Module 1: DNA Engineering

Leona Samson — Lecture 6

Experiments and lectures based upon
research in Prof. Bevin Engelward’s laboratory



What experimental question will you ask in
Module 17

What conditions affect the frequency of DNA
repair by homologous recombination in mouse
embryonic stem cells?

This raises the following questions

 How does DNA get damaged?

 What is DNA repair?

 Why does DNA repair exist?

Why do we care about how efficient DNA repair is?

 How does one actually measure DNA repair?
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DNA Double Strand
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~60% Chance of Breast Cancer
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DNA Polymerase can only make new DNA in the
3’ to 5’ direction
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DNA Polymerase can only make new DNA in the
3’ to 5’ direction
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Imagine HR is initiated by the fragment on the left....



Step 1: A double stranded
end has been created

Step 2: Resect the end to
create a 3° overhang

Step 3: Create a nucleoprotein
l filament capable of homology
searching

gelman, PNAS 2003



l Step 4: Search and Invade




l Step 4: Search and Invade




l Step 4: Search and Invade

This DNA crossover
structure is called a
“Holliday Junction”



l Step 4: Search and Invade
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Robin Holliday
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l Step 4: Search and Invade

l Step 5: Polymerize DNA using invading strand with 3" OH
as a primer and the homologous donor DNA as a template




l Step 6: Branch Migration (Backwards)




l Step 6: Branch Migration (Forwards)




l Step 6: Possible Release
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Branch migration
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This process started with a two-ended DSB...
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Now let’ s imagine the same thing happened
l at the other end...
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A Plasmid-Based Assay for Homologous
Recombination in Mammalian Cells
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http://web.mit.edu/engelward-lab/animations/NHEJ.html

Non Homologous End Joining

http://web.mit.edu/engelward-lab/animations/SDSA.html

DSB repair using Homologous Recombination

http://web.mit.edu/engelward-lab/animations/forkHR.html

Repair of a collapsed Replication Fork
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Decision to initiate HR,
resection of DNA ends

Displacement of RPA &
Loading Rad51

Homology searching,
histone remodeling,
& invasion

Holliday junction migration,
inhibition by mismatches

Repair synthesis,

Holliday junction migration,
Possible resolution
without junction cleavage

Junction resolution
Repair of mismatches
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RPA, Rad52, BRCA2(FANCD1),
PALB2(FANCN), Rad51,
Rad51B/Rad51C/Rad51D/XRCC2,
Rad51C/XRCC3

Rad54, Rad54B, Rad52

MMR proteins,
WRN, BLM, Rad54, p53

Polymerase(s), topoisomerase(s)
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Rad51C & possible additional proteins;
possible resolution by topoisomerases;
MMR



Homologous Recombination Repairs DNA
Werner Syndrome (WS)

* develop normally in early age

* premature aging starting at
puberty

* short stature

* leg ulceration

* soft-tissue calcification

* average life span = 47

* cancer and cardiovascular
diseases are primary cause
of death

Defects in HR Promote Aging, Cancer, & other Diseases
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Homologous Recombination Repairs DNA

Bloom Syndrome (BS) Werner Syndrome (WS) Rothmund-Thomson
- - Syndrome (RTS)

* develop normally in early age
* premature aging starting at

* sun-sensitive skin
* dwarfism puberty
* short stature

. Ce B * sun-sensitive
* immune deficiencies ‘h . tati ¢
* leg ulceration y.per pigmentation o

* male infertility o
* female subfertile * soft-tissue calcification n
* short stature

¢ cancer as primary b average llfe Span =47 )
cause of dea(h be‘ofe * cancer and cardiovascular bone abnormahty ;
* cancer predisposition,

age of 30 diseases are primary cause .
of death especially osteosarcoma

Defects in HR Promote Aging, Cancer, & other Diseases



Interindividual Variation in DNA Repair
Capacity
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Adapted from GROSSMAN and Wei (1995) Clinical Chem 41: 1854-1863

XP frequency = ~1:250,000 giving a theoretical maximum of
~28,000 cases worldwide with 2,000-fold increased risk

Even if just 1% of the population is relatively repair deficient,
could have tens of millions with several-fold increased risk



Reactivation of UV damaged DNA by Host

cell Reactivation (HCR)
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RNA Polymerase IT is exquisitely
sensitive to DNA lesions

Nature Reviews Molecular Cell Biology 9, 958-970



Reactivation of UV damaged DNA by Host
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Fresh Circulating Lymphocyte
Plasmid HCR in XP and Normal PBL
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Athas & GROSSMAN [CANCER RESEARCH $1, 5786-5793, November 1, 1991]



Fresh Circulating Lymphocyte
Plasmid HCR in XP and Normal PBL
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Virtually all case/control HCR studies have
monitored Nucleotide Excision Repair (NER)
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TABLE Il - HCR-DRC FOR RISK OF CANCERS
Mutagen Cancer type E.aT:-:,m-::':nTLmI Risk estimate Refenenoe
EPDE Lung 51/56 5.70(2.10-15.7) Wei et al. J@@ﬁ”—*
Lung, nonsmall cell 467 /488 1.85(1.42-2.432) Shen ef al. 2003 7 .
Lung T64/677 1.50 (1.10=3.10) Spitz et al. 20037
SCCHN 5561 2,20 (1.02-4.77) Cheng et al. J@@H*‘”'
Breast 6979 3.36 (1.15-9.80) Shi er al. 2004%
NNK Lung, adenocarcinoma 48/45 3.21 (1.25-8.21) Wang et al. 20077
v BCC 146,333 1.62 ( 1.07=2.45) Wang et al. 2007
SCC 109/333 1.63 (0.95-2.79) i
CM 312/324 2.02 (1.45-2.82) Wei et al. 200252

BPDE, benzo(ajpyrene diol epoxide; UV, ultraviolet; SCCHN, squamous cell carcinoma of head and
neck; BOC, basal cell carcinoma; SCC, squamous cell carcinoma; CM, cutaneous melanoma.

Chunying Li, Li-E. Wang and Qingyi Wei*

Int. J. Cancer:

124, 999-1007 (2009)



DNA Repair Strategies

‘Direct Reversal
Methyltransferase, Oxidative demethylase
» Excision Repair

Base excision, |nucleotide excision,| mismatch repair

* Double strand break repair

Homologous recombination, Non-homologous end joining



Developing Novel Methods
to Measure DNA Repair

P> S Capacity in Human

Populations

NIH DIRECTOR'’S
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Leona D. Samson

MIT

Biological Engineering Department
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Biology Department
CANDIDATE Center for Eni ol Health Sci
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Koch Institute for Integrative Cancer Research
June 16% 2009, . | e
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Reactivation of damaged DNA - multiplexed

renorar [ & Each Fluorescent Protein gene
; o will harbor a different type of
DNA damage

DsRed2FP

EYFP

gWiz™ Vectors

5.1 kb

http://www.genlantis.com/corp/images/gWiz_vectmap.gif



Reactivation of damaged DNA - multiplexed

DsRed2FP

+ different
DNA lesions - MEGTI
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fluo-res-cence

/floo(a) resans,flor' esans/ 4)

noun

1. the visible or invisible radiation emitted by certain substances as a result of
incident radiation of a shorter wavelength such as X-rays or ultraviolet light.

Minerals fluorescing under
UV-light

How Fluorescence Works

O
®
®
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A photon strikes a susceptible
electron within the mineral.

The impact energy excites the
electron and it temporarily jumps
up to a higher orbital.

The excited electron falls back to
its ground state orbital.

The electron loses some of its
stored energy by emitting a photon
at a longer wavelength.

Image © geology.com




Theory of Fluorescence
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Green Fluorescent Protein (GFP) first isolated from
crystal jellyfish (Aequorea victoria).
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Green Fluorescent Protein (GFP) first isolated from
crystal jellyfish (Aequorea victoria).
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GFP modified to Enhanced GFP (EGFP) and EGFP
modified to fluoresce at different wavelengths

Chromophore Structural Motifs of Green Fluorescent Protein Variants




Mushroom Coral

Fluorescent Bulb
Anemone (Entacmaea
quadricolor)



The diversity of fluorescent proteins and
genetic mutations is illustrated by this San
Diego beach scene drawn with living
bacteria expressing 8 different colors of
fluorescent proteins.



Reactivation of damaged DNA - multiplexed
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Before trying different damages - tried different doses of the same damage (UV)
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Sanity Check: TIs it even feasible detect
B-colors independently?:
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FM-HCR for UV damaged Plasmids

(Nucleotide Excision Repair)
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Zachary Nagel & Siobhan McRee



5 color HCR assay applications

5-color HCR developed by Dr. Zachary Nagel
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DNA Repair Strategies

- Direct Reversal

Methyltransferase, Oxidative demethylase

» Excision Repair

Base excision,|nucleotide excision|mismatch repair

* Double strand break repair

Homologous recombination, Non-homologous end joining



DNA Repair Strategies

- Direct Reversal

Methyltransferase) Oxidative demethylase:

——————————————————

» Excision Repair

Base excision||nucleotide excision |mismatch repair

* Double strand break repair

Homologous recombination||Non-homologous end joining]




Coriell Lymphoblastoid Cell line collection derived from
ethnically diverse HEALTHY humans

/ o
o T

Mexican
(60)

450 healthy unr'ela'red US residents with ancestry from
around the globe

Nested subsets: 90, 44, 24, 8
Ethical reasons: no medical, phenotypic, or ethnic information is provided



% Reporter Expression

DNA Repair Capacity in cells from
genetically diverse healthy people
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HR

MMR

MGMT
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DNA Damage and Repair
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The Puoneer Team

Carrie Dr. Anwaar Isaac (Alex) Patrizia Siobhan
Thompson Ahmad Chaim Mazzucato McRee

Thanks to the NIH Director’s Pioneer Award & the NIEHS!!!



