
S1 is an unstable saddle point if E<1
S1 is stable if E>1
S1 is somewhat stable if E=1

Part 5: Stability Analysis of the System
We use the Dimension-less version of the system
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The Jacobian of the system is
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1) Stability of Steady Points S1 and S2

The Jacobian at the point S1 is 
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Therefore 

NB: The larger the E and D the more stable the point as we did expect. 

The Jacobian at the point S2 is 
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S2 is an unstable saddle point if 
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The first Eigenvalue of the matrix is EE 2 , the second is 
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The first Eigenvalue is negative if E<1 and null for E=1. The point S2 does not exist if E>1.

The second Eigenvalue is negative if 
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Therefore 

NB: Again the larger the E and D the more stable the point as we did expect.

2) Jacobian At the Other Points

We are going to modify the expression of the Jacobian of the system is
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The coordinates of the other Steady Points are linked by the system of equations 
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Eventually we get the friendlier form of the Jacobian

The Jacobian is very complex. We therefore split the stability study in two parts:
- Study of the Sign of the Determinant
- Study of the sign of the Trace

We restrict these studies to the case )1/(  RRE . Indeed for the case )1/(  RRE , the 

steady point(s) coincide with the point S2 – the study for such case has therefore been done 
already (one eigenvalue is negative, one is zero)

3) Study of the Determinant for E<R/(R+1)
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Det (J) has the same sign as 
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The Study of the sign of the expression )(UQ  is a fastidious affair if done by brute force. We 

were however, fortunate to find some simplifications. We ended up with a very powerful result

And we can derive the following practical results 

Note: Again the regularizing effect of the dissipative term –EU can be felt to some extent. In the 
case E=0 the ‘other’ steady points were given by the roots of a quadratic and we had the 
possibility of a saddle point (Det (J)<0) that in effect would push the trajectories to infinity.
Here the ‘other’ steady points are given by a cubic. We still have the possibility of a saddle point, 
but this time the saddle point is ‘controlled’ by two points instead of one. More importantly as it 
was proven in Part 4, the trajectories remain bounded.

Determinant of the Jacobian

First Case: P(U) has one Positive Root Us Only    0, ss VUJDet

Second Case: P(U) has Two Positive Roots ( the simple root Us and the double root Ud)

For the simple root Us    0, ss VUJDet

for the double root Ud    0, dd VUJDet

Last Case: P(U) has Three Positive Roots (Us1 < Us2 < Us3)

For the middle root Us2    0, 11 ss VUJDet  : Saddle Point

For the other roots Us1 and Us3    0, ss VUJDet

For the steady points of the system obtained by finding the roots of the cubic
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The sign of determinant of the Jacobian J of the system is the same as the derivative of P at 
that steady point:
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4) Study of the Trace for E<R/(R+1)

The trace of the Jacobian is       R
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We obtain a similar result on the sign of the trace of the Jacobian as we did with the dynamic 

system with E=0. The results are simpler to write in  DRBB ,,, 0  coordinates.

NB:  20 11 UEB  is a more stringent condition than the previous 01 0  B . Likewise the 

expression of Dlim varies from the previous case by the introduction of the term –E. 
Both are consequences of the dissipative term –EU which controls the flow and makes it more 
stable as E increases.

Unfortunately I was unable to find a simple , useful form of the condition  20 11 UEB  . In 

the following bifurcation diagrams the shape of the zone of the (B, B0) plane is just for the 
purpose of illustration. Truth is I have no idea what it looks like and it is likely to be made up of 
several connex regions. Furthermore for a choice of (B, B0) that yields two or three roots for P(U) 
we need to check the condition for both points where Det (J)0 – it is very likely that for some 
points of the (B, B0) plane the condition can be met for the smallest root of P(U) but not for the 
largest root.
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0 11 UEB   then Tr(J) is strictly negative regardless of D

Conversely  2
0 11 UEB   the sign of the Trace changes as D increases

If limDD   then Tr(J) is strictly positive

If limDD   then Tr(J) =0

If limDD   then Tr(J) <0
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5) Bifurcation Diagrams

First Case E 1

Second Case: 1> E R/(R+1)

B0

B

Zone 1:
1 stable Point 
S1(0,0)

B0

B

Zone 1:
2 steady Points    
  S1(0,0) is Saddle Point
  S2((1-E)/E,0) is Stable



Case 3-1: E R2/(R+1)2 and R1

Case 3-2: E >R2/(R+1)2 and R1
The condition E > R2/(R+1)2 ensures that the trace of the Jacobian of the steady points linked to 
the polynomial P is negative.
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Zone 1:
3 steady Points    
including
- S1(0,0) and   S2((1-E)/E,0)

(both Saddle Point)
- Last Point is Stable

Zone 2:
3 steady Points    
including
- S1(0,0) and   S2((1-E)/E,0)

(both Saddle Point)
- Last Point: 

- Unstable Point if D<Dlim

- Center if D = Dlim

- Stable Point if D>Dlim

Border between Zone 1 and 2:
I have no clue where it actually is 
located except it is below the red dotted 
line. No clue on it shape either….

B0

B

Zone 1:
3 steady Points    
- S1(0,0) and   S2((1-E)/E,0)

(both Saddle Point)
- Last Point is Stable



Case 4-1: E > R2/(R+1)2 and R>1

The condition E > R2/(R+1)2 ensures that the trace of the Jacobian of the steady points linked to 
the polynomial P is negative. 

B0

B

Zone 1:
3 steady Points    
- S1(0,0) and S2((1-E)/E,0)

(both Saddle Point)
- Remaining Point is Stable

Zone 2:
4 steady Points 
- S1(0,0) and S2((1-E)/E,0)

(both Saddle Point)
- One Remaining Point is Stable
- Last Point : Weakly Stable (0 
Eigenvalue of Jacobian)

=0=0

Zone 3:
5 steady Points    
- S1(0,0) and S2((1-E)/E,0)

(both Saddle Point)
- Two of the Remaining Points 
are Stable
- Last Point is a Saddle Point



Case 4-2: E  R2/(R+1)2 and R>1

B0

B

Zone 2: 
4 steady Points 
- S1(0,0) : Saddle Point
- S2((1-E)/E,0) :Idem
- Last Two Points: 

- Unstable if D<Dlim(point)
- Center if D = Dlim(point)
- Stable if D>Dlim(point)

NB: For one of the points: 
stability and Unstability is 
week  (0 Eigenvalue of 
Jacobian)

Zone 3:
5 steady Points    
- S1(0,0) : Saddle Point
- S2((1-E)/E,0): Idem
- Two Points are: 

- Unstable if D<Dlim(point)
- Center if D = Dlim(point)
- Stable if D>Dlim(point)

- Last Point is a Saddle Point

Warning on the Border
I have no clue where it actually is located except it is below the red dotted line. No clue on its 
shape either…. It is probably made up of several regions to be honest
I have made the diagram easy for myself by assuming that Zone 2 and 3 were entirely below the 
border, which is false for some combinations of E and R (as E increases the region where the 
Trace may change size decreases in size and eventually disappears).

Zone 1-B:
3 steady Points    
- S1(0,0) : Saddle Point
- S2((1-E)/E,0): Idem
- Last Point: 

- Unstable if D<Dlim

- Center if D = Dlim

- Stable if D>Dlim

=0=0

Zone 1-A:
3 steady Points    
- S1(0,0) and S2((1-E)/E,0)

(both Saddle Point)
- Remaining Point is Stable
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