

σ2
an

= σ2
r0

(an

R

)2

+
N∑

i=1

σ2
0

(
1
πR

)2 cos2(nθi)
2

(θi+1−θi−1)2

+
N∑

i=1

2σ2
0

ri

(
1
πR

)2 [
−rin sin(nθi)

θi+1 − θi−1

2

−(ri+1 cos(nθi+1) − ri−1 cos(nθi−1)
1
2

]2
+2

N∑
i=1

σ2
0

4π

[
θi+1 − θi−1 +

ri−1 − ri+1

ri

]
×
(
−an

R

) 1
πR

cos(nθi)(θi+1 − θi−1)

+2
N∑

i=1

σ2
0

4πri

[
θi+1 − θi−1 +

ri−1 − ri+1

ri

]
×
(
−an

R

) 1
πR

[
−rin sin(nθi)

θi+1 − θi−1

2

−(ri+1 cos(nθi+1) − ri−1 cos(nθi−1)
1
2

]
+2

N∑
i=1

2σ2
0

ri

(
1
πR

)2 cos(nθi)
2

(θi+1 − θi−1)

×
[
−rin sin(nθi)

θi+1 − θi−1

2

−(ri+1 cos(nθi+1) − ri−1 cos(nθi−1)
1
2

]
. (C.15)

We compute similarly σbn
, and the covariances cov(an, R),

cov(bn, R) and cov(an, bn).
With c2n = a2

n + b2n, we have q = n/〈R〉 and

〈|u|2〉 =
(
〈|cn|2〉 − 〈|cn|〉2

) π
2
〈R〉3 . (C.16)

Taking into account the average over M contours, we can
compute the standard deviations and covariances, for 〈R〉,
〈cn〉 and 〈c2n〉. If j is the index over the number of contours,

σ2

〈|cn|2〉 =
1
M2

M∑
j=1

σ2
c2

n
. (C.17)
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The same equation holds for other variances and covari-
ances. Eventually, we find

σ2
q =

σ2
Rn

2

(R)4
, (C.18)

σ2

〈|u|2〉 =
(π

2
〈R〉3
)2

σ2
〈c2

n〉

+
(π

2
〈R〉3
)2

(2〈cn〉)2σ2
〈cn〉

+
(
3
(〈c2n〉 − 〈cn〉2

)
π/2〈R〉2)2 σ2

〈R〉

−4〈cn〉
(π

2
〈R〉3
)2

cov(〈c2n〉, 〈cn〉)
+〈R〉3 (〈c2n〉 − 〈cn〉2

)
×3π2

2
〈R〉2 cov(〈c2n〉, 〈R〉)

−〈cn〉π2〈R〉33 (〈c2n〉 − 〈cn〉2
)

×〈R〉2 cov(〈cn〉, 〈R〉) (C.19)

(see Fig. 6). In these equations, and in the next one, we
do not write the index n which labels the mode number,
but obviously, 〈u2〉, q, and their associated variances and
covariances depend on n.

We find the variances on the bending modulus κ and
the tension σ following reference [57], pp. 458-460. We
write the amplitude as〈

|u|2
〉

= f(q, σ, κ) , (C.20)

where f is given by equation (22). If k indexes the P
modes (denoted previously by n) of the points (qk, uk) of
the fluctuation spectrum,

σ2
σ =

K̂

|W |
∑

k

(
∂f

∂κ

)2

(qk) × gk (C.21)

and

σ2
κ =

K̂

|W |
∑

k

(
∂f

∂σ

)2

(qk) × gk , (C.22)

where

W =


∑

k

(
∂f(qk)
∂σ

)2

gk

∑
k

∂f(qk)
∂σ

∂f(qk)
∂κ

gk∑
k

∂f(qk)
∂σ

∂f(qk)
∂κ

gk

∑
k

(
∂f(qk)
∂κ

)2

gk

 ,

(C.23)
1
gk

=

[
σ2

〈|u|2〉 +
(
∂f

∂qx
σq

)2
]

(C.24)

and

K̂ =
1

P − 2

∑
k

gk

[〈
|u|2
〉

k
− f(qk, σ, κ)

]2
. (C.25)

We use Romberg integration method to compute numer-
ically the derivatives of f . These equations are used to
estimate the error reported in Table 1.
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7. H.-G. Döbereiner, Curr. Opin. Colloid Interface Sci. 5, 256
(2000).

8. B.M. Discher, Y.-Y. Won, D.S. Ege, J.C.-M. Lee, F.S.
Bates, D.E. Discher, D.A. Hammer, Science 284, 1143
(1999).

9. B.M. Discher, H. Bermudez, D.A. Hammer, D.E. Discher,
Y.-Y. Won, F.S. Bates, J. Phys. Chem. B 106, 2848 (2002).

10. P. Ratanabanangkoon, M. Gropper, R. Merkel, E. Sack-
mann, A.P. Gast, Langmuir 19, 1054 (2003).

11. E. Evans, W. Rawicz, Phys. Rev. Lett. 64, 2094 (1990).
12. L. Bo, R.E. Waugh, Biophys. J. 55, 509 (1989).
13. M. Kummrow, W. Helfrich, Phys. Rev. A 44, 8356 (1991).
14. F. Brochard, J.-F. Lennon, J. Phys. (Paris) 36, 1035

(1975).
15. M.A. Peterson, H.H. Strey, E. Sackmann, J. Phys. II 2,

1273 (1992).
16. S. Tuvia, A. Almagor, A. Bitler, S. Levin, R. Korenstein,

S. Yedgar, Proc. Natl. Acad. Sci. U.S.A. 94, 5045 (1997).
17. A.Yu. Krol, M.G. Grinfeldt, S.V. Levin, A.D. Smil-

gavichus, Eur. Biophys. J. 19, 93 (1990).
18. C.H. Lee, W.C. Lin, J. Wang, Phys. Rev. E 64, 020901

(2001).
19. M.B. Schneider, J.T. Jenkins, W.W. Webb, J. Phys. 45,

1457 (1984).
20. I. Bivas, P. Hanusse, P. Bothorel, J. Lalanne, O. Aguerre-

Chariot, J. Phys. (Paris) 48, 855 (1987).
21. H.H. Strey, M.A. Peterson, E. Sackmann, Biophys. J. 69,

478 (1995).
22. M. Mutz, W. Helfrich, J. Phys. (Paris) 51, 991 (1990).
23. H. Engelhardt, H.-P. Duwe, E. Sackmann, J. Phys. (Paris)

Lett. 46, 395 (1985).
24. J.F. Faucon, M.D. Mitov, P. Méléard, I. Bivas, P. Bothorel,
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