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ABSTRACT

Patkar, Anant, Ph. D., Purdue University, December 1990. Kinetics, modeling and
optimization of recombinant yeast fermentations. Major Professor: Jin-Ho Seo.

The objective of this research is to optimize the performance of fed-batch
fermentations involving recombinant organisms. This goal is achieved by using, as a
model system, the production of invertase from Saccharomyces cerevisiae containing
the recombinant plasmid pRB58. The plasmid contains a copy of the yeast SUC2 gene
which codes for invertase. The expression of the SUC2 gene is repressed at high
glucose levels in the media.

Batch and fed-batch fermentations were performed with this strain in selective
media. It was observed that the cell yield decreases with when glucose concentration in
the medium is high. Also, the specific invertase activity is very tightly regulated by
glucose levels. An unstructured mathematical model was developed to describe the
experimental results. The model explains the variation in cell yield by postulating a
cybernetic principle, which regulates the fluxes in the respiratory and fermentative
pathway. The invertase production was modeled by a simple substrate-inhibition form.

A conjugate gradient algorithm was developed and tested for a variety of singular
systems. This technique was used to determine the optimum substrate feed rate profiles
in a fed-batch mode of fermentation for the model system. The optimum feed rates
result in an initial cell growth phase followed by an invertase production phase. '

Aside from this main research theme, two other optimization problems were
solved. First, a simple model was developed to describe anaerobic fermentations
involving recombinant yeast. This model was then used to determine the optimum
glucose feed rate proﬁlcs in a fed-batch mode of operation. Second, a mathematical
model was developed to describe a recombinant E. coli system. Using singular control
theory the problem of determining the best feed rate in a fed-batch fermentation was
reduced to a simple one-parameter optimization problem. This simpler problem was
then solved using a one-dimensional search. In both these systems, optimal feed rates
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( resulted in an initial high cell growth phase followed by high product formation phase.
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1. INTRODUCTION

1.1 Background

In the late 1970s a set of biochemical methodologies emerged which made genetic
engineering possible. The discovery of highly specific enzymes for cutting and joining
DNA provided the tools for making novel DNA and incorporating it into cells. For
microbiologists and biochemists recombinant DNA methodology is a powerful tool for
studying how genes work. Its importance for biochemical engineers, however, lies in its
applicability to the production of proteins of medical and industrial importance.
Developmental work has already led to the production of several biologically active
human agents including insulin, interferon and growth hormone in microorganisms like
E. coli, B. subtilis and S. cerevisiae.

The transition from gene manipulation in the laboratory to large scale commercial
production of proteins is crucial. The factors affecting expression of heterologous genes
in microbial hosts are complex, and maximizing expression of cloned sequences is of
utmost importance. Successful scale-up of laboratory experiments to large fermentors
puts demands upon the stability of the cloned DNAs and requires careful investigation
of the influence of growth conditions upon gene expression. The practical problems
involved include (i) the instability of foreign DNA in the host of interest, (ii) the
tendency for the expression products to be intracellular, causing an increase in the
production costs and a decrease in cell viability, (iii) the fact that expressed products,
especially the intracellular ones, are often inactive, requiring expensive unfolding and
refolding processes.

Maximizing the productivity of recombinant systems needs special attention to be
given to the trade-offs involved between cloned-gene expression and the growth of the
host cells. Control of cloned-gene expression levels is important, because
overproduction of cloned-gene proteins is deleterious and sometimes even fatal to the
host cell. The use of regulated promoters provides an efficient way of manipulating
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gene expression and hence improving the product yield by uncoupling the cell growth
( v stage and the cloned-gene expression phase during fermentations.

Earlier research involving recombinant organisms was focussed primarily on
prokaryotes like E.coli. However, the structural organization of prokaryotes is
fundamentally different from the more complex eukaryotes. A well studied eukaryote
like Saccharomyces cerevisiae provides an ideal model system to study expression of
higher eukaryotic genes, especially when post-transcriptioﬁal and post-translational
modifications are essential.

1.2 Research Objectives

The objective of this research is to optimize the performance of fed-batch
fermentations involving recombinant microorganisms. This goal is achieved by using,
as a model system, the production of invertase from Saccharomyces cerevisiae
(commonly known as baker’s yeast) containing the recombinant plasmid pRB58. The
plasmid contains a copy of the yeast SUC2 gene which codes for invertase. The
expression of the SUC2 gene is repressed at high glucose concentrations in the media.
This characteristic allows regulation of invertase production by manipulating glucose
feed rate in a fed-batch mode of operation.

The problem of determining the best feed rate to maximize productivity falls
under the realm of calculus of variations. Since the feed rate appears linearly in the
mass balance equations the problem is singular in nature. Computation of optimum
feed rate requires a mathematical model able to describe the cell growth and product
formation. A technique for optimizing fed-batch fermentations described by four or less
mass balance equations was developed by Modak et al.[1]. The optimization of higher
dimensional systems is computationally difficult, if not impossible. This restricts the
dimensionality of the model that can be chosen for optimization purposes. Structured
models, which explicitly account for various cell constituents, or segregated models,
which treat the cell mass as consisting of individually distinguishable cells, are not
appropriate for the purpose at hand. Thus the model should be simple enough to be
amenable to optimization, while detailed enough to describe the key characteristics of
the process. '

Considering the complexity of many biochemical processes, there is a need to
develop optimization techniques applicable to higher (more than four) dimensional
systems. Modak er al.[2] developed a nonsingular control approach, which can, in
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principle, be used for this purpose. However, its applicability was not demonstrated for
( ;o systems with dimensions higher than three. To overcome these shortcomings, a
conjugate gradient technique for optimization of fed-batch fermentation processes is
proposed. Phosphate limited growth of unstable recombinant yeast cultures was
modeled by DiBiasio et al.[3] using five differential equations. This system provides an
ideal test case for the new approach.

The research objectives can be summarized as:
1. To determine the kinetics of recombinant yeast growth and invertase production;
2. Todevelop a mathematical model to describe the observed experimental results;
3. To compute the best feeding policy to maximize invertase productivity;

4. To develop an optimization technique for higher dimensional fermentation
processes and test it.
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2. LITERATURE SURVEY

Recombinant DNA technology is a relatively new field in biochemical
engineering and hence some terms, which will be used later, are explained first.
Plasmid vectors need certain components in addition to the cloned gene. Sequences
common to almost all plasmid vectors will be discussed. The main features of
recombinant systems, as opposed to wild type systems, are highlighted next. A
considerable effort has been devoted towards modeling of recombinant systems in the
last several years. The next section addresses this issue. Since yeast is used as the host
organism in this research, the characteristics of yeast, including its growth metabolism,
important features of its gene expression and the common plasmid vectors are explained
_next. The aim of the research is to optimize recombinant yeast fermentations after
developing a suitable mathematical model. Subsequent sections deal with previous
attempts at optimizing fed-batch cultures and modeling yeast growth. The recombinant
plasmid used in this study is pRB58. Its structure and the function of its important
constituents are discussed in detail in the final section.

2.1 Background material and terminology[4]

2.1.1 What is genetic engineering? Before the advent of recombinant DNA
methodology, several attempts were made to transform pro- and eukaryotic cells with
foreign DNA. Their experiments met with little success because the exogenous DNA
cannot replicate and hence can not be maintained stably in the transformed cell.

If fragments of DNA cannot replicate, the obvious solution is to attach them to a

suitable replicont. Such replicons are known as vectors. Composite molecules in

T Replicons are DNA molecules which contain an origin of replication and hehce are able to replicate in
the host cell.
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which foreign DNA has been inserted into a vector molecule are called recombinant
molecules. The construction of such composite molecules has also been termed genetic
engineering or gene manipulation. The process has also been termed gene cloning
because a line of genetically identical organisms, all of which contain the composité
molecule, can be propagated and grown in bulk hence amplifying the molecule and any
gene product whose synthesis it directs.

The insertion of a piece of foreign DNA into a vector requires certain techniques
to be available:

1. Mechanisms for cutting and joining DNA molecules from different sources,
2. A method for monitoring the cutting and joining reactions,

3. Atechnique of transforming.
Currently, the operations of cutting and joining DNA molecules are done by using
restriction endonucleases and DNA ligases, respectively. A standard method for
monitoring the reactions is agarose gel electrophoresis. Transformation is normally
achieved by permeablizing the cell walls by the use of suitable chemicals.

2.1.2 Plasmid structure. Plasmids are replicons which are stably inherited in an
extra-chromosomal state. Along with bacteriophages they are the most commonly used
vectors. The plasmids should contain, in addition to the genetic information for the
desired protein, control sequences for efficient expression and marker genes.

A marker gene is a gene whose product gives the plasmid-containing cell a
specific property distinguishing it from cells that do not contain plasmids. Typically a
marker gene confers on the host cell resistance to some antibiotics or complements
some auxotrophic mutations in the host cell. Selection markers can serve two important
functions. First, they provide rapid positive selection procedures for identifying vector-
containing colonies. Second, they allow formulation of selective media to minimize
competition from any plasmid-free cells that may be born during population growth.

The term control sequences means the DNA sequences that control the expression
and localization of the cloned product. Thus a typical gene consists of a promoter, an
operator, a ribosome binding site, a secretion signal (if any) and a nucleotide sequence
coding for the desired product.
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) At the beginning of transcription, RNA polymerase binds itself specifically to a
L : starting sequence, the promoter[5]. It has been found that the nucleotide sequences for
different promoters are not exactly the same, and hence the strength of association of
the promoters with RNA polymerase varies. The stronger the promoter, the higher will
be the rate of initiation of transcription.

The rate of expression of some genes is constant, independent of the
environmental conditions. These genes are termed constitutive. On the other hand for
some genes the rate of transcription may change according to the needs of the cell under
different growth conditions. In many organisms, transcription is regulated by proteins
that, by binding to DNA near or within the promoter, increase or decrease the rate at
which RNA polymerase initiates mRNA synthesis. The regions where these regulatory
proteins attach are conventionally called operators. The gene coding for the secreted
products contains a transport signal sequence that directs the localization of products
destined for secretion.

2.2 Characteristics of recombinant systems

2.2.1 Plasmid instability. Although one can, in principle, start with a culture
containing only plasmid containing cells (X*), in due course, a considerable fraction of
cells in the culture would not have any plasmids (X). This commonly occurring
problem, known as plasmid instability, can be due to any one or more of the following
factors. First, if the replication of the plasmid is not under the control of a nuclear
chromosome, it may replicate less than once per cell cycle, resulting in a decrease in the
number of plasmids per cell and ultimately causing plasmid loss. Second, in some
organisms asymmetric cell division leads to unequal distribution of plasmids between
the newly formed cells. For example, in Saccharomyces cerevisiae the cell division by
budding is asymmetric, leading to the formation of different sized cells, the larger one
being called the mother cell and the smaller one the daughter cell[6]. It is found that
plasmids belonging to a particular class segregate unequally in these cells, the mother
cell getting more plasmids than the daughter cell. Third, for reasons explained later, the
X" cells generally have a higher growth rate than X* cells in a nonselective medium.
Thus, X~ cells eventually outgrow the X* cells. The above reasons result in what is
called segregational instability. The other type of instability, called structural
instability, results in the inability of cells to synthesize an active cloned gene product.
This can be caused by mutation either in the structural cloned gene or in the associated
sequences which control and make possible cloned gene expression.
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Several methods exist for minimizing this problem. The simplest is to grow the
Q_ cells in a selective medium, to give X* cells a selective advantage. Even with selection
pressure, segregational instability reduces the overall growth rate and productivity of the
recombinant population. Also, selection pressure does not control structural instability.
Another solution is the use of the fed-batch mode of operation which can be used to
control the cell environment to minimize the effects of instability. The above solutions
may be considered as operational solutions. A molecular biological solution is to
integrate the required gene in the host chromosome. Since chromosomes are replicated
once per cell cycle and are inherited equally by the daughter cells, the instability
problem can be completely avoided. One problem with this approach is that it results in
very few copies of the required gene per cell. At low copy numbers, the productivity
can be considered to be linearly proportional to the copy number. Thus the use of
chromosomal integration results in a productivity lower than that by the use of
multicopy plasmids.

The importance of our understanding of plasmid stability has been recognized and
emphasized by many workers in the field of genetic engineering. Imanaka and his
coworkers[7,8] observed that plasmid stability can be affected by the genetic
characteristics of the host cells, the copy number of the plasmid, culture conditions, and
the genes contained in the plasmids. Many experimental studies of this phenomenon
have been reported[9-18]. Helling, Kinney and Adams[16] pointed out unsteady and
oscillatory growth patterns of E.coli with and without plasmid RSF2124 or its
derivative when the two strains were mixed at the start of a continuous culture.
Depending on the initial fraction of plasmid-containing strain of E. coli, the population
of the plasmid-containing strain decreased conspicuously after the start of the chemostat
culture, but the strain increased its population later on, reversing the population balance
with respect to the plasmid-free strain. The oscillatory behavior of the plasmid-
harboring cell was attributed to adaptive mutation of the plasmid. Marquet, Alouani
and Brown[17] reported a continuous culture study for a double mutant of S. cerevisiae
containing a plasmid coding for o-antitrypsin. The results indicate that the strain was
maintained for 150 generations with no plasmid loss. Siegel and Ryu[19] studied
plasmid instability for E. coli in a two-stage continuous culture system.

Aiba and Koizumi[18] examined the effect of temperature on plasmid stability for
Bacillus stearothermophilus containing the plasmid pLP11. When the temperature was
lower than 50°C, the plasmid functioned normally undergoing neither partial deletion
nor total disappearance. When the temperature of cultivation exceeded 50°C, the
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stability deteriorated in the late-log phase of batch culture and in continuous runs.
( Koizumi and coworkers[11] also reported a study of the effect of temperature and
dilution rate on the copy number of plasmids in continuous culture of Bacillus
stearothermophilus. Kim and Ryu[14] studied the instability kinetics of #p operon
plasmid ColE1-#rp in recombinant E. coli. The trp operon is partially derepressed by
3-B-indole acrylic acid (IAA). They found a critical IAA concentration at which the
enzyme production, stability and growth rate were significantly affected.

Hopkins et al.[12] examined the effect of dissolved oxygen shock on the stability
of recombinant E. coli containing plasmid pKN401. The recombinant cells were highly
unstable under conditions where a dissolved oxygen shock was induced. Parker and
DiBiasio[10] studied the effect of growth rate and expression level on plasmid stability
in S. cerevisiae. As the level of plasmid expression was raised, the stability dropped
markedly. It was pointed out that increased transcription might have interfered with
plasmid replication, hindered segregation, or overburdened the cell’s DNA repair
capability. It was also observed that plasmid stability is substantially greater at higher
growth rates.

2.2.2 Host-plasmid interactions. Expression of plasmid genes and binding of cell
catalysts, initiation factors, and other regulatory molecules to plasmid DNA alter the
normal pattern of interactions and synthetic activities in the host cell. This has
stoichiometric as well as kinetic implications. In cases of highly active cloned gene
expression and/or extremely large plasmid content, recombinant cells become
nonviable[19,20]. The effects of the presence of plasmids and gene expression on the
host are listed below.

A. Recombinant cell metabolic stoichiometry is altered by the synthesis of plasmids
and their products, requiring allocation of monomer precursors and metabolic
energy for plasmid-directed synthesis. This necessarily results in lower cell mass
yields.

B. It is expected that the magnitude of plasmid-mediated perturbation on host-cell
growth and biosynthetic activities should increase as the number of plasmids per
cell increases. This was confirmed by the experimental studies of Seo and
Bailey[21] using plasmids containing mutated repressors of plasmid synthesis in
E. coli. They found that specific growth rate is a monotonic decreasing function
of plasmid content.
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C. The dependence of product formation rate on plasmid copy number was
Q determined by Seo and Bailey[21] for the system described above. A 34-fold
increase in copy number resulted in only a sevenfold increase in cloned-gene
product activity. Although an approximate proportionality between number of
genes and amount of gene product activity was found thrdugh a copy number of
around 60, this proportionality subsequently broke down rapidly. It has to be
noted that the plasmid content may be increased by genetic manipulation to
reduce plasmid replication activity or by environmental manipulation through
specific growth rate reduction. It was found that cloned-gene specific product
activity increased much more rapidly for environmental change of plasmid
content. This illustrates the inadequacy of plasmid content alone as a determinant
of productivity.

D. The specific growth rate of recombinant S. cerevisige exhibits a maximum as a
function of plasmid content{15].

E. The reduction in growth rate of the host cell, because of the presence of plasmids,
is more when the product gene within the plasmid is expressed.

2.3 Modeling recombinant systems

In order to interpret data, test hypotheses, and synthesize knowledge gained from
experimental studies, a conceptual, quantitative framework for description of host-
plasmid interactions is required. In the past few years a considerable amount of effort
has been directed towards modeling of recombinant systems. Modeling and theoretical
studies have addressed both stoichiometric and kinetic issues.

The models available can be categorized broadly as segregated and
nonsegregated, or as structured and unstructured[22]. Segregated models recognize that
the system contains many cells and hence require population balance methods for its
mathematical representation. Nonsegregated models, on the other hand, are not
concerned with distributions of certain properties over the entire population, and
consider only the average properties of the population. Structured models assume the
system to be made up of two or more parts. Unstructured models do not make such a
distinction. Actual cellular systems can be considered to be structured and segregated.
But structured, segregated models tend to be quite complex and do not lend themselves
to easy mathematical treatment.
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2.3.1 Segregated, unstructured models. Hjortso and Bailey[23,24] proposed a
(, segregated model for recombinant S. cerevisiae. They considered the problem of
finding plasmid content distribution in a growing population of budding yeast. A
detailed cell-cycle model developed earlier{25,26] was used to find out an age
distribution function. Two hypothetical models for plasmid replication regulation were
explored: one assumed an increase in replication frequency with a decrease in copy
number and the other assumed a constant number of replications independent of the
initial number of plasmids. Analytical solutions were obtained for plasmid content
distribution for steady-state growth in a selective medium and for dynamic growth
following a shift to a non-selective medium. Analogous models have been proposed for
control of plasmid replication in E. coli[14,27].

A segregated model for plasmid content and product synthesis was proposed by
Seo and Bailey[27]. It was assumed that the single-cell rate of product synthesis
depends only on the number of plasmids in the cell. This assumption was found
necessary to avoid excessively complicated and unwieldy mathematics. Using a
parabolic form for the dependence of specific product formation rate on plasmid
content, they were able to show that the overall specific product synthesis rate measured
is less than or equal to the single-cell rate of gene expression evaluated at the average
plasmid content. Consequently, efforts to estimate the single-cell gene expression rate
from population-average data will underestimate the true single-cell rate. It was also
shown that the fraction of plasmid-containing cells is essentially a function of the single
cell growth rate ratio o, and the probability of plasmid loss, 8. The parameter o: may be
controlled by adjustment of the growth environment, and 8 is characterized by plasmid
genetic functions.

2.3.2 Structured, nonsegregated models. These models can be classified broadly as
genetically structured and genetically unstructured models. Almost all genetically
structured models for recombinant systems are due to Lee and Bailey[28-31]. These
models assume some mechanisms at the molecular level of DNA replication and gene
expression.

Lee and Bailey[28] formulated a mathematical model describing Adv replication
in a growing single cell of E. coli. A wealth of information is available about the
regulation of replication of this plasmid. The model successfully simulates plasmid
maintenance, cellular content of plasmids and important regulators of plasmid synthesis
kinetics. It also describes well the influences of mutations in the replication regulation
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: functions. This model was extended to include expression kinetics of a cloned gene in
(_ the plasmid[29]. Detailed descriptions were employed for the plasmid regulatory
functions. Empirical relationships deduced from previous experiments were employed
to describe the effect of cell growth rate on host cell macromolecular synthesis
activities. Analysis of simulations showed that the primary reason for higher copy
number at lower growth rate is reduced synthesis of repressor protein. An important
aspect of this model is that the structure of this model and the parameters involved were
determined entirely from information in the molecular biology and microbiology
literature. Lee and Bailey[30,31] also developed genetically structured models for lac
promoter-operator function in the chromosome and in multicopy plasmids. The basis
for this model is provided by the great amount of information available on lac
promoter-operator system. Genetically structured models of this type should prove
increasingly useful in analyzing the influence of particular genetic modifications in
expression systems and ultimately in optimizing these systems.

Lee and coworkers[32] also developed models for product formation by unstable
recombinant organisms in batch and in continuous flow reactors. The cell population
was characterized by three different genotypes according to the absence or presence of
plasmids (segregational instability) and of the active cloned gene (structural instability).
Empirical growth inhibition factors due to plasmids and to product protein were
assigned to the corresponding strains. Product formation kinetics was based upon a
quasi-steady-state transcription-translation expression model. An approximate form of
this model is identical to the empirical Leudeking-Piret expression for product
formation. Simulation results showed that there exists an optimum combination of
plasmid copy number and cloned-gene transcription and translation efficiencies to
maximize reactor productivity. These host-vector parameters can be manipulated by
both genetic engineering and by bioreactor control.

Srienc and coworkers[15] recognized that it is not the marker gene itself which
endows the host cell with the selective growth type but the product of the gene, either
RNA or protein, which performs the functions essential for growth in a selective
medium. This fact is very important, because in unstable recombinant populations, the
newly formed cells may contain the complementing product but may not have any
plasmids. It has been observed experimentally that cells with plasmids typically grow
more slowly than cells without plasmids, and this growth rate penalty increases as the
number of plasmids per cell increases and as the level of gene expression from the
plasmid increases. On the other hand, presence of complementation product increases
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the growth rate of host cells relative to the cells that do not contain the complementation
product. The specific growth rate of plasmid-containing cells (,) was represented as
the product of an activation term, which is a function of the intracellular concentration
of the complementation product (CP), and an inhibition term, which depends upon the
intracellular plasmid concentration (CN).

K = A(CP)I(CN) 2.1

By assuming some functional forms for A and I, it was shown that the growth rate [,
shows a maximum with respect to the plasmid content for otherwise identical
recombinant strains.

Mathematical characterization of the growth of recombinant populations in a
selective medium is complicated by independent segregation of the plasmids and the
complementation product. In most cases the number of plasmid molecules per cell is
substantially smaller than the number of complementary product molecules per cell.
Assuming that the complementing product[15] is randomly distributed over the volume
of the dividing cell, when irregular plasmid partitioning occurs, such that one newborn
cell receives all of the plasmids, both daughter cells will contain at birth identical
concentrations of complementing product. Thus, it is to be expected that plasmid-free
cells will continue to grow in a selective medium following plasmid loss. This has been
observed experimentally by Murray and Szostak[33]. They observed that S. cerevisiae
cells born without plasmids were able to grow on selective medium for five to six
generations. Srienc and coworkers[15] have modeled the growth of cells in a selective
medium after plasmid loss. The decrease in the complementation product concentration
with time was represented by a simple mass balance with first-order inactivation.

d(CP)

ol -kq CP - p_CP 2.2)

where kg = first order inactivation constant.
and p_ = growth rate of plasmid-free cells.

It was concluded that greater complementing product stability and higher mother cell
plasmid content enhance the growth capabilities of X~ cells.
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Peretti and Bailey[34] studied the effects of copy number, promoter strength, and
( ' ribosome binding site strength on metabolic activity of host cell and plasmid gene
expression. Their model details many of the reactions central to DNA replication,
transcription and translation for glucose-limited balanced growth of E. coli. Control
interactions and reaction mechanisms were formulated using as much detail as possible
for the processes of transcription and translation. Relative promoter and ribosome
binding strengths for the vector genes and mRNAs were used as inputs to the system.
Based on these the model simulates the alterations in host cell metabolism and cloned
gene product synthesis. An interesting result, unverified experimentally, is that the
rate-limiting process changes as amplification increases. It appears that ribosome
availability is the limiting factor at low copy numbers. However, as the copy number
increases, the availability of RNA polymerase is the more significant bottleneck in
product formation. The simulations also indicate that enhanced vector-specified affinity
for ribosomes is a better strategy for improving productivity than enhanced promoter
strength.

Plasmids affect the host cell allocation of precursors, energy reserves, catalysts,
activators, and repressors. The synthesis of plasmids and their products requires that
nutrients be utilized to satisfy the additional material and energy demands of the cell.
The effect of this on metabolic stoichiometry can be analyzed independently of cell
kinetics. Da Silva and Bailey[35] analyzed the effect of the presence of plasmids on
growth yields. Theoretical growth yield factors were estimated. Their method,
although developed for E. coli, can be extended to other organisms for which the ATP
use in metabolic activities is known or can be reasonably estimated. It was found that
the ATP requirement for the synthesis of the additional plasmid DNA is minimal
compared to that required for the excess protein. The level of expression, however,
does influence the yields on ATP.

2.3.3 Conclusions. The above brief survey of the modeling efforts for recombinant
systems shows that mechanistically detailed models exist for E. coli, but not for S.
cerevisiae. This is because much more is known about the metabolic and genetic
aspects of E. coli. However, in spite of the great amount of information available most
of the conclusions of the detailed models cannot be verified experimentally. Also,
genetically structured models were developed for very specific systems and are difficult
to modify for application to other systems. The models for yeast are more empirical in
nature and assume arbitrary functional forms for growth rate and product formation.
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2.4 The yeast Saccharomyces cerevisiae

24.1 Yeast as a host of choice. Earlier research in recombinant DNA technology was
focussed mostly on prokaryotes like E. coli. However, prokaryotes possess a structural
organization that is fundamentally different from the more complex eukaryotic
organisms. Hence, they do not provide the best environment to study the spontaneous
expression of chromosomal genes of higher eukaryotes, especially when post-
transcriptional and post-translational modifications are required. In eukaryotic genes
there exist certain non-coding sequences called introns that are copied into primary
transcripts[4,5]. These introns are subsequently eliminated by a process known as
splicing. Removal of introns by splicing does not take place in prokaryotes like E. coli.

S. cerevisiae is an attractive host for studying the expression of eukaryotic
proteins. It is nonpathogenic. ‘Since it has been a popular organism for experimental
studies, there is an abundance of information available on several aspects of yeast
microbiology and .biochemistry. Yeast cells are organized into the same major
membrane-bound compartments as all other nonphotosynthetic eukaryotic cells. In
addition to the nucleus, yeast cells contain the endoplasmic reticulum, the golgi
apparatus, mitochondria, the cytosol, the vacuole, etc. S.cerevisiae is capable of
expressing directly some eukaryotic and prokaryotic genes. It performs at least some
post-translational and post-transcriptional modifications characteristic of eukaryotes.
The yeast secretory pathway is similar to higher eukaryotes. Also, its extensive use
over the years has shown it to be a successful industrial organism. There is yet another
reason for choosing yeast as a host for cloning genes from eukaryotes. Although the
genetic code is redundant, the different codons for a particular amino acid are not used
equally and codon preference differs from organism to organism. While the codon
usage in E. coli is quite different from that of the animal cells, that of yeast is rather
similar. Thus, because of availability of different tRNAs a protein from a cloned
eukaryotic gene may be synthesized in greater amounts in yeast compared with E. coli.

2.4.2 Gene expression in yeast[4]. Yeast DNA, like the DNA of all eukaryotic cells, is
transcribed by three different forms of RNA polymerase, each of which transcribes
different sets of genes. RNA polymerase II makes all the RNA that is to serve as
mRNA.
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A given yeast mRNA molecule, like most other eukaryotic mRNAs, carries the
( genetic message for only a single polypeptide chain. Thus, regulatory molecules that
coordinate the transcription of several functionally related mRNAs must act at multiple
chromosomal sites. Most yeast mRNA molecules, like those of all other eukaryotic
cells, contain relatively long stretches (about 200 residues) of poly A at their 3’ ends.
These poly A tracts are not specified by the genomic DNA, but are added after
transcription to the newly made mRNA molecules released from DNA into the nucleus.

A yeast gene can be defined as a DNA segment that is transcribed into a single
mRNA product together with the adjacent control elements at its two ends. These
control elements are specific groups of base pairs that by binding to specific cellular
proteins, direct the starting and stopping of RNA chains at correct positions along the
chromosomes. Yeast promoters differ in a fundamental way from bacterial promoters
through the possession of upstream activating sequences (UASs) and upstream
repressing sequences (URSs), which can be several hundred base pairs 5’ to the start of
transcription. In addition to these upstream elements, yeast promoters have two other
essential components: (1) TATAAA-like blocks (called TATA sequences) usually
placed some 20 to 40 base pairs 5’ to the transcription start site and (2) an initiator
element encompassing the start site, which precisely determines where transcription
begins. On the contrary, RNA polymerase II promoters lie immediately 5’ to the
sequences transcribed.

Many yeast genes are transcribed at constant rates throughout the cell cycle. The
speed of such constitutive synthesis is a function of the specific base pairs at the yeast
promoters. Other promoters work at variable rates that depend on the extent of their
binding to specific control proteins, many of whose amounts are environmentally
controlled. Many highly regulated genes that are turned on by positive regulatory
proteins also maintain finite basal levels of constitutive expression that is not under
environmental control. It has been found in many such cases{3] that different promoter
elements are involved for constitutive and regulated expression.

In S. cerevisiae, highly expressed genes are almost exclusively those encoding
glycolytic enzymes or enzymes otherwise involved in carbon metabolism. However,
expression from promoters of genes encoding glycolytic enzymes is essentially
constitutive. In contrast, the expression of genes encoding enzymes required for
catabolism of fermentable carbon sources other than glucose (e.g., sucrose, galactose,
and maltose) exhibits substantial alteration of expression in response to growth
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) conditions. Expression of genes encoding maltase (MAL1 through MALG) and those
L encoding invertase (SUC1 through SUC7) show induction, by addition of maltose or
l sucrose to the culture medium, respectively, from an essentially undetectable basal level
to a level containing 1% of the cellular RNA. Thus DNA fragments from the 5’ end of
regulated genes like GAL10 (coding for an enzyme required for galactose metabolism),
and PHOS (coding for one form of acid phosphatase) can be fused to other genes,
resulting in similar regulated expression of those genes.

2.4.3 Plasmid vectors for yeast. The first sequences used to make a functional yeast
vector were those of the 2um plasmid, the only plasmid that has so far been found to
occur naturally in yeast. The yeast 2um plasmid is a circular double-stranded plasmid
present at 60-100 copies/cell in most S. cerevisiae strains. When a single 2um circle is
introduced into a plasmid-free yeast, its replication, as well as that of its immediate
descendants, occurs more than once per every cell cycle until the normal complement of
about 60 copies per cell is reached. Plasmids carrying 2um DNA sequences are called
YEp or yeast episomal plasmids. Those which transform by integration into a yeast
chromosome are called YIp or yeast integrative plasmids. '

Another source of yeast sequences for making new plasmids that multiply in yeast
cells are the many genomic segments at which DNA replication is ordinarily initiated
along the yeast chromosome. These sequences are called autonomously replicating
sequences (ARS). These yeast replicating plasmids (YRp), however, are not stably
maintained in transformed cells. For unknown reasons, YRp plasmids tend to remain
associated with the mother cell and are not efficiently distributed to the daughter cell.

Highly stable yeast plasmid vectors can be made by including, in addition to ARS
sequences, certain yeast DNA sequences that function as centromeres. These sequences
are necessary for the attachment of the chromosomes to the microtubules of the mitotic
spindle. Such CEN-containing plasmids (YCp) function as true chromosomes and
segregate accurately during both meiosis and mitosis.

All versatile vectors for use in yeast cells contain origins of replication active in
both yeast and E. coli as well as one or more markers that can be used to select those
E. coli cells into which the vectors have entered. The shuttle vectors can thus be
amplified in E. coli before being used to transform yeast cells.
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2.5 Optimization of fed-batch cultures

Once a mathematical model is available, steady-state optimization for a continuous
reactor is a simple problem of maximization of a function of many variables. This type
of optimization is called sratic optimization as no time trajectories are involved.
Optimization of environmental conditions as a function of time in the case of a fed-
batch reactor is a much tougher problem. Such optimization is called dynamic
optimization and it involves maximization of a functional by finding the optimum
function. Such problems fall under the realm of variational calculus. The solution
requires the use of Pontryagin’s maximum principle[36] and singular control theory[37].

Pontryagins’s maximum principle does not provide solutions to the problems in
which the control variable appears linearly in the differential equations for the state
variables. Such problems are called singular problems and the theory which deals with
them is called singular control theory. Singular control theory has found many
applications in chemical engineering. Siebenthal and Aris[38] discussed the application
of the maximum principle to the control of stirred tank reactors. They considered the
problem of guiding the reactor to a desired steady state in a time-optimal manner. Since
the control variable, the cooling rate of the reactor, appears linearly in the energy
balance for the reactor, this is a singular control problem. The general policy obtained
consisted of three ségments: cooling reactor at maximum rate, zero cooling rate and
certain intermediate cooling rates. This intermediate control is nothing but singular
control.

Gunn{39] considered the problem of bifunctional catalyst for certain reaction
networks. The optimization problem was to determine the catalyst composition along
the length of the tubular reactor for maximizing the concentration of desired product.

D’Ans et al.[40] studied the problem of growth of bacteria in a continuous
culture. The objective was to reach the desired steady state starting with an arbitrary
initial state and to maximize the amount of cells produced during the transient period,
using dilution rate as the control variable. They used a method based on extremization
of line integral using Green’s theorem. The method is applicable to problems with two
dynamic state equations with an objective function expressed as a time integral.

Kelly[41] proposed a transformation technique which reduces the dimensionality
of the system and converts a singular problem into a nonsingular problem, one in which
the control variable appears nonlinearly. Ohno et al.[42] used this technique in solving
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the problem of choosing the best operating pattern among batch, fed-batch and
continuous fermentation for amino acid production. Constant cellular yield and
negligible substrate consumption for product formation were assumed in the models.
These simplifying assumptions made it possible to have an analytical solution. The
applicability of the method for more complex systems is limited.

Since the linearity of the control variable (the feed rate of the substrate) is the
cause of the singular nature of the problem, one approach is to use another control
variable which appears nonlinearly in the kinetic model. Yamane et al..[41,42] used the
specific growth rate as a control variable. Guthke and Knorre[45] chose the substrate
concentration as a control variable in fed-batch fermentations of antibiotics. The main
reason behind these transformations is the use of well established numerical methods for
solving nonsingular control problems. Once the transformed control variables are
known the feed rate can be easily computed. Unfortunately, the physical constraints
such as maximum and minimum feed rates and fermentor capacity are totally neglected.
Also the feeding policies calculated from the transformed control variablés may not be
realizable physically.

Weigand et al.[46] solved the problem of optimizing fed-batch fermentations for
cell mass growth. In the case of constant cellular yield, the singular control maintains
the substrate concentration constant at a level which maximizes the specific growth rate.
Comparisons were made among the performances of single cycle fed-batch, repeated
fed-batch, continuous and batch modes of fermentations. It was concluded that the
repeated fed-batch is superior to continuous operation in case of substrate inhibition
kinetics. For a process with a constant cellular yield and the specific growth rate in
Monod form, the fed-batch culture does not offer any improvement over the batch
culture. San and Stephanopoulos[47] reported the effect of time delays on optimal
feeding policies. It was observed that the qualitative nature of the optimal policies
remains unchanged even in the presence of time delays.

Bonte[48] proposed a unidirectional search technique for solving the singular
control problem. This method requires the assumption of the structure’ of the control
profile. The necessary conditions of optimality of singular control are used to reduce

T The sequence of maximum, minimum and singular arcs.
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the search of adjoint variables at the switching point to the singular arc. The switching
( : time from nonsingular to singular arc is an unknown to be determined iteratively to
optimize the objective function. Tayeb and Lim[49] used this technique to optimize
penicillin fermentations. The entire fermentation period showed two phases, a phase of
maximum growth and a phase of penicillin production with very slow cell growth. It
was found that the optimum feed rate which- maximized the amount of penicillin was
different from that which maximized the productivity.

Modak and Lim([50] solved the problem of finding out the optimum feed rate
profiles in a fed-batch operation of a bioreactor. They obtained numerical solutions to
many systems of interest. The method used involves guessing the general profile of the
control variable using certain conjectures. Switching times between different arcs in the
profile remain the only unknown parameters. These can be determined by a simple
multidimensional search to optimize the objective function. However, the method
requires that an explicit form for singular feed rate be available. Bell and Jacobson[51]
pointed out that if the optimal control sequence and its properties are known a priori,
then a computation method which utilizes this information is much more efficient than
gradient methods. This is possible, in general, only for systems having less than five
state differential equations.

Menawat et al.[52] used the e-algorithm of Jacobson et al.[53] for optimizing
various fermentations. This numerical approach converts a singular control problem to
a nonsingular problem by appending a nonlinear function of the control variable to the
objective function. It was found that in spite of some numerical instability, the

- objective function of the transformed problem compared well with that of the original
problem. Stutts[54] investigated the applicability of a modified conjugate gradient
algorithm for the optimization of fed-batch cultures. The optimal feed rate profiles for
three dimensional problems were very close to that obtained using singular control
theory. This technique, however, had convergence problems when applied to higher
dimensional problems. Also different initial guesses of the feed profile resulted in
different final results.

Very few experimental or theoretical studies of optimization of fed-batch
operation for recombinant systems have been reported in literature. Seressiotis and
Bailey[55] investigated optimal gene expression and amplification strategies for batch
and continuous recombinant cultures. It was realized that the use of  regulated
promoters and plasmid replication controls amenable to environmental manipulation
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offers the opportunity of reconciling the opposing effects of cloned-gene content and
Q expression level on process productivity. A mathematical model developed by Lee and
coworkers[32] was used for optimization. The validity of this model has not been
verified experimentally as yet. However, since the qualitative features of the model are
reasonable, the simulations were expected to show only qualitative trends. It was
presumed that in a batch reactor operation at a particular point, say tamp or tgxp, the
amplification and expression processes, respectively, begin. The optimum switching
times were determined. As expected, it was found that the amount of product
synthesized by the recombinant culture is maximized by an operating strategy that
employs low levels of gene expression during an initial growth stage of the batch
culture and switches to high-product-synthesis activity at a suitable point during the
batch. It was concluded that, to optimize a particular expression system, it is important
to know the inhibition relationships among plasmid content, cloned-gene expression and
product accumulation, and host cell growth and protein synthesis.

2.6 Mathematical modeling of yeast growth

In order to appreciate the modeling efforts it is useful to understand the metabolic
steps involved in the yeast growth metabolism. This subject has been reviewed by
Lievense and Lim[56]. Only the key aspects are discussed here.

2.6.1 Yeast growth metabolism.

2.6.1.1 An overview. Three major catabolic pathways are involved in the growth of
yeast on glucose. Fermentation of glucose, which occurs when the glucose
concentration is high (or when oxygen is absent), is relatively inefficient and results in
an energy yield of about two ATP per mole of glucose metabolized. Ethanol and carbon
dioxide are produced as by-products of this reaction.

CsH;20¢ — 2C;H;0H + 2CO,

Oxidation of glucose predominates at very low glucose concentrations (50-100 mg/L) in
aerobic cultures. Glucose is completely oxidized to CO, and 16-18 moles of ATP are
generated.

CsH1206 + 60, — 6CO, + H,O
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Oxidation of ethanol occurs at very low concentrations of glucose. About 6-11 moles of
ATP are formed per mole of ethanol consumed.

CHs0H + 30, —» 2C0O,; + 3H,0

2.6.1.2 Major catabolic pathways. A reasonably complete description of the
mechanistic basis for the metabolic behavior described above can be given. The
important metabolic pathways are shown schematically in Figs. (2.1-2.3).

Oxidation of glucose. The oxidation of glucose, which is derepressed at low glucose
concentrations, is characterized by a very active tricarboxylic acid (TCA) cycle and
respiratory chain (55,56). The energy efficiency of glucose oxidation derives from the
large number of NADH3 produced for each mole of glucose oxidized to carbon dioxide.
The reducing power of NADH3 drives the formation of ATP in the electron transport
chain in the mitochondria. The depletion of TCA cycle intermediates is compensated
by the carboxylation of pyruvate which feeds oxaloacetate directly into the cycle.

Oxidation of ethanol. The oxidation of glucose similarly exhibits an active TCA cycle
and respiratory chain. In the absence of glucose, polysaccharides must be synthesized
from a two-carbon source. This synthesis, called gluconeogenesis, consists of the
glyoxylate bypass and a reversal of glycolytic pathway.

Fermentation of glucose. The fermentation of glucose is induced in the presence of
high glucose concentrations. The reductive pathway from pyruvate to ethanol is then
important as it regenerates NAD", a necessary cofactor in the glycolysis. Energy is
obtained only from the ATP generated during glycolytic steps.

2.6.2 Models of yeast growth. Most of the previous models of yeast cultures have
concentrated on describing steady states in continuous fermentations or lag phases in
batch cultures. These models, therefore, have a limited applicability in studying the
fed-batch cultures.

Yoon er al.[57] developed an unstructured model to describe yeast growth on
mixed substrates. The model is able to describe growth on glucose and accumulation of
ethanol. Although, the diauxic growth is successfully simulated, the model does not
take into account any of the metabolic pathways of yeast growth. For this reason the

use of such a model is questionable.
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Bijerk and Hall[58] proposed a mechanistic model of yeast growth assuming the
cell mass to consist of two fractions, A and B. ‘A’ mass was responsible for glucose
uptake and energy production while ‘B’ mass carried out reproduction. Oxidative
metabolism was totally neglected. This assumption is not valid in fed-batch cultures.
Fukuda et al.[59,60] assumed an on-off type control mechanism to be responsible for
glucose consumption. The fermentative pathway is turned on and the respiratory
pathway shut off if glucose concentration is higher than 0.28 g/lit, and vice versa.

Hall and Barford[61,62], and Bellgardt et al.[63] proposed complex models to
simulate internal energy metabolism and the cell cycle. The models assumed an
elaborate reaction network consisting of the reactions of the TCA cycle. These models
have a very large number of variables, most of which cannot be measured easily and
hence have a limited value for optimization study.

Toda er al.[64] proposed an unstructured model for diauxic growth of the yeast S.
carlsbergensis in a chemostat. The concentration of glucose in the fermentation
medium was assumed to be responsible for controlling the respiratory and fermentative
pathways. This empirical model describes the batch and continuous culture behavior
quite well. Lievense[65] reported a detailed model for yeast growth, which considers
the fermentative and respiratory pathways as controlled by fermentative and respiratory
enzyme pools. It can predict batch and continuous behavior. The dynamic responses of
a shift up or shift down in the dilution rates were also successfully described. The
model, however, is too complex for optimization purposes. Modak[66] showed that
under certain assumptions, Lievense’s model can be simplified. The resulting model is
similar to the Toda model. The new model is simpler but still able to describe fed-batch
growth of yeast.

2.7 The plasmid pRB58

Recombinant yeast containing the plasmid pRB58 is used as a model system for
this study. Overall structure of this plasmid is explained first, followed by detailed
information about its constituents.

2.7.1 Structure of the plasmid. The recombinant plasmid pRB58 was constructed by
Carlson and Botstein[67] to study the expression of SUC2 gene in yeast. The plasmid
contains the entire yeast SUC2 gene including the SUC2 promoter, signal sequence and
structural gene. It contains 2um origin of replication for efficient maintenance in yeast.
The SUC2 gene codes for the enzyme invertase. It also has an ampicillin marker for
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selection in E. coli, and a URA3 marker gene which enables production of uracil within
the yeast cell.

2.7.2 The yeast 2um plasmid. This naturally occurring yeast plasmid forms the basis
for many recombinant plasmids used for transforming yeast. The characteristics of 2um
plasmid have been reviewed by Futcher[68]. Only the main features will be highlighted
here.

The 2um circle is a 6 kbp double-stranded DNA plasmid found in the nucleus of
nearly all strains of S. cerevisiae at a copy number of about 60. It is stably maintained as
an extrachromosomal element through mitotic and meiotic cell divisions[69]. Plasmid
replication is very similar to that of chromosomal DNA. The plasmid contains at least
four genes and some cis-acting sites which provide the plasmid with a mitotic partition
system and a copy number amplification system. The plasmid has little or no

phenotype.

Its most striking features are two perfect 599 bp inverted repeats. The FLP gene
on the plasmid is responsible for recombining the inverted repeats. The REP1 and
REP2 genes are both required in trans for plasmid stability. One of the cis-acting sites
is an autonomously replicating sequence (ARS) which is found near the boundary of
one of the inverted repeats. The ARS coincides with the plasmid’s origin of replication.

Replication of the 2um plasmid is very similar to the chromosomal replication. It
occurs only during the S phase of the growth cycle. Furthermore, like chromosomal
DNA and unlike mitochondrial DNA or bacterial plasmids, 2jtm circle molecules, there
is exactly one initiation of replication per cell cycle. In spite of this the molecule can be
replicated several times per cycle (probably through a double rolling circle model[70]).
A copy number amplification mechanism is responsible for a tight control over the
plasmid copy number.

2.7.3 Invertase expression.

2.7.3.1 Invertase enzyme. The enzyme invertase (B-D-fructofuranosidase
fructohydrolase EC 3.2.1.26) catalyzes the hydrolysis of sucrose to glucose and
fructose. Yeast strains containing any of the SUC1-7 genes produce this enzyme. The
yeast SUC2 strains produce both an internal nonglycosylated form of invertase as well
as a secreted glycosylated form of the enzyme[67].
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: The external, glycosylated invertase has a total weight of approximately 270,000
( “ daltons, about half of which is carbohydrate[71]. Trimble and Maley[72] found that the
external enzyme is composed of two identical 60000 dalton subunits to each of which is
added an average of nine neutral oligosaccharide chains consisting of a di-N-
acetylchitobiosyl core and 26 to 54 mannose residues.

Gascon et al.[73] determined the kinetic properties of both internal and external
invertase. The K, values for purified internal and external invertase are almost
identical and were found to be 25 mM and 26 mM, respectively. The pH-activity curves
of the two enzymes are almost identical and shows a maximum around pH 4-5.
However, the pH-stability of the two enzymes differs considerably. The external
invertase is stable at 30 °C between pH 3 and 7.5. The internal invertase, on the
contrary, is stable from pH 6 to 9. The difference in stability can probably be attributed
to the stabilizing effect of the carbohydrate chains present in the external form of the
enzyme.

2.7.3.2 The SUC2 gene. The regulation of SUC2 gene expression in yeast is complex
and only understood partially. The net effect of several regulatory genes is repression of
invertase production at high glucose concentrations in the medium. SUC genes are each
structural genes for both forms of invertase discussed above. The level of the secreted
glycosylated form is regulated by glucose repression. The glycosylated form accounts
for most of the invertase activity in derepressed cells. The intracellular invertase is
made at low levels, which do not change significantly with changes in glucose
concentration,

The SUC2 gene has been cloned[67] and its nucleotide sequence determined[74].
Carlson and Botstein{75] found that the mechanism of regulation of the amount of
invertase mRNA is insensitive to the number of copies of the structural gene within the
cell. They also proposed a model for SUC2 gene expression. According to this model,
a 1.9 kb mRNA encodes the entire sequence of the precursor of secreted invertase.
Translation of this mRNA begins with a methionine codon at the beginning of the
secretion signal sequence. The 1.8 kb mRNA begins within the signal sequence region
and lacks the start of the translation codon used for the 1.9 kb mRNA. Translation of
the shorter mRNA begins at the next initiation codon. The two enzymes are found in
different cell compartments simply because one has a signal sequence while the other
does not. The mechanism is shown schematically in Fig. (2.4). The glucose regulation
was explained by assuming that two promoter sequences are present; one sequence does
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: not to respond to any signal related to glucose concentration and results in the
( production of the smaller mRNA, while the other promoter responds to glucose
regulation and results in the synthesis of the longer mRNA.

Carlson et al.[75] translated the SUC2 nucleotide sequence into the corresponding
amino acid sequence. There results corroborate the model of differential regulation
described above. At the amino terminus end of invertase, the amino acid sequence
translated from the DNA sequence includes a core of hydropﬁobic residues and strongly
resembles prokaryotic and eukaryotic signal peptides.

Sarokin and Carlson[76] constructed a series of deletions in the 5° noncoding
region of SUC2 gene. Analysis of the effects of these deletions identified an upstream
region required for derepression of secreted invertase synthesis. The 3 boundary of this
region is near -418. The 5° boundary is about 100 base pairs upstream. No essential
sequences lie between the upstream region and the TATA box at -133. The data suggest
that the regulation of SUC2 gene expression operates by positive control. None of the
deletion mutations caused a high-level constitutive phenotype that would be expected
from the deletion of a negative regulatory site.

Sarokin and Carlson[77] demonstrated that the upstream region between -650 and
-418 can confer glucose-repressible expression to a heterologous gene, a LEU2-lacZ
gene fusion, that is not normally regulated by glucose repression. This confirms that the
upstream region is responsible for regulation. Also, the regulation is at the level of
transcription. They found that the SUC2 upstream region was active in the inverted
orientation also. This suggests that the region resembles in some respects the enhancer
elements found in higher eukaryotes.

Further investigation by Sarokin and Carlson[78] revealed that tandem copies of a
32-bp sequence from the upstream regulatory region activate expression of LEU2-lacZ
fusion. The level of expression increased with the number of copies of this element,
but was independent of their orientation. This activation was not significantly glucose
repressible. The 32-bp sequence includes a 7-bp motif that is repeated at five sites
within the upstream regulatory region. It was speculated that although the upstream
regulatory region acts positively to derepress gene expression, the regulatory response is
directly controlled by a negative trans-acting factor.
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Hohmann and Gozalbo[79] compared the upstream sequences of the SUC, MAL
Q: ' and GAL genes, all of which are subject to glucose repression. Within the upstream
regions of all SUC genes three regions with palindromic sequences analogous to stem
and loop structures were identified. Comparable structures were also found in MAL and
GAL gene upstream sequences. Palindromes are possible protein recognition sites on
the DNA sequence.

Regulation of SUC2 gene expression is further complicated by the fact that it is
under the control of catabolite repression. Catabolite repression, or glucose repression,
is a global regulation of the genes controlling the metabolism of many carbon sources.
Celenza and Carlson[80] cloned the gene SNF1 (sucrose nonfermenting). A functional
SNF1 gene product is required to derepress expression of many glucose-repressible
genes including SUC2. The evidence suggests that the SNF1 gene product acts as a
positive activator to derepress glucose-repressible genes in response to low external
glucose concentration. Investigations by Celenza and Carlson[81] revealed that the
level of a 2.4-kilobase polyadenylated RNA encoded by the SNF1 gene is not regulated
by glucose repression. Thus expression of the SNF1 gene is not glucose repressible.
Neigeborn and Carlson[82] deduced from mutation studies that six trans-acting genes
are required for derepression of SUC2 in response to glucose deprivation. These genes
were designated SNF1 to SNF6.

Hexokinase II, in addition to its glycolytic activity, has been implicated in the
control of catabolite repression. Ma and Botstein[83] constructed null mutations in both
hexokinase genes, HXK1 and HXK?2, and studied their effect on catabolite repression of
three different genes in yeasts: SUC2, CYC1, and GAL10. Their results indicate that
the null phenotype of the HXK1 gene is not much different from that of the wild type,
but the null mutants of the HXK2 gene fail to show catabolite repression in all three
systems. Loss of hexokinase II caused a 100-fold increase in the expression of both the
SUC2 and CYC1 genes under repressive conditions. It appears that hexokinase II acts
in a negative fashion in catabolite repression. Also, hexokinase II functions earlier than
the SNF1 gene product in the regulatory pathway.

Neigeborn er al.[84] cloned SSN20 gene. They showed that mutations at the
SSN20 locus partially alleviated the requirement for SUC2 upstream regulatory
sequences that are normally essential for derepression of secreted invertase. The TATA
box was, however, still required. It was speculated that the SSN20 gene product
mediates interaction between factors associated with upstream activating sequences and
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factors acting at downstream promoter sequences.

L"} Schultz and Carlson[85] cloned and analyzed the SSN6 gene. An ssn6 null
mutation was an effective suppressor of snfl with respect to restoration of SUC2
expression. This also causes glucose insensitive expression of SUC2 mRNA. Several
possible mechanisms were proposed to explain this behavior.

In conclusion, one can see that regulation of SUC2 gene expression is a complex
process involving many genes (SNF1-6, SSN20, SSN6, HXK2). The exact nature of the
interactions between these genes still remains unclear. The mechanism, however, seems
to consist of a hierarchy of controls bearing similarity to the control of the GAL system
and the general amino acid control in yeast.
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3. MATERIALS AND METHODS

3.1 Model system

The host organism used in this study is Saccharomyces cerevisiae SEY2102
(MATo ura3-52 leu2-3,-112 his4-519). This strain is an a-haploid. It is auxotrophic
for uracil, leucine and histidine, and hence will not grow in media devoid of these
constituents. Furthermore, it has a deletion (suc2-A9) in the chromosomal copy of the
SUC2 gene, which codes for invertase. It does not contain any other unlinked invertase
structural genes (SUC1, SUC3-7). Thus the host strain cannot produce invertase.

The yeast 2um based plasmid pRB58 was constructed by Carlson and
Botstein[67], and introduced into the host SEY2102 by Emr er al.[86]. It contains the
entire yeast SUC2 gene including the promoter, signal sequence and structural gene.
The plasmid also contains the URA3 gene which serves as a marker by complementing
the auxotrophic requirement for uracil. Both the host and the recombinant strains were
stored in 15% glycerol at —20°C. A schematic of the plasmid pRBSS is shown in
Fig. (3.1).

3.2 Fermentation medium

Most of the fermentations were performed using a synthetic minimal medium
(SDc)[87] containing salts, amino acids, trace elements, vitamins, nitrogen sources, and
glucose (Table 3.1). The medium was supplemented with 5 g/L. casamino acids (Difco,
Detroit, Michigan). Different amounts of glucose were used for different experiments.
In the initial stages of the research a few preliminary experiments were done using a
different growth medium (A1) (Table 3.2).

The fermentor, containing distilled water, was autoclaved at 121°C and a

concentrated medium was added through a 0.2 um filter (Gelman Sciences, Inc., Ann

- Arbor, Michigan) and added to the fermentor to make up the desired glucose
concentration.
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Figure 3.1 A schematic of the plasmid pRB58
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Q Table 3.1 Composition of synthetic minimal medium (SDc)
Component Medium Concentration (g/L)
d-Glucose 2.0-20.0
Bacto-yeast nitrogen base 6.66

w/o amino acids

Casamino acids 5.0

Table 3.2 Composition of medium Al '

Component Medium Concentration (g/L)
d-Glucose 2.0-20.0
Bacto-yeast nitrogen base 6.66

w/o amino acids
Leucine 3.06 x 1072
Histidine 2.04x 1072
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3.3 Analytical methods

3.3.1 Cell mass. Off-line measurements of cell mass concentration were carried out
with a Baush and Lomb Spectronic 70 spectrophotometer at 600 nm wavelength.
Marten[88] found that the cell mass was linearly proportional to the optical density
(OD) at 600 nm below 0.5 OD. To eliminate the nonlinearity at higher OD, samples
were diluted to a final OD below 0.4. Corrected OD was computed as the product of the
dilution factor and the OD of the diluted sample. Cell dry weight was measured for a
few samples in some of the fed-batch fermentations. During the fermentation 20-
40 mL. samples were withdrawn and filtered with a preweighed 0.2 um Gelman filter.
The pellet was washed with 25 mL distilled water. The filter was dried for 24 hours in
an oven, maintained at 120°C, and weighed. The conversion factor between corrected
OD and dry cell weight was found to be 0.30 g/(L..OD).

3.3.2 Glucose assay. Samples were collected every 60 to 90 minutes and centrifuged
in a microcentrifuge (Eppendorf centrifuge 5415 C). The cell free medium was frozen at
—20°C for glucose and ethanol analysis. The glucose concentration was determined
either by using a colorimetric technique based on the enzymatic reaction involving
glucose oxidase and o-dianisidine as an indicator, or by using a glucose analyzer
(Yellow Spring Instruments, Model 27). The enzymatic test kit is available
commercially from Sigma Chemicals, St. Louis. The lowest glucose level that can be
measured with sufficient accuracy with both these methods is about 10 mg/L.. Appendix
A describes the steps involved in these methods.

3.3.3 Ethanol determination. The ethanol concentrations were determined with a
Varian 3700 gas chromatograph. The chromatograph column was a 5 ft. long, 8 inch
stainless steel tubing packed with Porapak Q and conditioned at 250°C. Helium was
used as a carrier gas at a flow rate of 30 mL/min. A flame ionization detector was used
with hydrogen fed at 30 mL/min and air at 300 mL/min. During analysis, the injector
and detector were at a temperature of 160°C, and the column was kept at 130°C. Each
sample was injected twice (5 UL per injection) to get reproducible results. An ethanol
standard was injected after every four or five samples. Under these conditions ethanol
had a retention time of approximately 2 minutes. In some fermentations some unknown
compound, with a retention time of about 7-9 minutes, was observed.
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In the initial stages of the research the output of the GC was recorded on a Varian
L model A-25 chart recorder with an integrator. Calculating the area under the peaks
using this method is quite time-consuming. As part of the research, the gas
chromatograph was interfaced’ with a Zenith personal computer. DAS16 (Metrabyte
Corporation, Taunton, MA), a multifunction analog/digital input/output board, was used
as part of the interface. It is a full length board that installs internally in an expansion
slot of the computer. It uses a 12 bit successive approximation converter with a 12
microsecond conversion time. The channel input configuration is switch selectable on
the board, providing a choice between 16 single ended channels or 8 differential
channels. The configuration was set to 8 differential channels for the GC interface.

The A/D conversion was initiated with software commands. A simple BASIC
program was written to facilitate data acquisition from the chromatograph. The board
comes with some utility subroutines which greatly simplify the programming. The
BASIC program is simple, user-friendly and menu-driven. It performs the following
functions.

« It collects and stores chromatograph output at a frequency of once every second,
e shows the results as a output ve. time plot,
o calculates area under the ethanol peak,

o allows interactive adjustment of base line, starting and stopping points of
integration, and

e monitors the output of the chromatograph without data storage (helpful during
startup of the chromatograph).
A complete listing of the program is included in Appendix B.

3.3.4 Cell homogenization. Since most of the invertase resides within the periplasmic
space, it is necessary to break the cell wall to perform invertase assay. This was
accomplished by mechanically breaking the cells with glass beads in a cell homogenizer
(B. Braun, West Germany). Liquid carbon dioxide was used as a coolant to maintain

t The help of Richard Lowe, an electronics technician in the School of Chemical Engineering, was
invaluable.
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the sample at 4°C. From protein assays on the homogenized samples it was determined
that homogenizing the cells for 1.5 minutes was enough to break the cell wall
completely. All the fermentation samples were homogenized for 2 minutes. The details
of this method are listed in Appendix C.

3.3.5 Invertase assay. A modified two step assay method previously described by
Goldstein and Lampen[89] was used to determine invertase activity. The assay was
based on the hydrolysis of sucrose to glucose and fructose catalyzed by invertase. The
enzyme was incubated with sucrose solution at 30°C and pH 4.9 for 10 minutes. The
reaction was stopped by adding phosphate buffer (pH 7.0) and boiling for 3 minutes.
The glucose generated was determined as described in section 3.3.2. Since sucrose
hydrolyzes at a slower rate at this pH even in the absence of invertase, a blank was used
to subtract this effect. Also for reproducibility sucrose solutions were prepared
immediately before the assay. One unit of invertase activity was defined as the amount
of enzyme which hydrolyzed sucrose to produce 1 pmole of glucose per minute at 30°C
and pH 4.9. Appendix D describes the procedure in greater detail.

3.3.6 Plasmid stability. The fraction of plasmid containing cells was determined for a
few batch and fed-batch fermentations. Samples from fermentation broth were diluted
to about 1000 cells/mL using aseptic techniques. About 100 pL of this diluted sample
was spread on a non-selective (containing uracil) agar plate. Colonies are formed after
incubation at 30°C for about 24 hours. More than 100 of these colonies were transferred
to a selective plate (one without uracil) by using sterile toothpicks. Only plasmid
containing cells can grow on the selective plate and the required fraction can be easily
calculated from the number of colonies transferred and the number of colonies grown on
the selective plate.

3.4 Experimental apparatus and procedure

3.4.1 Inoculum. A vial of yeast, frozen in glycerol, was transferred to the cold room
and allowed to warm up to 4°C for several hours. The vial was then transferred to room
temperature until it warms up to the room temperature. About 1 mL of thawed culture
was used to inoculate 10 mL of SDc media (20 g/L glucose) in a culture tube. The
culture was allowed to grow in an incubator-shaker maintained at 30°C for 24 hours.
About 1 mL of this overnight culture was used to inoculate a 50 mL of SDc¢ medium
(20 g/L) contained in a 250 mL Erlenmeyer flask the night before the experiment. This
culture was grown to a late exponential phase and about 20-30 mL of the grown culture
was used to inoculate the fermentor.
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: 3.4.2 Fermentor setup and operation. A fully automated fermentor (Mouse, Queue
( Systems, Parkersburg, WVa.) was used for fermentation purposes. It allows direct
and/or cascade control of many variables including pH, impeller speed, dissolved
oxygen, temperature, air flow rate and substrate feed rate. Changing of the set points
and control constants is done in a straightforward manner using on-screen menus.

Before the fermentation began, the pH probe (Ingold Electrodes Inc., Wilmington,
Mass.) was calibrated using standard pH buffers. The fermentor was then filled with
500 mL of distilled water, assembled and autoclaved at 121°C for 20 minutes. The
concentrated medium was fed in to make up the volume to the desired level. For batch
experiments the starting volume was around 1.2 liters, while for fed-batch experiments
it was kept at about 0.6-0.7 liters. The feed pump was also calibrated before the
fermentation.

The dissolved oxygen (DO) was measured with a polarographic DO probe (Ingold
Electrodes Inc., Wilmington, Mass.). This probe was calibrated when the temperature
reached 30°C and the pH stabilized at 5.5. Nitrogen was sparged through the vessel
with the impeller speed at around 400 rpm. When the DO probe reading was almost
constant, this DO was defined as 0%. The flow of nitrogen was stopped, air flow was
started at 5 L/min and the impeller speed was set to 800 rpm. After the DO reading
stabilized this was defined as 100% DO.

During the fermentation the DO was maintained at 90% by adjusting airflow rate.
The impeller speed was kept constant at 200 rpm until it was no longer possible to keep
the DO at 90%. Then the impeller speed was gradually increased. In batch
fermentations at higher cell densities it was difficult to keep the DO at this high level.
Then the set point was lowered to 80%. In all the fermentations, the pH was controlled
at 5.5 by adding 1.0 M acid (sulfuric or phosphoric) and 1.0 M ammonium hydroxide
through a 0.2 pm sterile filter. Samples were taken through a sample tube.
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4. EXPERIMENTAL RESULTS

4.1 Introduction

Experimental characterization of the model system is a necessary prerequisite for
model development. Since the ultimate aim is to determine optimal glucose feed rate
profiles in a fed-batch mode of operation, fed-batch experiments are essential. At the
beginning, however, simple batch experiments were conducted to get some idea about
the dynamics of cell growth and product formation. These were followed by fed-batch
experiments using different feeding strategies.

4.2 Preliminary Results

To characterize the yeast strain, simple batch fermentations were done in shake
flasks using medium A1'. The specific growth rates observed during exponential
growth on glucose are listed in Table (4.1). The host strain (without the recombinant
plasmid) grows about 60% faster than the recombinant strain under these conditions.

It was soon realized that the specific growth rate (0.25 hr‘l) on glucose for the
recombinant yeast is much slower than that reportéd for wild type yeast strains (0.4-0.45
hr™!). The growth rate on ethanol was also very small. This is probably because the
amount of leucine and histidine used was not sufficient to sustain growth after the
glucose phase. It was, therefore, decided to use a richer medium with 5 g/L. casamino
acids instead of adding leucine and histidine. Use of this medium results in a much
higher growth rate on glucose and ethanol. All the experiments described in the
following sections were done in an SDc¢ medium (Table 3.1).

+ The composition of this medium is listed in Table (3.2). It contains leucine and histidine, but does not
contain casamino acids.
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( Table 4.1 Specific growth rates during preliminary experiments
e 0.39 hr!
w(l - 6) 0.25 hr!

4.3 Batch fermentations

Aerobic batch fermentations were carried out for different inital glucose
concentrations. The results are plotted in Figs. (4.1-4.5). Similar to wild type yeast, the
recombinant yeast underwent a diauxic growth. Initially the glucose concentration was
high, and after a short lag period the cell, by using glucose as the carbon source, grew
rapidly in the first exponential phase. A specific growth rate of about 0.43-0.45 hr!
was attained. Because the glucose concentration in the medium was high the cells
utilized the fermentative pathway of growth. This resulted in production of ethanol. A
higher initial glucose concentration resulted in a higher amount of ethanol. Thus during
the first phase of growth glucose is consumed while ethanol is produced. When glucose
is totally consumed, the cells, in the second phase of growth, utilize ethanol as the
carbon source.

The invertase activities in Figs. (4.1-4.11) are normalized by a measure of the
amount of cell mass (OD.mL) in the culture broth. For acceptable accuracy in the
invertase assay a minimum OD of about 0.5 is required. If the cell concentration is
below this level the pellet obtained after centrifuging is very small and difficult to
handle. Thus for the first few samples in the fermentation invertase assay was not
performed.

As noted before, the expression of the yeast SUC2 gene is repressed at high
glucose concentrations. The batch fermentations show that the same is true for cloned
SUC2 gene in the plasmid pRBS8. At the beginning of the ferimentation when the
glucose concentration was kept high the specific invertase activity (SIA) was very low.
Near the end of the first exponential phase, when glucose concentration dropped to a
very low value, SIA increased indicating derepression of SUC2 promoter. All batch
experiments show similar qualitative trends in invertase activity. However, experiments
B1 and B2 show somewhat lower SIA at the end of fermentation. These were among
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_ the first fermentations performed with a new fermentor and the best control constants’
L were not determined till then. The medium pH kept changing between 5.2 and 5.8.
This, apparently, did not affect cell growth and ethanol formation, but probably did
affect SUC2 gene expression. Experiments B3 and B4 showed significantly higher SIA
at the end of fermentation.

The fraction of plasmid free cells (F) was determined for a few samples in
experiments B1 and B2. The samples were taken from different phases of cell growth -
exponential phase of growth on glucose, end of glucose growth phase and exponential
phase of growth on ethanol. For all the samples the fraction F was between 0.07 and
0.11. Considering the experimental error involved (estimated +5%), the fraction F can
be considered to be almost constant throughout the fermentation.

One batch fermentation was performed using the host strain (without the
plasmid). The cell growth results were similar to the recombinant strain. The strain
exhibited diauxic growth and the specific growth rates for both exponential phases were
almost the same as those for the recombinant strain. Of course, because of the absence
of SUC2 gene, it did not produce any invertase.

Although batch experiments exhibit interesting features like diauxic growth and
invertase derepression, they give very little information about the behavior of the
system at low glucose concentrations. At the end of first exponential phase the glucose
concentration drops so fast that it is very difficult to get more than one or two samples
below a concentration of, say, 2 g/L.. The derepression of SUC2 promoter is known to
occur at these glucose concentrations, inaccessible in the batch mode. Also, the yeast
switches from fermentative to respiratory growth metabolism at low glucose
concentrations. Thus, important features of cell growth and product formation remain
hidden if only batch fermentations are performed.

4.4 Fed-batch experiments
Fed-batch fermentations, if used with proper feed rates, can yield long periods of

relatively low glucose concentrations. Also the effect of feed switches (which is

t The proportional, derivative and integral constants of the controller can be set at the fermentor
console.
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characteristic of optimum feed profiles in singular systems) can be studied in a
( convenient way. The results of the fed-batch fermentations are shown in Figures (4.6-
4.11).

In all the fed-batch experiments, the fermentation was started in a batch mode
until the glucose concentration dropped to a desired value. In experiments F1, F2 and
F3 the glucose concentration was monitored by analyzing the samples with a
colorimetric assay described before. This procedure, however, took at least one hour
and it was difficult to estimate the exact time to start the glucose feed. During
experiments F4, F5 and F6 the glucose concentration was determined with a glucose
analyzer which reduced the assay time to about two minutes.

In the first fed-batch experiment, the aim was to start the feed when the glucose
concentration dropped below 0.5 g/L. However, because of the lag involved between
sampling and the assay, the glucose concentration dropped to zero before the feed was
started. This seemed to adversely affect invertase production. Even though glucose
feed was started, causing an increase in the glucose concentration, the SIA remained
almost constant for about four hours before it picked up. At the end of the fermentation
SIA suddenly shot up. It is not clear whether this was as a result of very low glucose
concentration or an experimental error.

The second fed-batch experiment showed an interesting behavior. In this
fermentation, the glucose concentration was allowed to fall to about 2 g/L.. The feed rate
was then periodically increased so that the glucose concentration remained almost
constant. During the batch growth as the glucose concentration dropped SIA started
increasing slowly. During the fed-batch period, however, it remained almost constant.
It appears that glucose concentration has a very tight control on invertase production.
Further experiments confirmed this speculation.

In the next experiment, the feed rate was adjusted such that the glucose level
initially increased and dropped towards the end of the fermentation. This resulted in
expected variation in SIA. The interesting fact, however, is that the response of the
invertase production machinery to changes in the glucose level seems almost immediate
(at least within the limits of experimental observation). The correspondence between
glucose and SIA is so good that the two profiles look almost symmetrical.
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The fermentations F3, F4 and F5 used different feeding strategies to generate
different glucose profiles. In all these experiments the SIA responded very quickly to
changes in glucose concentration. In experiment F6 the glucose concentration was
made to oscillate. However, above a concentration of about 1.5 g/L changes in glucose
levels did not affect SIA significantly.

4.5 Summary

The batch fermentations exhibited diauxic growth, first on glucose and then on
ethanol. They also showed derepression of SUC2 promoter as the glucose concentration
dropped. The fraction of plasmid containing cells remained almost constant during the
entire fermentation. Fed-batch fermentations demonstrated the immediate response of
invertase production to changes in the glucose level. The SIA appeared to be a direct
one-to-one function of the glucose concentration in the medium. Also, a brief period of
zero glucose concentration resulted in a constant low SIA for a long period of time,
even though the glucose levels were raised subsequently.
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5. MODEL DEVELOPMENT

5.1 Introduction

The fed-batch experiments described in the last chapter set the stage for
development of a mathematical model to describe the system behavior. These
fermentations involved shifts in glucose feed rates resulting in considerable variations in
glucose concentration in the medium. Structured models have been used in past to
describe such transient biological situations. However, these models, of necessity,
introduce differential balance equations for intracellular constituents. This increases the
dimensionality of the system as far as system optimization is concerned. As pointed out
before, current numerical dynamic optimization techniques do not work well when the
system dimension® is more than four (or at the most five). Thus, although the structured
models may describe the system better, unstructured modeling approach was chosen in
view of the final research objective. The model, however, should not be too simplistic.
Yeast shows a shift from fermentative to respiratory growth metabolism at low glucose
concentrations. Also, there seems to be some sort of inherent feedback control of SIA
within the organism. These factors must be incorporated in the model. To reiterate, the
model has to be simple enough to be optimized, but detailed enough to describe the key
features of the system. Thus the first, if not the foremost, requirement on the model is:

I. The model should be described by five or less differential equations.

t The system dimension is the number of differential equations needed to describe the transient
behavior of the system.
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: From the batch experiments it is clear that yeast grows at a much slower rate on
(_f ethanol than on glucose. Moreover, SIA almost stays constant in the ethanol growth
phase. The fed-batch experiment F1 demonstrated that even short periods of zero
glucose concentration can lead to constant SIA. Thus for maximum invertase
productivity periods of zero glucose concentration are to be avoided. This slackens the
requirements on the model in that the model need not describe the kinetics of cell
growth and product formation during ethanol growth phase, because it will never be
encountered under optimum conditions.

H. The model should correctly describe the system kinetics during growth on
glucose, but need not explain kinetics during growth on ethanol.

Ethanol, at the concentrations encountered in the experiments, does not affect cell
growth or invertase production rates. Thus, the optimum feed profiles will be
independent of ethanol concentration in the medium.

IIL Kinetics of ethanol production and consumption is irrelevant to the objective at
hand.

5.2 Analysis of cell growth

To determine the functional dependence of specific growth rate and substrate
uptake rate on the state variables (like glucose concentration), it is helpful to extract rate
information from the observed kinetics. To do this, the cell mass and glucose vs. time
data was fit with cubic splines using the IMSL routine CSAKM. The time derivatives
were then calculated using the IMSL routine CSDER. The cell yield on glucose can
then be computed as,

- _ (dX/dv)
Y = = <GS/ .

for batch fermentations, and

T The splines try to follow the data points regardless of the scatter. To avoid this, fictitious points were
introduced and the goodness of the fit was judged visually.
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4 xv x + v&
at at
Y, = - . = - — (5.2)

for fed-batch fermentations. In the above equations Yy is instantaneous cell yield on
glucose, X is corrected optical density, S is glucose concentration in the medium, t is
time, V is culture volume, F is glucose feed rate and Sg is glucose concentration in the
feed.

The results of these calculations are shown in Fig. (5.1). Lag phase points are not
shown in the plot. Despite the scatter in the plot, some trends are evident. For glucose
concentrations greater than about 1.5 g/L, the cell yield is relatively constant. In this
concentration range the less energy efficient fermentative growth metabolism
predominates and the cell yield is understandably low. A large part of the consumed
glucose is directed towards ethanol production. On the contrary, at low glucose
concentrations the cell yield rapidly increases. This is because under these conditions
the respiratory pathway becomes dominant. This shift from fermentative to respiratory
metabolism, characterized by a drastic increase in cell yield, must be incorporated as an
integral part of the cell growth model. This was accomplished by using a goal oriented
approach. Before describing the details of the model, though, it is interesting to
examine two previous modeling efforts.

5.2.1 Lievense’s model of yeast growth: Lievense[65] developed a detailed structured
model (Model L) that accounts for the catabolic pathways involved in the utilization of
glucose, production of ethanol and genetic level controls (induction-repression) of the
synthesis of enzymes involved in these pathways.

Lievense viewed cell growth as a two step process. The first step, catabolism,
converts the nutrients to the precursors and energy needed for growth. The second step,
anabolism, synthesizes the biomass utilizing the precursors and the energy generates as
a result of the first step. The catabolism and anabolism were assumed to be uncoupled
to simulate unbalanced growth conditions. The specific growth rate and the specific
enzyme synthesis rate lag behind their target values which depend on the environmental
conditions during changes in dilution rate in continuous culture experiments.
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(\ The catabolite repression phenomenon was explained by postulating fermentative

and respiratory enzyme pools which control the glucose utilization through fermentative
or respiratory pathway. The synthesis of these enzymes is subject to induction and
repression by glucose fluxes. The target enzyme activities were assumed to be arbitrary
functions of glucose concentration. This model was quite successful in explaining a
wide variety of transient situations.

5.2.2 Modak’s model of yeast growth: Modak[66], by making some simplifying
assumptions, converted Lievense’s model to a simple unstructured model (model M).
Anabolism and catabolism were treated as coupled processes, resulting in balanced
growth conditions. As opposed to Lievense’s approach of using regulatable enzyme
pools, Modak used a direct approach. The reactions expressing the fermentative and
respiratory pathways were viewed as parallel reactions in which the cell mass is
competing for the same substrate, glucose.

The fraction R of glucose that is channeled through the fermentative pathway was
assumed to be controlled by the glucose concentration in the medium. The functional
dependence of this fraction on glucose was postulated of the following form. '

14+ mS"
R= —— — (5.3)
my + mg st
Because glucose utilization in yeast occurs through two catabolic pathways branching
from a common substrate, glucose, the specific growth rate L is expressed as a sum of
two Monod-type functions.

HhaxS N pZuS

my + S ms + S’ G4

u_:

where, m;, n, ul. and p2,, are model constants, M is specific growth rate.
5.3 A goal-oriented model of yeast cell growth

5.3.1 The functional form: Although Lievense’s model is quite accurate in describing
many transient situations, it incorporates differential balances on enzyme pools. This
leads to six differential mass balance equations and three differential equations for
specific synthesis rates to describe fed-batch behavior. This model is way too complex
for current numerical optimization techniques. Modak’s model uses only four
differential equations to describe cell growth. However, it uses an arbitrary functional
form for the dependence of fraction of glucose fermented on glucose concentration. It

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



60

was felt that a simple but elegant approach can be used for modeling purposes (Model

(_ - P).

One of the first experimental observations was that the fraction of plasmid-free
cells does not change with time. This probably demonstrates the effectiveness of the
selective medium used for the fermentations. Thus the composition of the cell
population, with respect to the number of plasmid-free and plasmid-containing cells, is
same throughout the fermentation. This leads to the following postulate.

P1. The cell mass can be described by a single lumped variable X identical to the
corrected optical density described in Chapter 3.

Pascual er al[90] conducted a systematic study of the effect of ethanol on glucose
transport, key glycolytic enzymes, and proton extrusion in S. cerevisiae. It was found
that the inhibition of fermentation by ethanol is of a noncompetitive type, with a K;
value of 0.8 M (36.8 g/L.). The glucose transport rate was also found to be inhibited by
ethanol in a noncompetitive manner, although the K; value was almost 10 times higher.
Thus at the ethanol concentrations (maximum 3 g/L) encountered during the
fermentations, described in Chapter 4, it is unlikely that ethanol will affect the glucose
uptake rate (R,) or specific growth rate (i).

P2. Specific glucose uptake rate and specific cell growth rate are independent of
ethanol concentration in the medium.
The growth characteristics of yeast are strongly affected by the regulation of the
alternative pathways for energy production. The regulation of the flow in the pathways
is described by Crabtree effect. Thus, the most important part of formulation of model
for yeast cell growth is an adequate description of this effect. Some comments are in
order here.

It was originally believed that the Crabtree effect is the result of repression of
respiratory enzymes by the glucose molecule (or a catabolite derived from
glucose)[109-111]. However, there is strong evidence that a high catabolic flux is the
direct cause of the inhibition of respiration, with concentration of the carbon source
playing a secondary role [110,112-114]. This led Lievense to propose that synthesis of
respiratory and fermentative enzymes was subject to induction and repression by
glucose fluxes. !
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In a similar vein, the approach taken here concentrates on glucose fluxes rather
(; than glucose concentration per se. For modeling purpose, the complex metabolic
pathways can be reduced to bare essentials considering only the respiratory (R,) and
fermentative (R¢) fluxes (Fig. 5.2). The glucose consumed by the cell first enters the
glycolytic chain. There is a bifurcation point at pyruvate. Using the fermentative
pathway, pyruvate can be converted to ethanol. Alternately, it can be carboxylated to
oxaloacetate thus entering the tricaboxylic acid (TCA) cycle. At this bifurcation point,
the cell has to make a decision about the fraction of pyruvate that should be channeled
into the fermentative pathway.

It was decided to use a goal-oriented approach rather than using an empirical
functional form similar to the one used by Modak. A cybemetic (goal-oriented)
approach has been used successfully in the past by Dhurjati et al to model microbial
growth[91]. The cells were viewed to be optimal control systems involved in the
maximization of a performance index (e.g. cell growth rate). The key difference
between our approach and Dhurjati’s approach is that, he postulated certain key
enzymes which the cell can control to achieve its objective, while no such enzymes are
used in model P.

If maintenance requirements are neglected, all the glucose will be utilized for
growth purposes. In this case, we can assume that the performance index to be
maximized is the cell growth rate.

P3a. The objective of the multitude of reactions within the cell is to maximize the cell
growth rate.

The energy efficiency of the two alternate metabolic pathways can be compared by
comparing their theoretical ATP yield. These calculations can easily be performed by
looking at individual reactions in the pathways. If all the glucose were to be diverted
towards fermentation 5 ATP molecules will be generated for each molecule of glucose
consumed. On the other hand, if all the glucose consumed were channeled through
respiratory pathway the energy yield will be 30 ATP molecules per molecule of glucose.
Since ATP is needed for most of the biosynthetic pathways, it follows that a higher ATP
yield translates to a higher cell mass yield. Thus, respiratory pathway will result in
higher cell mass yield. For a given substrate uptake rate this is equivalent to a higher
specific growth rate. These considerations along with postulate P3a lead to the
following result.
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Figure 5.2 Schematic of respiratory and fermentative fluxes.
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' P3b. The objective of the cell is to maximize the flux through the respiratory pathway.
( Still some questions remain unanswered. If respiratory pathway is more efficient, why
doesn’t the cell, as an optimal strategist, always use respiratory pathway? At higher
glucose concentrations the cell uses fermentative pathway which results in lower cell
yield. To explain this apparent dilemma, one can observe that the cell needs many
enzymes, cofactors and other biomolecules for sustaining the TCA cycle and electron
transport chain. It is entirely possible that at high enough respiratory fluxes one or more
links in the respiratory pathway becomes saturated. Similar saturation behavior is
expected for glucose uptake rate. This leads us to the next postulate.

P4. The respiratory pathway gets saturated at glucose levels lower than those
required for saturating glucose uptake rate. Also the saturated respiratory flux is
less than the saturated glucose uptake rate.

Fig. (5.3) shows a possible functional dependence that can give rise to such behavior.
Now if at high glucose fluxes the respiratory pathway is saturated, the only way the cell
can satisfy postulate P3a is by diverting the remaining pyruvate towards ethanol
production.

This provides a clear explanation of the switching between respiratory and
( fermentative metabolism. Thus, at low glucose concentrations the respiratory pathway
is not saturated and all the pyruvate is channeled into the TCA cycle. No ethanol is
formed under these conditions. At higher glucose concentrations, however, the
saturation of respiratory pathway causes a part of pyruvate is converted to ethanol. As
glucose concentration increases the respiratory flux remains almost constant. Thus the
increased glucose uptake rate is reflected in increased fermentative flux leading to
increased ethanol production rate.

Although the model framework explains the qualitative features of yeast cell
growth, specific functional forms have to be used to test its quantitative capability. To
begin a simple Monod-type saturation form is used for both the glucose uptake rate and
the respiratory flux.

k.S

Ry = m, (5.5)
k.S

R, = —Kr_-i'—S—’ (5.6)

where k; is maximum glucose uptake rate, k, is maximum respiratory flux, K, and K,
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are model parameters. In compliance with postulate P4, k, has to be necessarily less
(. ' than k;. The functional form in Eq. (5.6) is valid only when the uptake rate R, is
sufficient to sustain the flux R,. If not,

R, = R = —2 _ G.7)
TP T K+ S '
The fermentative flux is assumed to be given by,
Rf = Rt - Rl' (5'8)

The logical dependence of various fluxes is shown schematically in Fig. (5.4). The
specific growth rate can now be determined by assuming that the cell mass yield is
constant for both the respiratory and fermentative fluxes.

L = R Yg + R Yy (5.9)

At first glance, it might appear that this functional form (Eq. 5.9) is same as the sum of
two Monod-type expressions proposed by Modak (Eq. 5.4). However, this is true only
when the respiratory pathway is saturated. Below critical glucose concentration (see
Fig. 5.3), however, the fermentative flux is zero and the similarity ends. The other key
difference is in the causal relationship between substrate uptake and cell growth.
Modak assumed a functional dependence for specific cell growth rate and calculated the
substrate uptake rate based on a variable yield. The variable yield was assumed to be a
function of the fraction R of glucose fermented. On the contrary, the model proposed
here maintains that substrate uptake rate is the controlling factor. The distribution of
substrate and the resulting variation in cell mass yield are dependent only on the
substrate flux.

Based on the above analysis, the complete set of differential equations needed to
describe fed-batch fermentations can be written down.

S(SV) = FSp - RXV (5.10)

-(%—(XV) UXV = R, Y + RpYe) XV (5.11)
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(“ | ol F | (5.12)

5.3.2 Parameter estimation and results. In the cell growth model there are six
unknown parameters and it is virtually impossible to estimate them using standard least
square type methods. Thus, it is important to restrict the search set by some analysis of
the experimental data.

The derivatives obtained by spline fitting (as discussed in section 5.2) were used
to estimate R; using Eq. (6.10a). There was a lot of scatter in the resulting information.
However, this data served to limit the search of k; (1.0-1.5 (g. glucose)/L) and K, (0.8-
1.2 g/L). The variation of cell yield (calculated by spline fits) with glucose (Fig. 5.1)
gave some more clues. When the respiratory pathway is saturated, the overall cell yield,
as predicted by the model is given by,

k. (K, + S)

Yo = TR 9

Yxr — Yyp) + Yy (5.13)
In the limit of very high glucose concentrations, when the above equation is definitely
valid (within the model framework), the yield becomes independent of glucose
concentration.

k
im Yy = Yo = — (Yo — Yep) + Yy (5.14)

S 00 kt
As noted before (section 5.2) such behavior was actually observed and the limiting yield
Y.. can be assumed to be between 0.3 and 0.4 (od.lit/g). Since Eq. (6.14) is completely

in terms of model parameters, this serves to limit the search set further.

Fig. (5.1) gives us some more information. One can observe that the yield starts
to increase quite drastically below a glucose concentration of 0.8 g/L. This was
interpreted as shift to respiratory metabolism. Thus as a good approximation we can
assume that the critical glucose concentration is 0.8 g/L. Since this is the intersecting
point of the curves R; vs. S and R; vs. S, the parameter search space is further restricted
to values satisfying this condition.

From these observations, a method of choosing the parameters was adopted. To
start with, values of k; and K; were assumed within aécepted ranges. Then k; and K,
were chosen so that the resultant critical glucose concentration is close to 0.8 g/L.. The
yields, which satisfied the limiting condition at high glucose concentration, were then
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assumed. These parameters were then tested by running simulations and comparing the
(,‘ results with experimental data.

To simplify the model testing, a simple simulation program was written using the
IMSL routine IVPAG (a differential equation solver) and the CRC graphics package on
the Engineering Computer Network. It reads the parameter guesses, integrates the
differential equations and displays the plots of resulting state variable profiles along
with observed experimental data. A listing of the simulation program is included in
Appendix E. The final parameter values are listed in Table (5.1). Figs. (5.5-5.15)
compare the results of model simulation with experimental data. Figs. (5.5-5.9) show
the comparison for batch fermentations while Figs. (5.10-5.15) illustrate the results for
fed-batch fermentations.

Egs. (5.10-5.12) were used to simulate cell growth on glucose. An extended
model (described in Appendix F) was used to simulate the ethanol phase results shown
in Figs. (5.5-5.9). The model as developed in the section (5.3.1) can not describe cell
growth using ethanol as substrate. However, as explained before, modeling of
formation and consumption of ethanol is not necessary for optimization purposes. No
special attempt was made to find the best parameters to simulate the growth phase on

( ethanol.

Results for experiments B9-B12 show that the model simulations agree very well
with the experimental results. Because the model is not structured, it is unable to
predict the lag period before starting to grow on glucose. The glucose data of B7 had
some scatter and the model does not perform that well. Model predictions for glucose
consumption rate are a little lower and cell growth rate a little higher than the
experimentally observed values. The agreement is still quite satisfactory.

The real strength of the model, however, lies in the description of glucose and cell
mass profiles for a variety of glucose feeding strategies in fed-batch experiments. In the
first fed-batch experiment (F1), the glucose concentration dropped to zero before the
feed was started. Thus for a short while the yeast cell was synthesizing enzymes needed
for growth on ethanol. This causes structural changes within the cell which can be fully
accounted for only in a structured model. Thus the proposed unstructured model, in
trying to fit the whole glucose profile, does not do a good job of fitting the initial stages
of glucose consumption. The aim in experiment F2 was to keep the glucosq level
constant during the fed-batch period by increasing the glucose feed rate at discrete
( intervals of time. The model does very good job of simulating this behavior.
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Table 5.1 Model parameters

k 125 L/(hr.OD)

K; 095 (g glucose)/L

ke 0.55 L/(hr.OD)

K; 0.05 (g glucose)/L
Yix 0.60 OD/(g glucose)

Yex 0.15 OD/(g glucose)

kp 6.2  units/(g glucose.OD.hr)
kp 0.1 (g glucose)/L.

K; 20 L/(g glucose)

k4 185 /hr
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Figure 5.5 Model simulations for batch experiment B1.
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Figure 5.6 Model simulations for batch experiment B2.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



72

10

bk A 2 2

10

0. D.

AR |

0 L L R I . R
1] 4 8 12 18 20
Time (hours)

Figure 5.7 Model simulations for batch experiment B3.
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Figure 5.8 Model simulations for batch experiment B4.
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Figure 5.9 Model simulations for batch experiment BS5.
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Figure 5.10 Model simulations for fed-batch experiment F1.
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Figure 5.11 Model simulations for fed-batch experiment F2.
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Figure 5.12 Model simulations for fed-batch experiment F3.
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Figure 5.13 Model simulations for fed-batch experiment F4.
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Figure 5.14 Model simulations for fed-batch experiment F5.
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A more complicated feeding sequence is used in experiment F3 to induce a hump
(, : in the glucose profile. Model simulations follow this trend in glucose really well. Near
the end of the fermentation, the model shows slightly lower glucose concentration
values compared to experimental results. During experiment F4, about two hours
before fed-batch was started, an oversight resulted in a sudden pulse of glucose feed
entering the fermentor. This reflects in the glitch in the glucose profile at around 8
hours. In spite of this sudden pulse, the model is able to simulate the data quite well.

In experiments F5 and F6, the glucose feed was varied to cause two humps in the
glucose profile. The model still worics really well, except near the very end of the
fermentation. A possible explanation for this can be given as follows. To explain
dynamic situations with drastic changes in the medium requires the use of structured
models. This is because continuously varying medium composition results in
considerable change in the cell composition. It is quite surprising that despite these
limitations, the proposed unstructured model performs as well as it does. The model
simulations follow the oscillations in glucose really well.

5.4 A mode! for invertase production

5.4.1 Functional form In the literature survey (Chapter 2) it was pointed out that the
process of regulation of SUC2 gene expression is very complex. At least ten genes are
involved and the nature of the interactions between these genes is not clear. Because
the exact mechanism of regulation is unknown, it is impossible to formulate a detailed
mathematical model which takes into account the complete interplay among the genes.
Even if the mechanism were known, the number of parameters in such a detailed
structured model will be quite large. Also such a model would involve so many
differential equations that it would not be amenable to optimization. These
considerations suggest that an empirical approach is most suitable for the purpose at
hand.

The first step in modeling invertase production is to set up a mass balance for
invertase mRNA. The mRNA is generated by transcription of SUC2 gene on the
plasmid pRB58. It is reasonable to assume that this mRNA is subject to decay by
RNAases in the cell. Thus the rate of change of specific mRNA concentration inside the
cell is governed by the following differential equation.

dN

el e LN - 14 (5.15)
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, where N is the concentration of SUC2 mRNA inside the cell, r, is the rate of
(_; . transcription of SUC2 gene, rq4 is the rate of decay of SUC2 mRNA.

The term WN arises because of the dilution effect caused by cell growth.
Elorzaet al.[92] étudied the kinetics of the decay of invertase mRNA in a S. cerevisiae
strain. It was concluded that the decay kinetics is of first-order in mRNA concentration.
The half-life of the invertase mRNA at 37°C was estimated to be 30-35 minutes.
Although the data by Elorza et al. was obtained at a slightly higher temperature, for lack
of better assumption, we assume that at 30°C the decay follows first order kinetics.

qa = -kgN (5.16)

Park et al.[93] modeled the expression of SUC2-s2 from yeast chromosome at 27°C as,

Se 5.08

01+ G17

I, =
Experimental evidence in support of this formulation, however, was not shown.
Moreover, the functional form contains somewhat peculiar exponential dependence on
the glucose concentration. A different formulation of invertase production is hence
desired.

The copy number of the recombinant plasmid pRB58 may be different under
different growth conditions. Since the transcription rate depends on the number of gene
copies inside the cell, this introduces an additional complication in modeling invertase
production. A simplifying assumption is made to circumvent this problem.

P5. The plasmid copy number stays constant throughout the course of the
fermentation.
The plasmid pRB58 is a 2um based plasmid. The 2um plasmid is known to possess a
tight copy number controlling machinery[70]. In view of this fact, postulate P5 appears
reasonable.

The overall effect of the complex regulating machinery is that invertase
production is derepressed at low glucose concentrations. Another important observation
can be made from the fed-batch fermentation results. The specific invertase activity
responds almost instantaneously to the changes in the extracellular glucose
concentration. From modeling viewpoint, this observation eliminates the need for
postulating, say, some repressor molecule(s) to explain the dynamics of regulation of
invertase production.
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P6. The rate of transcription of SUC2 gene is an explicit function of the extracellular
( glucose concentration.

Fig. (5.16) shows the experimentally observed dependence of SIA on glucose levels.
The data points represent the results of all the fed-batch fermentations. Despite the
scatter, it supports the theory that invertase levels are tightly controlled by glucose
concentration. The functional form chosen to express this dependence is of simple
substrate-inhibition form.

k S

n = 5.18
POK + S+ K S ©19

form is To determine the rate of invertase production, it is postulated that the rate of
transcription is the rate controlling step. The translation step is assumed to be at a
pseudosteady state. If the rate of translation is considered to be directly proportional to
the mRNA concentration, we can write

—g- = KyasN = kP = 0, (5.19)

where P is specific invertase activity. The enzyme is assumed to decay in a first-order
manner. Combining Eg. (5.15, 5.16, 5.18, 5.19) results in a simple expression for the
variation of total invertase activity with respect to time.

dPXV _ k S
dt K, + S + K; §?

- ka P XV (5.20)

5.4.2 Parameter estimation and results: In Eq.(5.20) there are four unknown
parameters. The data of Elorza er al was obtained using a different medium and at a
different temperature. Thus the value of the mRNA decay constant they reported (about
1.3-1.4 hr™!) can be used only as an order of magnitude estimate. The parameters were
determined by a trial and error procedure to provide the best fit to the experimental
results. Invertase assay cannot give accurate values for optical densities below 0.4.
Thus the experimental data does not give any idea about the specific invertase activity
during the first few hours of fermentation. For simulation purposes, the initial time was
chosen as the time for the first invertase data point. The initial value for integration of
Eq. (5.20) is the SIA for this data point. The values of model parameters used for
simulation are listed in Table (5.1). Figs. (5.10-5.15) compare the results of model
simulation with experimental data.
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In the first fed-batch experiment (F1), the specific invertase activity stayed almost
(_v: constant after the cells were exposed to a brief period of zero glucose concentration. To
accurately predict the effects of this shock requires the use of structured models.
However, model P still does a satisfactory job of duplicating the experimental behavior.
The invertase activity does not stay constant as cbserved experimentally. Also at the
end of the fermentation model simulation shows much lower SIA than that observed
experimentally. However, the abrupt increase in SIA indicates that the discrepancy is
more likely due to an experimental error than because of model inadequacy. The
second fed-batch experiment (F2) is relatively simple to model because the glucose
level during the fed-batch period of the fermentation stays relatively constant. The
simulation shows a corresponding constant SIA in agreement with the experiment.

In experiment F3, the model shows a slightly lower glucose levels compared to
experimental results for the last two data points. At such low glucose concentrations,
SIA is very sensitive to glucose levels. Thus a slight discrepancy in the glucose level
translates into a relatively higher discrepancy in the SIA. The model predicts a higher
SIA at the end of the fermentation. The agreement is really good for the previous data
points though. Similar considerations apply to experiment F4, in which the model
shows slightly higher glucose concentrations near the end of the fermentation. This
causes a corresponding decrease in the SIA values. The agreement between the model
and the experiments is still satisfactory.

The glucose profiles in experiments F5 and F6 contain two humps. This results in
two depressions in the SIA profiles. The model does a good job of predicting these
variations in SIA. In these experiments also, the success in simulating the SIA profiles
is closely related to the goodness of the glucose profile fit. ’

5.5 Summary

The final objective of the research (optimization) severely restricts the
dimensionality of the mathematical model to be used for describing experimental data.
On the other hand certain key features of the system should not be ignored. A simple
model consisting of four differential equations is developed to describe fed-batch
fermentations. The cell mass yield was found to decrease with an increase in the
glucose concentration in the medium. To explain this phenomenon a goal-oriented
approach is used. It is assumed that the objective of the multitude of reactions within
the cell is to maximize the cell growth rate. This objective is equivalent to maximizing
the flux through the respiratory pathway, it being the most energy efficient. Based on
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. this assumption a simple expression for cell yield was derived. The model so derived
(_, agrees with the experimental data quite well. To describe invertase production kinetics,
a substrate-inhibition form was used. Invertase mRNA was assumed to decay in a linear
first-order manner. This functional form does a good job of simulating the
experimentally observed behavior.

At low glucose concentrations the invertase activity is very sensitive to the
glucose levels. Thus accurately predicting the glucose consumption rate is the key to
successfully model invertase production. It is possible that a detailed model involving
some internal components of the cell would do a better job at describing the observed
glucose profiles. However, for the purpose at hand the model proposed here is more
than satisfactory.
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\

6. OPTIMIZATION: A CONJﬁ GATE GRADIENT APPROACH

6.1 Introduction

In the previous chapter a mathematical model was developed to explain the kinetics
of cell growth and product formation. This model forms the basis for determining the
optimal glucose feed rate profile to minimize some performance index (as yet
unspecified). Before proceeding with optimization of this system though, we will
digress to develop and validate a numerical algorithm for optimization of singular
systems.

The problem of determining the best feed rate in a typical fed-batch fermentation
can be stated as a problem in the calculus of variations.

l;l(lt!)l II = n(x(te) (6.1)

In the above equation II represents a suitably chosen performance index (sometimes
referred as the objective function), X(t¢) is the value of the state vector x at final time t;
(when fermentation is over). The performance index is to be optimized by choosing
different feeding strategies F(t). Typically, in fed-batch optimization problems, the
substrate feed rate is constrained as,

0 = Fpin € F < Foux 6.2)

where Fj.x and Fy;, represent the maximum and minimum allowed feed rates,
respectively. The state variables satisfy the following differential equations.

X = ax) + bx)F, x(0) = xo, (6.3)

where a and b are vector functions of the state vector X, xo represents the vector of
specified initial conditions.
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Pontryagin’s minimum principle[36] states that the above minimization problem
Q - is equivalent to minimization of the Hamiltonian defined as,

H = AT[ax) + b®x)] . 6.4)

where the adjoint (or costate) vector, A(t), is defined by

; oH
A= — > (6.5)
with the specified terminal conditions given by
oIl
it) = =——, i= 1,2, ---,n 6.6
Ai(te) (D) (6.6)

Here n represents the dimension of the system of differential Egs. (6.3). Eqs. (6.6) are
valid only if the final values of all the state variables are unconstrained. If the final
value of a state variable is fixed, corresponding costate variable becomes unconstrained
at the final time.

This is a singular control problem, so called because the control variable
(substrate feed rate) appears linearly in the Hamiltonian so that the minimum principle
of Pontryagin[36] does not provide a solution for the problem. The necessary
conditions for optimality of singular arcs have been studied by Jacobson et al.[94-97]
and discussed by Bryson and Ho[37].

The linear dependence of the Hamiltonian on feed rate enables one to determine
the optimal feed rate by examining the coefficient of F, AT b = ¢. If ¢ is identically
zero over a finite time interval, the minimum principle fails to give F(t) during this
interval. Such intervals are called singular intervals and the corresponding feed rates,
singular feed rates, F;. Thus,

Finax o < 0
F@t) = { F® 6 =0 (6.7)
Fmin =0 ([) > 0

The singular feed rate can be obtained by observing that during the singular interval ¢ is
identically zero. This means that all its time derivatives must vanish.

2 _ g =12 - (6.8)
dv
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From these equations, the form of singular feed rate can be deduced [50].
F; = F(x,}) 6.9

The singular control theory just tells us that the optimal control arcs can be either on the
boundary or singular. It does not give the sequence and exact duration of these arcs.
Numerical methods are hence necessary to further elucidate the form of the optimal
control.

6.2 Previous optimization attempts

Modak et al.[1] developed a computational algorithm for solving optimal control
problems of dimension less than five. They argued that in some cases a physical insight
into the problem can reveal the sequence of maximum, minimum and singular arcs. For
fed-batch fermentations, they proposed the following conjecture: the feed flow rate must
be manipulated to first grow the cells optimally and then to force the cells to produce the
desired product optimally. For all the cases studied, this conjecture leads to one of the
two possible optimal sequences: maximum-zero-singular-zero or zero-maximum-
singular-zero. Of course, degenerate forms of the above general sequences are also
likely?. Even though the optimal sequence can be deduced, the problem of determining
the duration of each of the arcs is a difficult boundary value problem. This is because
determination of optimal control necessitates the integration of state and adjoint
differential equations. This requires guessing either the initial conditions on the adjoint
variables, or the final conditions on the state variables. Modak er al. modified this two-
point boundary value problem to make it easier to solve numerically. Their approach
requires the use of only two adjoint variables. Also these variables need to be integrated
from the start of the singular period rather than the initial ime. They proposed an
algorithm which essentially iterates over four variables, viz. the durations of the first
two control arcs (maximum-minimum or minimum-maximum) and the values of two
adjoint variables at the start of the singular period. The duration of the singular period
can be determined by invoking the final condition

t A degenerate form is a sequence in which one or more of the parts of the general sequence are
missing, e.g. maximum-singular-zero is a possible degenerate form.
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V(te) = V¢ (6.10)

(— v Thus the singular period is over when the reactor is full. The final time, if free, can be
determined by using an appropriate final condition[50].

Thus the complex boundary value problem is reduced to a four-dimensional
iteration problem. Modak et al. applied this technique to a variety of systems[1,98].
The major limitation of this technique, however, is that it is applicable only for systems
which can be described by less than five differential equations. For higher dimensional
systems two difficulties arise. First, the number of possible switches in the control
profile increases’. This increases the possible permutations of maximum, minimum and
singular arcs. In fact more than one singular arcs are possible. This makes it very
difficult, if not impossible, to guess the sequence of the control arcs a priori. Second, it
increases the number of variables to be guessed.

Modak and Lim[2] realized these limitations and proposed a transformation
approach. The original singular problem was converted to a nonsingular problem by
proper choice of a new set of state variables and the use of culture volume as the control
variable instead of the feed rate. This new problem can now be solved by gradient
techniques commonly used for nonsingular problems. In principle, this approach is very
general and can be used to optimize systems of any dimension. However, this technique
suffers from numerical difficulties for high dimensional systems. In fact, for systems
with dimension greater than three, no results have been reported using this method.
Another difficulty arises at the junction of two control arcs. Modak’s results for three
dimensional systems indicate a deviation of the final converged profile from the optimal
profile, calculated by singular control theory, near the switching time between singular
and batch period. Also the approach shows convergence problems at the beginning and
end of singular arcs, during which the constraints on the control variable and its time
derivative are active. There can be two possible reasons for these difficulties. An
inequality constraint on the control variable can results in a discontinuity in the adjoint
variables[37]. Also there is no satisfactory way, in the optimal control theory, to
incorporate constraints on the time derivative of the control variable. The gradient

t For linear systems, with coefficients a and b independent of the state variables, the number of
switches equals (n — 1). In general, no such formula exists for nonlinear systems.
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: method used by Modak ignores both these factors and thus forces the control trajectory
(_ i to be suboptimal.

6.3 A conjugate gradient approach

A conjugate gradient method based on the Fletcher-Reeves method for function
extremization was proposed by Lasdon et al.[99]. The method was able to handle
problems with unconstrained problems. Penalty functions were added to the
performance index when terminal state variable constraints were present. It was proved
that the directions in function space generate by the conjugate gradient method are such
that the objective function is decreased at each step. Numerically, the conjugate
gradient technique was found to converge much better, with little additional
computation per iteration, than steepest descent technique for linear-quadratic
problems’. However, the usefulness of the method was demonstrated only for
nonsingular systems.

Pagurek and Woodsidé[lOO] extended this technique to handle directly saturation
constraints on the control variables. Terminal constraints were still handled by means
of a quadratic penalty function. A second algorithm, which uses second order terms, but
requires more computation, was also proposed. This algorithm showed substantially
improved convergence in some examples. Using a simple singular system as an
example, it was shown that the conjugate gradient algorithm can work for singular
systems also. The applicability of this technique to higher dimensional singular systems
was not tested.

Stutts[54] studied the applicability of conjugate gradient method to solve singular
fed-batch optimization problems. The first problem he solved involved the
determination of the optimal feed rate for maximum productivity of a methylotroph to
be used as a source of a single cell protein (SCP). This is a three dimensional singular
problem and the method performed really well. The switching times between different
control arcs were not clearly defined as a result of the incapability of the conjugate
gradient algorithm of putting corners into the solution for F. A more complex (four-

T The term refers to systems governed by linear state equations and the performance index contains a
quadratic term in the control variable.
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. dimensional singular) problem—maximizing penicillin productivity using Bajpai and
(‘ ‘ Reuf’s model[101]—was then attempted. It is difficult to interpret the optimal feed rate
profile he obtained. There are no regions of maximum or minimum flow rates, but there
are a few regions of constant intermediate flow rate. Also, the method was very
sensitive to the initial guesses of the feed rate. The third problem attempted by Stutts
was optimization of a six-dimensional model for penicillin fermentation. Again the
solution did not indicate any periods of maximum or minimum flow rate. Stutts
performed his calculations on a VAX 11/780 which is considerably slower than the
modern day computers. For example, for the four-dimensional penicillin model
optimization it took about about 5 minutes of CPU time for each iteration. A simple test
on an Ardent Titan-P3 machine indicated that the CPU time required would be about
2-3 seconds/iteration. Thus, there is an incentive to carry on the computations for larger
number of iterations to test the validity of this algorithm.

6.4 Algorithm

Although Pagurek and Woodside obtained better results using a second order
conjugate gradient method for some systems, it was felt that this method required
determination of a lot of complex derivatives. Also the memory requirements are quite
high compared to the simple first order conjugate gradient method. The later method is
used exclusively in this numerical study.

In conjugate gradient method, it is not easy to deal with equality constraints on
the final values of state variables in a direct manner. The hard constraint on final
volume, normally imposed when solving a singular control problem using the method of
Modak et al, is converted to a soft constraint by modifying the objective function by
adding a penalty function.

rg(iéx I = nx(t) + K(V(t) — Vp)? (6.11)

Here V(t¢) is the final volume obtained by simulation, while V; is the desired final
volume. This method does not guarantee that the optimal profile would result in the
desired value for the final volume. However, by choosing a proper value for the

constant K, the difference I V() — Ve l can be made arbitrarily small. One need not

add any penalty functions for control variable constraints of the type given by Eq. (6.2).
The technique used in this study can take care of these constraints in a simple and direct
manner. The algorithm consists of the following steps.
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1. The procedure begins with an initial guess for the feed rate profile Fo(t). This
( ' profile may contain boundary arcs. At the same time a function w is initialized,

0, forte W
wo®) = {1, elsewhere ©.12)

Here W represents the control boundary region.
2. 'The state differential Eqgs. (6.3) are integrated using the guessed feed rate profile.
3. The adjoint Egs. (6.5) are integrated using Eqs. (6.6) as final conditions.

4. Initial gradient direction is calculated using the following equation.

So = 8 = g—;l (6.13)

5. The control profile for next iteration is computed as
F, = Fy — opsowp ' (6.14)

where 0y is chosen using a one dimensional search to minimize IT. However,

before II is computed in each trial of the o-search, F; is truncated at the upper
( and lower bounds for the feed rate (6.2). When the best oy is determined, the

function wq(t) is updated to w; (t) using the procedure shown in Eq. (6.12).

6. The state and adjoint equations are integrated again as before using the improved
feed rate profile.

7. The following quantities are evaluated.

I
L= [wgoa (6.15)
0

L
Bi = — (6.16)
fisg
Here i refers to the iteration number. If B turns out to be negative, a steepest
descent step was taken by setting it to zero.
8. The conjugate gradient direction is determined using

S = g + Bisia 6.17)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



94

9. The control profile is modified by an a-search as before.
Uil = U — O S W (6.18)
10. Steps 6-9 are repeated till the algorithm converges.

The procedure as outlined above is quite straightforward. The direction g; is the one of
steepest descent, while s; represents a direction conjugate to the direction of steepest
descent. Thus, in essence, the a-search determines the best linear combination of these
two conjugate directions. If f; is set to zero, one recovers the steepest descent method.

Some comments are in order here. The algorithm is somewhat sensitive to the
initial control profile chosen. Some initial guesses can cause the procedure to diverge,
ie. the performance index keeps increasing with each iteration. For the three-
dimensional system studied, the technique converged for all the chosen initial guesses.
For more complex systems one has to more careful though. An important consideration
is that the guessed feed rate profile should satisfy the final condition on volume. This
assures that the penalty function term in Eq. 6.11 is zero at the beginning. If this term is
very large compared to m(x(tf)), the algorithm concentrates more on decreasing the
penalty function, without much consideration towards increasing m. This causes the
control profile to go farther away from the optimum.

It was found that after every few iterations, the conjugate gradient technique tends
to stagnate. Under these circumstances the same control profile gets repeated after two
or three iterations. After some trial and error, it was realized that, if the method is
reinitialized by setting B; to zero for one iteration, it starts working again. As pointed
out before, this changes the method to a steepest descent method for one iteration. This
reinitialization was, therefore, incorporated into the general algorithm. The optimal
number of iterations, before reinitialization, were found to be between 15 and 30
depending on the system.

To implement the a-search, the maximum of the absolute value of the gradient
s(t) for non-boundary control arcs was determined after each iteration. Based on this
maximum, Spmay (t), @ parameter 8 was calculated.

AF

S ® (6.19)

Here AF represents the maximum allowed change in the feed rate profile after each
iteration. The performance index, I1, is then determined for o values equal to 8/2 and 8.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



95

The best o is then determined by quadratic interpolation. The parameter AF needs to be
varied as the number of iterations increases. At the beginning AF is kept high to make
the feed profile move towards the optimum very fast. As the optimum approaches, a
high AF value causes the algorithm to overshoot the optimum. In this numerical study,
AF was progressively decreased as optimum was approached.

An important feature of this method is that it does not need any variable
transformation to convert the singular problem into a nonsingular one. Thus the
difficulties associated with differential constraints on control variables, present in the
transformation approach, are completely avoided. The convergence of this method near
the optimum is somewhat slow, but the only measure needed, to ensure decrease in
performance index at each iteration, is a smaller step size AF.

Stutts[54] continuously changed the value of the parameter K, which determines
the degree of softness, so to speak, of the volume constraint, with increase in the
number of iterations. In this work, however, K was kept constant throughout. the
optimization. It was felt that it is not very important to keep the final volume exactly at
the required value. In all the calculations, the difference between the calculated final
volume and the desired final volume was not more than 2%.

6.5 Optimization of a simple 3-dimensional model

6.5.1 Formulation To test the effectiveness of the conjugate gradient method, an
optimization of a simple 3-dimensional model was attempted. This system is one of the
few solved by Modak and Lim{2] by a variable transformation approach. The
governing equations for this model can be written as,

di(XV) = uxv (6.20)
t

d con _ e _ HXV
Lsv) = Fsp - XV (6.21)
d —

d_t(v) = (6.22)

The objective is to maximize the amount of cell mass after a fixed final time t;.

minll = ~XV), + K (V) - Vi)? (6.23)
t
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, The specific growth rate is substrate inhibited, the maximum occurring at
( S = 0.24g/L and the cell yield is assumed to be constant.

u(s) = S . Y = 05 (6.24)

003 + S + 0.582

6.5.2 Results The problem has been solved by singular control theory[46] and it is
known that the optimal singular feed rate maintains the substrate concentration constant
at 0.24 g/L, thus maintaining the specific growth rate at its maximum value. The initial
conditions and other parameters used for optimization are listed in Table (6.1).

Three different cases were studied. In Case A, the initial substrate concentration
was set to zero. According to singular control theory, the optimum feed rate profile
should consist of an initial period of maximum feed rate followed by singular and batch
periods. This operating policy brings the substrate concentration to 0.24 g/L and
maintains it there till the end of the fermentation. When the fermentor is full, there is a
very short batch period. Results of using conjugate gradient technique are shown in
Figs. (6.1-6.4). Figure (6.1) shows the improvement in the guessed feed rate profiles as
a function of the number of iterations. The initial guess is a constant feed rate. After 83
iterations the shape of the feed rate profile is almost right, although there are many
bumps. It took considerable time to get a smooth profile. The variation of performance
index with iterations is depicted in Fig. (6.2). After about 200 iterations the increase in
the performance index is quite small. However, the feed rate profile does change
significantly. Thus the final profile is sharper, at the transition from maximum to
singular, and from singular to batch periods, than the profile after 534 iterations.

The final control and state variable profiles obtained after convergence are shown
in Fig. (6.3). As expected the substrate concentration is kept constant at 0.24 g/L. As
predicted by the singular control theory, there is a short initial period of maximum feed
rate. The optimality of the converged feed profile can be established by looking at the
gradient of the Hamiltonian (0H/JF). The gradient is zero over the singular region,
positive during the batch period, and negative during the initial period of maximum feed
rate. This proves that the feed rate profile is optimal.

If a higher value of K is used, it is expected that the final volume would be closer
to the desired value. This was tested using K = 1000 (Case B). The final converged
feed rate profile in Case A was chosen as the initial guess for Case B. The results are
shown in Fig. (6.5-6.6). The converged feed rate profiles in these two cases are not
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Figure 6.1 Three-dimensional model (Case A): Variation of feed rate profiles with
number of iterations.
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Figure 6.2 Three-dimensional model (Case A): Variation of performance index with
number of iterations.
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Figure 6.4 Three-dimensional model (Case A): Gradient of the Hamiltonian (GH/0F).
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Table 6.1 Parameters for optimization of Modak’s three-dimensional model

Case A B C

XV, g 1.0 1.0 1.0
SV, g 0.0 0.0 1.0
Vo, L 1.0 1.0 1.0
Vi, L 5.0 5.0 5.0
Sk, g/L 10.0 10.0 10.0
Fpax, L/hr 4.0 4.0 4.0
tg, hr 3.8 3.8 3.8
K 10 1000 10
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Figure 6.5 Three-dimensional model (Case B): Optimal feed rate and state variable
trajectories.
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Figure 6.6 Three-dimensional model (Case B): Gradient of the Hamiltonian (dH/dF).
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Table 6.2 Parameters used for optimization of DiBiasio’s model.

Mmax, /hr 0.43
Ks, gL 1.1
Model Km, gL 0.21
P 0.14
parameters
Ys, (g. cell)/(mg. phosphate) 0.13
Ywm, (g. cell)/(g.metabolite) 0.03
k (g. metabolite)/(g. cell) 13.0
~ Case A B
X*V)o. g 0.1 0.1
X V), g 0.01 0.01
(SV)o, g 0.1 0.1
Optimization | 1y o 0.05 0.5
parameters Vo, L 1.0 1.0
Vs, L 5.0 5.0
Sg, mg/L 6.8 6.8
Fppax, L/hr 0.5 0.5
tg, hr 20.0 20.0

106
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. much different. The gradient is a little smoother in Case B. The final volume was
{ indeed closer to the desired value (5.002 in Case B compared to 5.056 L in Case A).

The only difference between Cases A and C is, that in Case C, the initial substrate
concentration was chosen to be 1.0 g/L.. Fig. (6.7-6.8) show the final converged profiles.
As expected, there is an initial batch period which brings the substrate concentration
down to 0.24 g/L. It is followed by a singular period, which maintains the glucose
concentration constant. Near the end of the fermentation the feed profile deviates a little
from the optimum. The substrate concentration shows a corresponding change from the
optimal value. The gradient of the Hamiltonian shows expected trends (Fig. 6.8).

6.6 Optimization of DiBiasio’s model

6.6.1 Formulation Encouraged by the success of the optimization technique with a
simple three-dimensional system, the technique was tried on two complex five-
dimensional systems. First test system was a model developed by Sardonini and
DiBiasio[3] to explain the growth kinetics of a plasmid-carrying strain of S. cerevisiae.
It was noted that under phosphate-limited growth conditions in a selective medium, the
fraction of plasmid-free cell population was much larger than expected. This
phenomenon was explained by assuming that the plasmid-free cells could grow in the
selective medium by using a metabolite, that is excreted into the medium by the
plasmid-carrying strain, for growth. The model equations describing fed-batch
fermentations are given below. |

%(X*V) = (- DXV (6.25)
%(X‘V) = PLrX'V + LXKV (6.26)
%(sv) = - “*;(;V - p‘f{:v + FSg (6.27)
Lo = kuxtv- ”‘Y’; M (6.28)

% - F (6.29)
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‘ Figure 6.9 Optimization of DiBiasio’s model (Case A): Feed rate, volume and gradient
of the Hamiltonian.
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Figure 6.10 Optimization of DiBiasio’s model (Case A): Cell mass, substrate and
metabolite.
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Figure 6.11 Optimization of DiBiasio’s model (Case A): Specific growth rates of
plasmid-containing and plasmid-free cells.
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Figure 6.12 Optimization of DiBiasio’s model (Case B): Feed rate, volume and gradient
of the Hamiltonian.
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Figure 6.14 Optimization of DiBiasio’s model (Case B): Specific growth rates of
plasmid-containing and plasmid-free cells.
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Q where

HmaxS M

A A L v 73 ©.30)
In the above equations p represents the probability of plasmid loss, |; represent the
specific growth rates, X* and X~ represent the cell mass concentration for the two types
of cells, and Ys and Yy are yield coefficients. The growth of plasmid-carrying cells is
limited by a single limiting substrate (S), and was described using a Monod form.
Growth of plasmid-free cells is limited by this substrate as well as an additional
metabolite (M). The rate of metabolite generation by plasmid-carrying cells was
described by assuming it to be associated with cell growth.

For this system a suitable performance index can be to maximize the amount of
plasmid-containing cells at the end of fermentation. This might be the case, for
example, if plasmid-containing cells constitutively produce an intracellular product.

1}:18111 = —(X*V), + K(V(t) - Vp? (6.31)
t
6.6.2 Results This optimization problem was solved using the conjugate gradient
technique outlined before. The parameters used for optimization are listed in
Table (6.2). Two different cases were studied. In Case B, the concentration of the
metabolite M is assumed to be ten times higher than that in Case A. Other than that, the
cases are identical. Results of optimization are shown in Figs. (6.9-6.14).

In both cases, the optimal feed rate profile consists of an initial batch period,
followed by a period of maximum feed rate and a batch period at the end. No singular
period was observed. Although the final time was chosen to be 20 hours, the cells stop
growing at around 15 hours. Thus, for any final time between 15 and 20 hours, the
optimal feed rate profiles should be identical. The gradient of the Hamiltonian shows
expected trends, which confirm the optimality of the converged feed rate profile.

As the substrate concentration increases, the specific growth rate of plasmid-
containing cells increases. However, this results in an increase in the rate of production
of the metabolite M, which increases the specific growth rate of plasmid-free cells.
Figs. (6.11) and (6.14) illustrate this phenomenon. An increase in the initial
concentration of the metabolite (Case B) did not have much effect on the feed rate
profiles.
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( 6.7 Optimization of invertase production

After successful application of the conjugate gradient method to two different
fermentation models of differing complexity, we return to the main objective of this
research: optimization of invertase production from recombinant yeast fermentations.

6.7.1 Formulation The model equations, developed in Chapter 4, can be rewritten
here for ready reference.

d
F&EV = XV = R Yy + Re Y XV (6.32)
d
V) = FSp - RXV (6.33)
d pxv kS kg P| XV 6.34
TPV = I v s+ kS ©39
‘;_‘t’ = F (6.35)

The aim of optimization if to maximize the total invertase activity at the end of the
fermentation. The final time t; is assumed to be fixed.

rlr:l(isl II = —(PXV), + K(V(tp) — V¢)? (6.36)
This is a four-dimensional singular control problem, and was solved using the conjugate
gradient technique, described in detail in the preceding sections.

6.7.2 Results Three distinct cases were considered to study the effect of changes in the
initial glucose concentration, allowed maximum feed rate, and the specified final time.
The parameters used for optimization are listed in Table (6.3). The optimal state and
control profiles are shown in Figs. (6.15-26).

In Case A, the initial glucose concentration was chosen to be 2 g/L. The optimal
feed rate contains an initial maximum feed rate, which increases the glucose
concentration to more than 5 g/L, thus increasing the specific cell growth rate. At these
glucose levels, invertase production is repressed and the specific invertase activity is
( : almost constant. This period is followed by a batch period, in which the glucose
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( Table 6.3 Parameters used for optimization of invertase production
Case A B C
X(), 0D 015 0.5 0.15
S(0), g/lL 2.0 2.0 5.0
P(0), (units/OD.L) 0.1 0.1 0.1
V(),L 0.6 06 06
Vg, L 1.2 1.2 1.2
Sg, g/L 10,0 100 10.0
Frax, L/hr 0.6 0.2 0.6
t, hr 100 100 9,10,12,14

Table 6.4 Productivity vs. final time (Case C)

Final time, hr Invertase productivity, units/hr
9.0 0.3560
10.0 0.6157
12.0 0.7032
14.0 0.6057
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concentration slowly drops, resulting in a gradual increase in the specific invertase
( activity. During the singular period, the glucose concentration stays almost constant
around 0.225 g/L.. Invertase production rate is very high during this singular phase. A
small batch period follows, when the fermentor is full and the singular feed rate can no
longer be implemented. Thus the optimal feed rate profile clearly results in an initial
high cell growth rate phase followed by a high invertase production rate phase.

The effect of change in the maximum allowed feed rate was studied by decreasing
its value to 0.2 L/hr (Case B). The only effect was a change in the duration of the
maximum, batch and singular periods. The initial maximum feed rate period was longer
to allow high enough glucose concentration to maximize cell growth at the beginning of
the fermentation. Again the singular period maintains the glucose concentration at
around 0.225 g/L.

In all the cases discussed in this chapter, the final time was always kept fixed. It
is not easy to incorporate variable final time in the conjugate gradient approach in a
simple and direct manner. Thus to determine the optimum final time for maximum
invertase productivity, it is necessary to carry out the optimization at different fixed final
. times (Case C). The initial glucose concentration was chosen to be 5 g/L.. At very short
( final times (9 hr.), no singular feed rate period was observed. A possible explanation for
this can be given. Because of the final volume constraint, the fermentor has to be
completely filled during a shorter time. Thus allowing a singular feed rate will result in
a severe penalty in the performance index, because the actual final volume will be much
lower than the desired value. Because of the absence of singular period, the invertase
productivity is very low.

At a higher value of final time (10 hr.), the feed rate profile is very similar to those
in Cases A and B. Presence of singular period results in an increased invertase
productivity. A still higher invertase productivity is obtained at a final time of 12 hr. A
distinctive feature of the singular period here is that the glucose concentration is initially
constant at a little high value. After about three hours of singular feed rate, the glucose
value drops to 0.225 g/L and stays constant there.

As the final time is increased further (14 hr), the invertase productivity drops
because of another phenomenon. In this case, the final time is so long that the singular
period cannot maintain the glucose concentration at its optimum value of about
0.225 g/L. during the initial stages. The optimal policy results in a period in which the
( glucose concentration is very low (about 0.02 g/L)). This results in a sharp drop in
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Figure 6.15 Optimization of invertase production (Case A): Optimal flow rate and
gradient of the Hamiltonian.
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Figure 6.17 Optimization of invertase production (Case B): Optimal flow rate and
gradient of the Hamiltonian.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



121

(-]

Glucose (gn)
w
1

Time (hours)

1.0~

0.8~

0.6

0.4

Specific Inventase Activity {units..OD)

0.2

0.0

Time (hours)

Figure 6.18 Optimization of invertase production (Case B): Optimal substrate and
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gradient of the Hamiltonian (Final time =9 hr.)
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Figure 6.21 Optimization of invertase production (Case C): Optimal flow rate and
gradient of the Hamiltonian (Final time = 10 hr.)
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Figure 6.22 Optimization of invertase production (Case C): Optimal substrate and
invertase concentration (Final time = 10 hr.)
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invertase production rate. The specific invertase activity starts decreasing for a short
(; while. This results in a low invertase productivity.

6.8 Conclusions

A first-order conjugate gradient technique was demonstrated to be effective in
solving a variety of optimization problems. Although the convergence of this technique
is somewhat slow when the optimum is approached, the method converged to the
correct optimal profile. The correctness of the optimal profile can be judged by the
variation in the gradient of the Hamiltonian. The gradient was found to be zero during
singular periods, and had appropriate sign on boundary control arcs.

A boundary condition iteration method, previously developed by Modak, fails for
high dimensional systems, because of two reasons. First, it becomes more and more
difficult to guess the control arc sequence as the system dimension increases. Second,
more adjoint variables need to be guessed at the junction points. The conjugate
gradient, on the other hand, does not need a priori guesses of control arc sequences.
After a simple initial guess of the control variable profile, the method proceeds in a
smooth manner.

( One of the attractive features of this method is its simplicity—the method requires

only a little more computation than the steepest descent approach. The presence of
boundary arcs in the control profile actually results in a slightly reduced computation
time per iteration.

The method proposed here does not need any variable transformation to convert
the singular problem to a nonsingular one. This is an advantage, because the variable
transformations result in constraints on the rate of change of control variable.
Appropriate theory to deal with such constraints is not currently available.
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7. OPTIMIZATION OF ANAEROBIC YEAST FERMENTATIONS

7.1 Introduction

Pyun et al.[102] performed continuous culture experiments using Saccharomyces
cerevisiae SEY2102 containing the plasmid pRB58. They used selective medium to
restrict the growth of plasmid-free cells. It was found that under anaerobic conditions
specific invertase activity obtained was 18-times that under aerobic conditions. Also the
specific invertase activity in the fermentor indicated a maximum as a function of the
dilution rate. These results suggest that an optimum operating policy for maximizing
invertase productivity can be determined. The aim of this study is to determine the
optimum glucose feed rate to maximize invertase productivity in a fed-batch mode of
operation. To achieve this objective a mathematical model was developed to describe
anaerobic fermentation kinetics.

7.2 Model development

Even though selective medium was used, continuous fermentations show that a
significant (10-17%) fraction of cells had lost the recombinant plasmid. However,
considering the experimental errors involved in determining fraction of plasmid-
containing cells, the composition of the cell population can be considered to be fairly
constant over the dilution rates used. For modeling purposes, the cell mass
concentration was described by a single variable X (g. cells/lit). Thus cell mass balance
can be written as

dX —1 —
5 = - DX (7.1)

Specific growth rate p is assumed to follow the Monod form.

HmaxS

_— 7.2
Ks + S 7.2)
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: Since at steady state the specific growth rate equals the dilution rate, a plot of dilution
(. rate vs. glucose concentration was used to estimate the growth parameters (Fig. 7.1).
The parameters are listed in Table (7.1). Since under aerobic conditions growth is

completely fermentative it is reasonable to assume constant cell yield.

s _ K -
T =-S5 +tDEE-9 (7.3)

A balance on the amount of invertase in the reactor results in
d
E;(PX) = X - DPX (7.4)

where P is specific invertase activity (KU/g.cell) and = is specific invertase formation
rate. From the steady state results ® can be determined as a function of glucose
concentration in the fermentor. The results are plotted in Fig. (7.2). At high glucose
concentrations invertase production is repressed. The rate of invertase production also
goes down as the glucose concentration drops below a critical value. Any model for
this system must be able to describe this bell-shaped dependence.

Sentandreu etal. have studied kinetics of invertase production in S.

( ' cerevisiae[103]. Their data indicate that rate of translation of invertase mRNA can be

" described by saturation kinetics. If P is the specific concentration of invertase, a balance
on invertase for a batch operation gives

dp _ k!ranslN

T - Kog+ N W+ DR @)

where N is intracellular invertase mRNA concentration. Degradation of invertase is
assumed to be negligible. Elorza et al.[92] have investigated the stability of invertase
mRNA. They found that the decay rate can be described by a first-order kinetics. Thus
a balance on mRNA can be written as

dN

5 = - W+ D+ k)N (7.6)

The rate of transcription of SUC2 gene, ry, decreases with an increase in the glucose
concentration in the media. A simple way to describe this will be,

Kiransc
In = m a7

In the above analysis we have assumed that both kyang and kianse are independent of the
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(/; Table 7.1 Model parameters

Memax 0.3 /hr

Ks 0.038 g/

Y 0.16 (g. cell)/(g. glucose)

kp 190 KU.(g. glucose)/(g. cell)
KP 0.01 (g. glucose)/hr.L

kyq 1.3 /br

Kq 0.013 g/L.
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cell growth rate. However, a cell needs resources for translation and transcription.
These resources, like the concentration of ribosomes inside the cell, are known to
decrease at low growth rates. Thus it appears reasonable to assume that both Kanse and
Kyans1 are proportional to the specific growth rate p. If we assume pseudo-steady state
for mRNA, equations (5-7) can be combined to give,
. K. 2

" TR PE T @9
The decay constant kg was assumed to be 1.3 hr™! as determined by Elorza et al.[92].
The other two constants in the above expression were determined by fitting the model to
the experimental results. The model is able to describe the experimental data (Fig. 7.3).

7.3 Differences between models for aerobic and anaerobic growth

The model described in the previous section differs in some important respects from
the model developed in Chapter 5. The reason for this is primarily that the model
described here was developed before the aerobic growth model. The functional forms
used in anaerobic growth model were found to be inadequate to describe aerobic
fermentations.

Under aerobic conditions, yeast can use both respiratory and fermentative
metabolism for growth. In fact, the regulation of respiratory and fermentative fluxes,
resulting in variable cell mass yield, forms the backbone of the aerobic growth model.
On the other hand, under anaerobic conditions, yeast, for lack of oxygen, cannot use
respiratory pathway. Since only one growth metabolism is available, it is reasonable to
assume constant cell yield.

Under anaerobic conditions, it was found necessary to assume that the rates of
transcription and translation were dependent on the cell growth rate. No such
assumption was involved in explaining invertase production under aerobic conditions.
A possible reason for this is that the amount of invertase produced under anaerobic
conditions is significantly (18 times) higher than that under aerobic conditions. Thus
the translation and transcription machinery of the yeast cell is under more strain to
supply the necessary ingredients like ribosomes and amino acids. This effect becomes
more prominent because invertase is derepressed at low glucose concentrations, when
the specific growth rate is very low. Thus it is reasonable to assume that at very low
glucose levels the rate of supply of components of translation and transcription
machinery becomes the rate limiting step.
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Figure 7.2 RatcI of invertase production: Comparison between model and experimental
results.
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e The experiments done by Pyun ez al. involved much lower glucose concentrations

(: compared to the aerobic experiments performed during this research. Thus the glucose
repression of invertase production observed at high glucose levels was not that
prominent under the conditions of anaerobic experiments. It was, therefore, not
necessary to incorporate the $2 factor in the denominator of Eq. (7.8).

7.4 Optimization

7.4.1 Problem definition Modak et al. have discussed the general theory of optimal

- control as applied to fermentation processes[50], as well as a computational algorithm
to calculate optimal feed rates for fed-batch fermentations{1]. These studies form the
basis for the numerical results presented in this chapter.

Here we solve the problem of determining the optimal feed rate profile which will
minimize a given performante function in fed-batch mode of operation. First, state
variables are defined as follows.

X, XV
_ X2 | _ SV
= Ixs| T | pxv .9

C <

The differential mass balance equations are

x = f = Y , X(0) = xg (7.10)

The objective is to minimize the performance function IT by varying substrate feed rate,

min IT = x3(t) — etp -(7.11)
F(t)

The final time t¢ is assumed to be free. The final reactor volume and substrate feed rate
are constrained.

V() = Vg, 0 = Fpn £ F(t) < Fou (7.12)
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: This optimization problem falls under the realm of the calculus of variations.
{" Pontryagin’s minimum principle[36] asserts that the Hamiltonian defined below must be
minimized.

Hx, A, F) = ATf = vy + 0F, (7.13)

where

v = (Mp- &2,;' 1 W)X — € 6 = MSp + Ay

The adjoint vector A is defined by

: oH _JI
A= - X’ M) = % (te) (7.14)
As shown by Modak et al[50], for minimizing the Hamiltonian H, the substrate feed rate
F must be given by
Fnax if ¢ <0
Ft) = F; if ¢ = 0; t member [t;, t3] (7.15)

0 if >0

where [t;, t;] is a finite closed interval of time. For the system discussed here, the
singular control F; can be obtained by[50]

1 HXp xR — )
SF - Xy /x4 Y (75”1-1'— K’Ll”) ?

E = (7.16)

where the primes denote differentiation with respect to S.

7.4.2 Computational Procedure Computation of optimum feed rate requires the
solution of the two-point boundary value problem defined by Egs. (7.10) and (7.14) with
the optimal feed rate given by Egs. (7.15) and (7.16). A modification of the procedure
developed by Lim er al.[1] is used here.

As outlined in the previous section, the optimal feed rate can contain only the
maximum, minimum and singular arcs. However, the current theory can not a priori
determine the exact sequence of these arcs. However, an educated guess can be made
based on a conjecture proposed by Modak et al[50]. Using this conjecture the optimal
sequence can be either maximum-minimum-singular-minimum (Type A) or minimum-
( v maximum-singular-minimum (Type B) depending upon the specified initial conditions.
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Thus the problem now reduces to the determination of optimal switching times between
the different arcs. From Eq. (7.16), it is easy to see that the singular feed rate is
independent of the adjoint variables. This observation allows us to completely dispense
with the solution of adjoint equations, thus reducing the computation time considerably.
The numerical procedure is outlined below.

1. Assume a sequence of minimum, maximum and singular arcs.
2. Guess the time of switching t; between minimum and maximum feed rates.

3. Guess the switching time t, between the minimum/maximum and singular feed
rate.

4. Integrate the state differential Egs. (7.10) till the fermentor is full (V = Vp).

5. Integrate the state differential Egs. (7.10) with zero feed rate till the stopping
condition (derived below) is satisfied within a desired tolerance.

6. Store the value of the performance function and return to step (2).

7. The switching times which result in maximum performance function are the
required optimal switching times.

Since the final time t; is assumed to be free, the Hamiltonian H must be zero for
t member [0, t¢]. In particular,

H@) = [-nx + €], = 0 7.17)
Thus in step (5) we use the stopping condition
(X1, = € (7.18)

This condition stops the fermentor operation when the increase in the performance
index because of product formation balances the decrease in the same because of the
operating cost.

7.4.3 Numerical Results Using the numerical procedure outlined in the previous
section, optimum substrate feed rates were determined for different initial cell mass and
substrate concentrations. The results are summarized in Table (7.2)
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Intuitively, the optimum feed rate should result in an initial fast growth of cells at
( high glucose concentration followed by increased rate of invertase production at low
glucose concentrations. In case of low initial cell mass and glucose concentrations, the
optimum profile was found to consist of an initial high feed rate to increase the glucose
concentration followed by a batch period. The singular feed rate brings the glucose
concentration to a level which maximizes the ratio (m/p). Similarly for high initial
glucose concentration the optimum profile consists of an initial batch period to lower
the glucose concentration followed by a very short maximum feed rate period. Fig. (7.3)
shows the optimal feed rate profile for a case of high initial glucose concentration. The
optimal cell mass and glucose concentration profiles are shown in Fig (7.4). During the
initial batch period the glucose concentration falls to a low value. The singular feed rate
keeps the glucose concentration almost constant to keep the m/|L ration near its
maximum.

Varying the maximum allowed feed rate does not affect the switching times and
the performance function significantly. However, if the operating cost is increased by
increasing & the switching times change drastically. At higher values of € the initial
period of maximum feed rate is prolonged considerably so that the time taken for the
( fermentation cycle is reduced.

The performance of optimized fed-batch operation is compared with a batch
operation using the same total amount of glucose (Table 7.2). For low operating costs
(¢ = 0.1), about 60% improvement is achieved. However, as the operating cost
increases (€ = 1.0) the improvement is reduced to 35%. This is reasonable because
the batch operation takes less time than the optimized fed-batch operation.
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Table 7.2: Results of optimization.

PO) 00 KU/g. cell
SF 03 g/lit

v) 1 It

v ¢ 5 lit

B. Switching times and performance functions for different sets of parameters

Conditions Results
0 * e
X0 SO F,,, € Type 1 t, ty te Pf Pb
( 0.02 0.02 1.0 0.1 A 0043 0049 1858 2042 65.35 41.12

002 002 08 01 A 0055 0065 1858 2042 6535 4112

002 002 1.0 1.0 A 034 076 1601 1721 4861 36.09

002 02 L0 0.1. B 406 407 1673 1838 7220 44.36

02 02 10 O1 B 063 064 539 637 7341 44.86

* Type A refers to the sequence maximum-minimum-singular-batch, while type B refers to the
sequence minimum-maximum-singular-batch
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Figure 7.3 Optimal feed rate profile for high initial glucose concentration.
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8. OPTIMIZATION OF A RECOMBINANT
E. COLI FERMENTATION

8.1 Introduction

In this work, the problem of maximizing a weighted performance measure was
solved for recombinant Escherichia coli strains by using the concentration of a growth
inhibitor as the control variable. A simple unstructured mathematical model was used
to explain the key features of this system. Using optimal control theory for this model,
the maximization problem is reduced to numerical determination of optimal switching
time between two control arcs.

8.2 Mathematical model

It is necessary, in general, to take into account the effects of plasmid instability
when modeling recombinant cell growth. However, in some recombinant systems
plasmids are stably maintained even in non-selective media[21]. The growth of stable
recombinant cells in the presence of a growth inhibitor can be modeled by a single
differential equation,

& = usnx @®.1)

The yield of cell mass Yy/s is assumed to be constant. Hence,

ds _ _ peDX
dt Yx/s ®.2)

The growth rate is assumed to follow the following functionality.

Hmax S
K; + S + I/KI,

HES,h = 8.3)

where 1 is the concentration of the inhibitor. Such functional dependence has previously
been proposed by Seo and Bailey[21] for recombinant E. coli strains containing closely
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related copy number mutant plasmids. They used o-methylglucoside, a competitive
( inhibitor of glucose transport, to chinge the specific growth rate of the strains so that the
effect of specific growth rate on plasmid copy number and cloned gene expression could
be studied.

For describing the product formation kinetics an empirical form suggested by
Leudeking and Piret[104] has been quite popular. In this form, the specific product
formation rate is considered as the sum of growth-associated and growth-independent
terms. A variation of this has been used here to account for the inverse relationship
between specific growth rate and product formation rate.

& = (-ap+ BX, ®4)
where o and P are positive constants. The negative coefficient of | in the above
expression assures this inverse dependence. For the recombinant E. coli strains
described above, Seo and Bailey[21] observed that with an increase in the specific
growth rate, (1) the plasmid content decreases almost linearly, and (2) the specific
activity of the cloned-gene product (B-lactamase) decreases. The product formation

data obtained by them can be fit quite well using this dependence.

At this point, it is important to realize some limitations of this model. First, the
product formation rate does not go to zero, when the substrate concentration is zero as
one would expect intuitively. But, because of unavailability of data at low growth rates
it is difficult to guess the functional dependence at low substrate concentrations. The
calculations described later were done within the limits imposed by the model. Second,
the substrate consumption rate is assumed to be independent of the product formation
rate.

8.3 Optimization problem

For optimization purposes, the problem can be restated in state formulation as

x = f - 8.5)
where
X1
X = X2 (8.6)
X3 |
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and
Hxy
Hxy
f = - — 8.7
Ys 8.7
(—op + P)x;
The initial conditions for state variables are specified.
x(0) = xo 8.8)
The aim is to maximize the performance index IT defined by
ki1x "
max I = xg - ——b 8.9
0 s It < L, X3f

The first and the second terms in Eg. (8.9) signify the value of the product and
separation costs respectively. The separation cost is assumed to be inversely
proportional to the intracellular product concentration (x3¢/X;¢). The concentration of
the growth inhibitor is used as the control variable to manipulate specific growth rate. It
is also assumed that the inhibitor is not metabolized[105] and that the addition of
inhibitor does not change the reactor volume significantly. Assuming the final time t; to
be fixed, the Hamiltonian can be defined as

Hx, A, D) = ATf = (zn + A3B) x4, (8.10)

where AT given in Eq. (8.11)

AT = [ }\.1, ?»2, 13] 8.11)
represents the adjoint variables, and
A
Z = A - —— = A0 8.12)
Yx/s
The adjoint differential equations can now be written.
. -z — A3P
A= - -?E = - ZUp X1 (8.13)
ox 0

where
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_ ou
(. b = 5o (8.14)
The transversality conditions are given by the following set of final conditions on the
adjoint variables.
- ky -
X3f
oIl
Al = = 0 8.15
( f) ox (tf) kl Xif ( )
1+ )
1

To maximize the performance index Pontryagin’s maximum principle can now be used.
Thus, for given x and A values at an instant of time, the control I should be picked so as
to maximize the Hamiltonian within the constraints imposed on the control variable.

The gradient of the Hamiltonian is,
oH
50 © W (8.16)
where
SK
- o= o PmPH 8.17)
: ol K K; + SKp + I)

Clearly, the gradient is non-zero for non-zero substrate concentrations. Hence, the
optimal control profile must lie on the boundary of the allowed region for the control
variable, unless z becomes zero for a finite interval of time. The optimal control
sequence I" is determined by the sign of the gradient of the Hamiltonian.

1fz>o,then%—lf < 0,andI’ = 0

Ifz < o,then%ill- > 0,andl" = I,

To get more information about the control profile, the time derivative z is considered.

. dz HaXq
= —= = (- + - A 8.18
z I Cu+ 3 " )z — A3p (8.18)
( o This is a linear differential equation in z, with final conditions given by,
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: k; ok X3¢
é z(p) = - ;{— - o - 3 <0 (8.19)
3f X3f

To check for the possibility of sign change of z, setting z to zero in Eq. (8.18) we get
z=-MB (8.20)

Since A3 is a positive constant (by Egs. (8.13) and (8.15)), z is negative at the point of
switching. It follows that z cannot be zero over a finite interval of time. Also, there can
be at the most one switch in the sign of z. Thus there are only two possibilities for the
optimal inhibitor concentration profile: (1) a switch from initial zero value to a constant
maximum value, and (2) a constant maximum value (Fig. 8.1). It is difficult to get an
explicit analytical expression for the optimum switching time, which needs to be
determined numerically.

8.4 Numerical results

It was shown from theoretical arguments that the only control variable profiles that
are candidates for being optimum are those which have a single switch from zero to the
maximum allowed value. Calculations were performed, using the IMSL integration
( routine IVPAG, to determine the optimal switching time. Two cases corresponding to
) different o and B values were considered. The cases thus differ in the sensitivity of
specific product formation rate to specific growth rate. The parameters used for
simulations are summarized in Table (8.1).

8.4.1 Case (A) a =460 , B = 250 Since the value of P (representing the growth-
independent part of specific product formation rate) is smaller than that of o, product
formation rate is somewhat sensitive to changes in specific growth rate. Hence, the
optimal operating strategy should result in a significant improvement over a simple
batch fermentation.

In Fig. (8.2), the profiles of cell mass and product for the operating strategy which
gives maximum final product are compared with those for a simple batch fermentation
without the addition of the growth inhibitor. The final product obtained using the
optimal inhibitor feeding policy is about 60% greater. Moreover, the amount of cell
mass at the end of fermentation is 49% less. The effect of changing the maximum
inhibitor concentration was also investigated. A change in the maximum inhibitor
concentration from 1g/L fo 12 g/L results in less than 1% change in the optimum
{ switching time. The reason for this insensitivity is that even at a concentration of 1 g/L
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Figure 8.1 Two possible optimal inhibitor concentration profiles.
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{7 Table 8.1 Parameter values and constants used for computer simulation
Kinetic Parameter Simulation Parameters
Kmax, /hr 0.38 X0, g/L. 0.01
K, g/l 0.0119 sg, g/L 2.0
K, (g. substrate)/(mg. inhibitor)  0.00911 | pg, units/L 0.0
Yx/s, (8. cell)/(g. substrate) 0.32 Imax, mg/L  1.0-12.0
| te, hr 11.0

150

Table 8.2  Effect of operating cost and maximum inhibitor concentration on optimal

( switching time for growth-sensitive strain
k; Optimal switching time (hr)  Optimal switching time (hr)
Imax = 1g/L Imax = 12g/L
0 9.16 9.16
1000 9.14 9.14
5000 9.07 9.07
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(’ ~ the inhibitor decreases the specific growth rate quite drastically, thus increasing the
specific product formation rate. Further increase in the inhibitor concentration does not
cause a significant increase in the product formation rate.

The concentrations of cell mass and product at the final time as a function of the
switching time are shown in Fig. (8.3). The product concentration profile shows a
maximum at a switching time of 9.16 hours. The cell mass concentration, however,
increases monotonically with an increase in switching time. If the aim is to maximize
the cell mass, it is intuitively evident, and can be proved theoretically using arguments
similar to those described in the previous section, that the best performance is achieved
when the inhibitor is not added at all. If the separation cost is higher, it is expected that
the optimal switching time should be lower yielding a shorter cell growth phase.
Calculations were performed for different k; values, which reflect differing importance
of separation cost. The optimum switching time does not change significantly for small
k; values, but starts decreasing as k; is increased further (Table 8.2).

8.4.2 Case (B) o = 460, B = 1500 This corresponds to a relatively low sensitivity of
product formation rate to specific growth rate. In fact, this is the case for recombinant
E. coli strain with the plasmid pDM247. Calculations show that the optimal operating
( strategy results in very little improvement compared to a simple batch fermentation, as
expected. However, the cell concentrations do change significantly (Fig. 8.4). When
separation costs are sufficiently higher compared to the product value, use of the
optimal control profile is still necessary.

8.5 Discussion

Pontryagin’s maximum principle was used to determine optimal profiles of growth
“conditions for batch cultures of recombinant E. coli. Theoretical analysis indicates that
the optimal operating strategy consists of an initial high growth rate stage followed by a
low growth but high product formation rate stage. Simple numerical calculations were
performed to determine the exact optimal switching time and to confirm the theoretical
argument. When product formation rate is sensitive to specific growth rate, the optimal
operation policy yields more than five-fold increase in the final product concentration
compared with a simple batch fermentation. For the case of a relatively low sensitivity
of product formation rate to specific growth rate, the optimal strategy there is little
improvement in the process performance.
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. This work employed a growth inhibitor to separate the cell growth phase from the
(A cloned gene expression phase. Uncoupling of these two phases can also be achieved by
‘ using regulated promoters, which allow control of product levels by manipulation of
environmental parameters such as medium composition or temperature. Previous
studies[106,107] indicate that even in these systems an initial growth stage followed by
product formation stage should be optimal. The optimization method developed in this
work would be applied to recombinant systems containing a cloned regulated promoter
if model equations describing cell growth and product formation in terms of a control
parameter are available.

For the system described herein, the specific product formation rate is a linear
decreasing function of specific growth rate, resulting in a bang-bang type of control.
For some recombinant systems, however, the specific product formation rate shows a
maximum at a certain specific growth rate[108]. For these systems intermediate (off-
boundary) control arcs will, in general, be part of the complete optimal control
trajectory.
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’ 9. CONCLUSIONS AND FUTURE WORK

9.1 Research summary

The aim of this research was to optimize the performance of fed-batch
fermentations involving recomivinant organisms. To achieve this goal, a recombinant
S. cerevisige strain was used as a model system. This yeast strain contains a
recombinant plasmid, pRB58, which contains the yeast SUC2 gene. The SUC2 gene
codes for the enzyme invertase, and is regulated by glucose levels in the fermentation
medium. The research was carried out in three distinct, although not necessarily
sequential, steps: kinetics, modeling and optimization. |

Batch and fed-batch fermentations were performed under selective growth-
conditions. The fraction of plasmid-free cells was found to be almost constant (around
0.09) throughout the entire fermentation. During the batch experiments, yeast exhibited
diauxic growth, first on glucose and then on ethanol. The results also showed
derepression of SUC2 promoter as the glucose concentration dropped. In the fed-batch
fermentations, different feeding strategies were used to generate different glucose
profiles. These experiments demonstrated the immediate response of invertase
production to changes in the glucose levels in the medium. The specific invertase
activity was found to be a direct one-to-one function of the glucose concentration. Also,
a brief period of zero glucose concentration resulted in a constant low specific invertase
activity, even though the glucose levels were raised subsequently. The host strain
specific growth rate was found to be almost identical to that of the recombinant strain.

The dimensionality of the mathematical model, to be used for describing
experimental data, is restricted because of the limitations of the numerical methods used
for optimization. A simple model consisting of four differential equations was
developed to describe the experimental results. Analysis of the experimental data
revealed that the cell mass yield decreases with an increase in the glucose concentration
in the medium. To explain this variable yield, a goal-oriented approach was used. The
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key assumption is that objective of the multitude of reactions within the cell is to
( maximize the cell growth rate. It was realized that this objective is equivalent to
maximizing the flux through the respiratory pathway, it being the most energy efficient.
The model is able to describe the experimental data quite well. A substrate-inhibition
form was used to to describe invertase production kinetics. The invertase mRNA was
assumed to decay in a first-order manner. The resulting model does a good job of
simulating the experimentally observed behavior.

The objective of optimization is to maximize the total amount of invertase at the
end of a fed-batch fermentation by choosing an appropriate feed rate profile. This is a
singular control problem because the feed rate appears linearly in the state differential
equations. Modak et al [1] developed a computational algorithm for solving optimal
control problems. However, this method can be successfully applied to systems which
can be described by less than five differential equations. Many alternatives, which in
principle can be applied to higher dimensional systems, have been suggested in
literature. In this research, the applicability of a conjugate gradient technique towards
solving this problem was tested. The method was successfully applied for optimization
of five-dimensional systems. Although the convergence of the method near the
optimum is somewhat slow, it does provide a solution to all the problems tested. The
methods based on boundary condition iteration, e.g. Modak’s method, need to guess the
sequence of control arcs a priori. This can be difficult, especially for high-dimensional
systems. The conjugate gradient technique does not need any such guess. It was found
that the method converged, regardless of the initial guess of the feed rate profile, to the
same optimal trajectory. The only restriction on the initial guess was, that it should
integrate to the correct final volume.

Using the conjugate gradient technique, the problem of maximizing invertase
productivity from recombinant yeast was solved. In all the cases studied, the optimal
feed rate profile resulted in an initial high glucose concentration, which favors high cell
growth rate, followed by a low glucose concentration, which results in high invertase
produétion rate. The final time was kept fixed for all the optimization runs. It was
found that the dependence of productivity of invertase per unit time on final time shows
a maximum. At very low values of final time, no singular period was observed in the
optimal feed rate profile.
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Aside from this main research theme, some other optimization problems were
solved. First, a simple model was developed to describe the anaerobic fermentations of
recombinant yeast containing the plasmid pRB58. Using this model, optimal feed rate
profiles were determined to maximize invertase productivity. In this problem, an
analytical expression for optimal singular feed rate can be derived in terms of the state
variables. Thus the problem reduces to a simple two-dimensional parameter search
problem, the two parameters being switching times between control arcs. The optimal
feed rate results in an initial cell growth phase followed by a product formation phase.
Second, a model was postulated to describe the inverse dependence of product
formation rate on specific growth rate for some recombinant E. coli strains. The growth
rate can be changed by addition of a growth inhibitor. By using singular control theory,
it was shown that the opﬁmal control profile cannot contain a singular arc. The problem
was reduced to the numerical determination of optimal time of addition of growth
inhibitor.

9.2 Recommendations

In this research no attention was paid towards study of the kinetics of secretion of
invertase. About 90% of the yeast invertase is secreted to the periplasmic space. The
remaining invertase is found in the intracellular and extracellular regions. Experimental
techniques for determination of invertase activity in these compartments are known[88].
It should be quite interesting to study the kinetics of transport of invertase between the
cell compartments. It is possible that at high product formation rates, the secretion steps
would be rate-determining steps. Thus a detailed study of secretion kinetics may result
in a better model of invertase production. If such detailed model is available, it would
be very helpful to compare the effectiveness of different secretion signal sequences.

The unstructured model developed in this study satisfactorily described the fed-
batch experimental results. However, in case of experiments with highly oscillatory
glucose profiles, the model predictions were a little off towards the end of the
fermentation. This is probably because the model is unstructured and hence not able to
handle rapidly changing conditions. This discrepancy in the glucose predictions
translates to a discrepancy in the specific invertase activity predictions near the end of
the fermentations. In fact, it was found that if an accurate model for glucose is used’,
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the invertase activity profiles can be described quite accurately. Hence it appears that
the functional form for invertase production is quite accurate. Thus, if optimization is
of secondary importance and a very accurate model is desired, it is better to concentrate
on structured modeling of growth on glucose.

The conjugate gradient approach studied in this research was quite successful in
optimization of a variety of biological systems. Although, in principle, this technique
can be applied for high-dimensional systems, the rate of convergence decreases when
system dimension becomes high. Tests on more complex systems —of dimension
higher than five—are necessary to check the generality of this approach. Only the first-
order conjugate gradient technique was tested in this numerical study. However, for
more complex systems, use of the secon-order method may give better results.

Experimental results showed that short periods of zero glucose levels in the
medium resulted in a constant specific invertase activity. Thus it was argued in
Chapter 5 that periods of zero glucose concentration cannot be part of an optimal
glucose profile. During this numerical study, the feed rate profiles never resulted in
such glucose profiles. However, it is probably a good idea to incorporate such a state
constraint in the optimization technique. The method described in Chapter 6 cannot be
easily adapted to state variable inequality constraints.

The conjugate gradient technique can be used in another interesting manner to
compute the optimal feed rates. Because this method does not use an explicit functional
form for the singular feed rate, the converged feed rate profiles are not smooth, in
general. But in most cases, starting from an arbitrary initial guess of the feed rate, the
method is able to get quite close to the optimal feed rate quite fast. Thus within a
couple of hundred iterations, the general shape—sequence of maximum, minimum and
singular control arcs— of the optimal profile can be deduced without almost no a priori
information. This sequence can then be used to calculate the optimal profile by
Modak’s boundary condition iteration method[1]. The conjugate gradient method can
also provide good initial guesses for the switching times and adjoint variables to the
boundary condition iteration method. Thus these two powerful optimization methods

+ This idea was tested by fitting splines through glucose data and using that as a model for glucose.
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can be combined to minimize the time to compute the optimal control profile.
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Appendix A - Glucose assay

- Reagents
1. Reagent A: one capsule of PGO enzymes added to 100 mL of distilled water
2. Reagent B: 50 mg o-dianisidine dihydrochloride added to 20 mL of distilled water
3. Reagent C: combine 100 mL reagent A with 1.6 mL reagent B.
4. Glucose standard solution: 100 mg/dL B-glucose in benzoic acid solution.

Colorimetric method >

1.

U S

Label three or more 13x100 mm test tubes as follows: Blank, standard, testl,
test2, etc.

To blank, add 0.5 mL water.

To standard add 0.5 mL water and 25 pL of glucose standard solution.
To each test, add 0.5 mL water and 25 pL of sample.

To each tube, add 5.0 L reagent C and mix thoroughly.

Incubate all tubes at 37 °C for 30 minutes.

At the end of 30 minutes remove all tubes from bath and read absorbance at 450
nm using blank as a reference.

Calculate, glucose concentration as

A
Glucose(mg/dL)=—&- X

100
Astandard

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



169
Appendix B - Program for data acquisition from GC

100 Pkttt e ek . N
110 **

120 °* INTEG.BAS - To acquire data from GC

130 ’* written by Anant Patkar (08/08/89)

135 **
140 *#th ettt s ettt el o o A etk
150 °
155 screen 0,0,0 : cls : key off : width 80
160 °
170 ’First load DAS16.BIN routine by contracting BASIC to 48K workspace
172’
175 locate 13, 30 : PRINT "Wait! Initializing ..."
180 clear, 49152! 'reduce workspace to 48K
190 defseg=0 'find BASIC’s segment

200 sg =256 * peek(&H511) + peek(&H510)
210 sg =sg+49152!/16

220 def seg=sg ’SG = load location
230 bload "das16.bin", 0 "for DAS16.BIN
240 °

250 ’Initialize using mode 0

260 °

( 270 dim dio%(4), xind!(5), fx!(5) ’declare data array
273 open "das16.adr" for input as #1 'reading board address
275 input #1, b% : close #1

..280 dio%(0) =b% "base I/O address
290 dio%(1) =2 "interrupt level
300 dio%(2)=1 'D.M.A. level
330 md% =0 ’initialize mode
340 flag% =0 ’declare error variable
350 dasl6=0 "CALL offset =0

360 call das16 (md%, dio%(0),flag%) ’initialize

370 if flag%<>0 then print"Initializing error, # " ;flag% : stop
380 °

410 locate 13, 30 : print space$(22)

450 locate 15, 5 : input "Enter your initials : "; init$

500 ’Find out what you want for scan limits:-

510 °

540 dio%(0) =0 ’lower limit
550 dio%(1) =0 upper limit
560 md% =1

570 call das16 (md%, dio%(0),flag%)
580 if flag%<>0 then print"Error in setting scan limits, # ";flag% : stop
( 590 °
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600 open "color.dat" for input as #1
610 input #1, c1%, c2%, c3%, c4%, c5%, c6%, c1%

(_ 620 arx1% = 60 : arxr% = 150 : ary% = 148
640 close #1 : gosub 2000 ’calls main-menu subroutine .
645 opt$ ="": while opt$ = "" : opt$ = inkey$ : wend : opti% = asc(opt$) - 48
650 on opti% goto 670, 800, 9000, 900
670 open "test.out" for output as #1 : gosub 2070
680 while inkey$ <> "b" : wend
710 nconv% =0 : gosub 3230
720 close #1 : goto 640
800 °
810 cls : input "Enter file suffix : "; suf$
820 nam$ = init$ + suf$ + ".pm"
830 open nam$ for output as #1 : gosub 2070
840 while inkey$ < "b" : wend
850 nconv% =0 : gosub 3230-
860 close #1 : locate 24, 10 : print "Area? (y/n) :"; : cyn$ =""
865 while cyn$ ="": cyn$ = inkey$ : wend
870 if cyn$ = "n" then goto 640 else gosub 3510
880 goto 640
900 cls : input "Enter suffix : "; suf$
905 nam$ = init$ + suf$ + ".prn"
910 open nam$ for input as #1

_ 920 gosub 2070
( , 930 xbeg! =44.0 : ybeg! = 148.0
. 940 forij% =1 to 360

950 input #1, t!, ic%
960 ific% =-1 goto 1010
970  xplot% = int (xbeg! + 0.4 * t!)
980  yplot% = int (ybeg! - 0.029304 * ic%)
990 line - (xplot%,yplot%), c7%
1000 next ij%
1010 close #1 : gosub 3510
1020 goto 640
2000 screen 0,1,0 : width 80 : cls : color c1%, c2%
2010 locate 5,36 : print "MAIN MENU"
2020 locate 11,25 : print "1. Checking without injection"
2030 locate 14,25 : print "2. Sample injection"
2040 locate 17,25 : print "3. Quit"
2042 locate 20,25 : print "4. Calculation of area"
2045 locate 2,2 : print "Enter option : ";
2060 return
2070 screen 1,0 : cls : key off : color ¢3%,c4%
2080 locate 2, 15 : print "GC Recorder"
3010 locate 4,4 : print "10" : locate 7,5 : print "8"
3020 locate 10,5 : print "6" : locate 13,5 : print "4"
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3030 locate 16,5 : print "2" : locate 19,5 : print "0"

\ 3040 xorg% = 44 : xtic% = xorg% :yorg% = 148 :ytic% = yorg% : tic% = 3
( : 3050 xlef% = xorg% - tic% : ybot% = yorg% + tic%

3060 line (44,28) - (284,148) ,c5% , bf

3065 line (44,28) - (284,148) ,c6% , b

3070fori% =1to 11

3080 line (xtic%, ytic%) - (x1ef%, ytic%), c6% : ytic% = ytic% - 12
3090 next i%

3100 ytic% = yorg%

3110fori% =110 11

3120 line (xtic%, ytic%) - (xtic%, ybot%), c6% : xtic% = xtic% + 24
3130 nexti%

3140 locate 23,16 : print "Time, min" : locate 21, 6 : print "0"
3150 locate 21, 12 : print "2" : locate 21, 18 : print "4"

3160 locate 21, 24 : print "6" : locate 21, 30 : print "8"

3170 locate 21, 36 : print "10" : locate 7, 2 : print "G"

3180 locate 8, 2 : print "C" : locate 10, 2 : print "O"

3190 locate 11, 2 : print "u" : locate 12, 2 : print "t"

3200 locate 13, 2 : print "p" : locate 14, 2 : print "u"

3210 locate 15, 2 : print "t"

3220 locate 24, 10 : print "b - begin"; : pset (44,148), c5% return
3230°

3240 ’start data collection using mode 3

3250°

3260 locate 24, 10 : print "s - stop ";

3270 check! = timer

3280 xbeg! = 44.0 : ybeg! = 148.0

3300 md% =3

3310 call das16 (md%, dio%(0), flag%)

3320 count! = timer

3330 t! = count! - check!

3420 xplot% = int (xbeg! + 0.4 * t!)

3430 yplot% = int (ybeg! - 0.029304 * dio%(0))

3440 line - (xplot%, yplot%) , c7%

3450 if t! <= 360.0 then print #1, t!, dio%(0)

3460 if t! > 600 then xbeg! =-196.0 : ybeg! = 124.0

3470 if inkey$ = "s" or t! >= 1200.0 then goto 3500

3480 while timer < count! + 0.5 : wend

3490 goto 3300

3500 print #1, "-1.0 -1" : print #1, date$, time$ : return

3510°

3520’ To calculate the area under the curve

3540 locate 24, 2 : print "Use <hHjklL> to move. d - done";
3550 cmove$ =""

3560 line (arx1%,28) - (arx1%, 148), c7%

3570 line (arxr%,28) - (arxr%, 148), c7%
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3580 line (44, ary%) - (284, ary%), c7%

- 3590 while cmove$ = "" : cmove$ = inkey$ : wend

L E 3600 if cmove$ = "h" then line (arx1%,28) - (arx1%,148), c5% : arx1% = arx1% - 1 : goto 3550
3610 if cmove$ = "H" then line (arxr%,28) - (arxr%,148), c5% : arxr% = arxr% - 1 : goto 3550

3620 if cmove$ = "1" then line (arx1%,28) - (arx1%,148), c5% : arx1% = arx1% + 1 : goto 3550

3630 if cmove$ = "L" then line (arxr%,28) - (arxr%,148), c5% : arxr% = arxr% + 1 : goto 3550

3640 if cmove$ = "j" then line (44,ary%) - (284,ary%), c5% : ary% = ary% + 1 : goto 3550

3650 if cmove$ = "k" then line (44,ary%) - (284,ary%), ¢5% : ary% = ary% - 1 : goto 3550

3660 if cmove$ = "d" then goto 3670

3670 tcl! =2.5 * (arxl% - 44) : tc2! = 2.5 * (arxr% - 44)

3680 yc! = 34.125 * (148 - ary%)

3690 open nam$ for input as #1

3700i% =0 : icount% =0

3710 input #1, xind!(1), fx!(1)

3720 if xind!(1) < tc1! then icount% = icount% + 1 : goto 3710 else i% =i% + 1

3725 xsavl! = xind!(1) : ysavl! = fx!(1)

3730 input #1, xind!(1), fx!(1) : xsavr! = xind!(1) : ysavr! = fx!(1)

3740 if xind!(1) > tc2! then goto 3750 else i% =i% + 1 : goto 3730

3750 close #1 : open nam$ for input as #1

3760 inum% =i% 35 : irem% =i% mod 5 : area! = 0.0

3770 for j% = 1 to icount%

3780 input #1, xind!(1), fx!(1)

3790 next j%

3800 if inum% > 0 then goto 3810 else goto 3880

3810 for j% = 1 to inum%

3820 fork% =1to5

3830  input #1, xind!(k%), fx!(k%)

3840 nextk%

3850 dum! = fx!(1)+4.0%fx!(2)+2.0%fx!(3)+4.0%fx!(4)+£x!(5)

3860 area! = area! + (xind!(2)-xind!(1))*dum!/3.0

3870 next j%

3880 if irem% > O then goto 3890 else goto 3930

3890 for j% = 1 to irem%

3900 input #1, xind!(1), fx!(1)

3910 area! =area! + 0.5 * fx!(1)

3920 next j%

3930 area! = area! - 0.5 * (yc! + ysavr!) * (xsavr! - xsavl!)

3940 locate 24, 2 : print "Area = :", area!, space$(10);: ckey$ ="

3950 while ckey$ <> "s": ckey$ = inkey$ : wend

4000 return

9000 cls : end
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" ) :
Appendix C - Yeast cell lysis using glass beads

Centrifuge 20 mL of culture (in the log-phase or stationary phase) at 12,000 rpm
for 20 minutes.

Remove the supernatant carefully.

Add 20 mL of distilled water to the centrifuge tube containing the pellet and
vortex.

Centrifuge the tube again at 12,000 rpm for 20 min.

Remove the supernatant, resuspend in 4 mL potassium phosphate buffer (pH 7.0)
and freeze at —20°C.

At the beginning of the assay, take the tube out of the freezer and allow it to thaw.
At the same time, start carbon-dioxide flow through the cell homogenizer.

Transfer the sample tube contents to homogenizer tubes. Add 6 grams of acid-
cleaned, pre-cooled glass beads (0.45 mm diameter) to each tube.

Wait till ice forms on the carbondioxide line. This indicates that the homogenizer
assembly is cold enough.

Put the homogenizer tube inside the cell homogenizer, clamp the system properly
and start homogenization. The cell homogenization is done in cycles of 30
seconds alternating with 30 seconds of cooling. Actual homogenization time is 2
minutes. ' ’

Take out the homogenizer tube, vortex the contents and remove the homogenized
sample using Pasteur pipettes.
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Appendix D - Invertase assay

Reagents

1.

Sodium acetate buffer, (}.ZM, pH4.9

2. Sucrose, 0.5M

3. Potassium phosphate bufter, 0.5M, pH 7.0

Procedure

For each enzyme sample assayed, combine 100 pL of the sample with 300 uL of
acetate buffer in a 13 x 100 mm test tube.

Add 400 ML of acetate buffer to a 13 x 100 mm test tube, as a control.
Prewarm all tubes in a 30°C bath.

At time = 0 minutes, add 300 pL sucrose solution to control tube, vortex and
replace in bath.

At time = 1 minute, add 300 pL sucrose solution to sample tube number 1, vortex
and replace in batch. Continue this procedure in one minute intervals for all
sample tubes.

Ten minutes after sucrose is added to each tube, remove the tube, add 2.0 mL of
phosphate buffer and vortex.

Immediately after adding phosphate buffer, place tube in boiling water for
3 minutes.

Remove tube and allow to cool to room temperature.

Determine the concentration of glucose in the sample as described in Appendix A.
Some dilutions may be necessary depending on the concentration of invertase in
the sample.
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Appendix E - Program for simulation and parameter estimation

Program to test different models for yeast growth
Written by Anant Patkar (03/21/89)

oNeNoNoNeoXo!

parameter(nvar = 8, maxd = 1001)

implicit double precision (a-h, 0-z)

integer ndata(nvar), yes(nvar)

dimension xdata(nvar,maxd), ydata(nvar,maxd), ymin(nvar),
ymax(nvar), y(5), param(50), ysave(5), ytemp(5),
tempy(maxd)

double precision k1, k2, k3, k4, k5, k6

character*1 test

external fen, fenj

character*10 xlabel, ylabel(nvar)

common /par/ k1, k2, k3, ck1, ck2, ck3, yrx, yfx, yex, yxe, sf

common /par2/ k4, ckd, k5, k6, ck6, rmu, ichf

s smn

open (1, file = "labels’)
rewind (1)

open (2, file = 'modelparam’)
rewind (2)

open (3, file = temp.out’)
rewind (3)

open (4, file = 'templ.out’)
rewind (4)

read (1,11) xlabel
naxis =nvar/2
do 10i =1, naxis
read (1,11) ylabel(i)
10 continue
11 format(al0)
close (1)

read (5,%)
read (5,*) xmin, xmax
read (5,%)

( do201i=1, nvar
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read (5,*) ymin(i), ymax(i), ndata(i)
20 continue

( read (5,%)

do70i=1, nvar
yes(i) =0
70 continue
narg = iargc()
ivolume =0
do 801i=1, narg
call getarg (i,test)
if (test.eq.’x’) then
yes(l)=1
yes(2) =1
else if (test.eq.’g’) then
yes(3) =1
yes(4) =1
else if (test.eq.’e’) then
yes(5) =1
yes(6) =1
else if (test.eq.’i’) then
yes(M) =1
yes(8) =1
A else if (test.eq.’v’) then
( ivolume =1
endif
80 continue
read (5,*) tol, tf
read (5,*) x0, g0, 0, ri0, v0, rm0
read (2,*) k1, ck1, k2, ck2, k3, ck3, yrx, yfx, yex, yxe
read (2,%)
read (2,%) k4, ck4, k5, k6, ck6

C
C Reading in experimental data.
C
read (5,%)
read (5,%) sf, istart, ichf
do40i=1,nvar,2
read (5,%)

do 50 j = 1, ndata(i)
read (5,*) xdata(i,j), ydata(i,j)
if (i.eq.1) ydata(i,j) = dlog10(ydata(i,j))
50 continue
40 continue
C
C. Generation of simulation data
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60

90

step = tf / dfloat(maxd-1)

param(1) = 1.d-4 * step
param(2) = 1.d-10

param(3) = step / 2.d0

param(4) = 10000

param(12) =2

param(13)=0

param(19) =0

time = 0.d0

y(1) =x0 * vO

y2)=g0*v0

y(3)=e0 *v0

y(4) =0.d0

y(5) =v0

xdata(2,1) = time

xdata(4,1) = time

xdata(6,1) = time

ydata(2,1) = dlog10(x0)

tempy(1l) =x0

ydata(4,1) = g0

ydata(6,1) =0

ido=1

neq =5

nstep = maxd - 1

do60i=1,istart
time = step * dfloat(i-1)
xend = step * dfloat(i)
xdata(2,i+1) = xend
xdata(4,i+1) = xend
xdata(6,i+1) = xend

177

call divpag (ido, neq, fcn, fcnj, a, time, xend, tol,

param, y)

ydata(2,i+1) = dlog10 (y(1) / y(5))

tempy(i+1) = (y(1) / y(5))
ydata(4,i+1) = y(2) / y(5)
ydata(6,i+1) = y(3) / y(5)

if (ivolume.eq.1) write (3,%) xend, y(5)

continue
do90is=1,5
ysave(is) = y(is)
continue
ido=3
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call divpag (ido, neq, fcn, fcnj, a, time, xend, tol,
( ) - ! param, Y)

This small construct is just to get mu values for
initial value of mRNA.

oNoNoXe]

rmu = 0.d0
call fcn(neq, time, ysave, ytemp)

0O

param(1) = 1.d-4 * step
C param(2) =1.d-10
param(3) = step / 2.d0
param(4) = 10000
param(12) =2
param(13) =0
param(19) =0
time = step * dfloat(istart)
y(1) = ysave(1)
y(2) = ysave(2)
y(3) = ysave(3)
y(4) =ri0 / k6
y(5) = ysave(5)
v xdata(8,1) = time
( ydata(8,1) = ri0
ido=1
neq==6

do 100 i = istart+1, nstep
time = step * dfloat(i-1)
xend = step * dfioat(i)
xdata(2,i+1) = xend
xdata(4,i+1) = xend
xdata(6,i+1) = xend
irQ=1i-istart + 1
xdata(8,ir0) = xend
call divpag (ido, neq, fcn, fcnj, a, time, xend, tol,
! param, y)
ydata(2,i+1) = dlog10 (y(1) / y(5))
tempy(i+1) = (y(1) / y(5))
ydata(4,i+1) = y(2) / y(5)
ydata(6,i+1) = y(3)/y(5)
C call fcn(neq, time, y, ytemp)
ydata(8,ir0) = k6 * y(4)
C if (ivolume.eq.1) write (3,*) xend, y(5)
100 continue
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C
rewind (3)
C - do110ij =1, 1001
T write (3,21) xdata(2,1j),ydata(2,ij), ydata(4,ij),
! xdata(6,ij)
110 continue
21 format (4(2x, £12.6))
call flush(3)
c ,
rewind (4)
inum ="T00T Tistart.
do 120 ij = istart, nstep
irQ =ij - istart + 1
write (4,31) xdata(8,ir0), ydata(8,ir0)
120 continue
31 format (2(2x, £12.6))
call flush(4)
C
C Call to the piotting routine.
C

call myplot(nvar,ndata,maxd,xdata,ydata,xlabel,ylabel,
! naxis, xmin, xmax, ymin, ymax, yes)

( stop

end

Subroutine required by the IMSL integration routine DIVPAG
to determine the differential rates.

oNoNoNoXe]

subroutine fcn (neq, time, y, yprime)

implicit double precision (a-h, 0-z)

dimension y(neq), yprime(neq)

double precision k1, k2, k3, k4, k5, k6

common /par/ k1, k2, k3, ckl, ck2, ck3, yrx, yfx, yex, yxe, sf
common /par2/ k4, ck4, k5, k6, ck6, rmu, ichf

x =y(1)/y(5)

s =y(2)/y(5)

e =y(3)/y(5)

if (s.le.1.d-5) s =0.d0
rt=kl*s/(ckl +s)

m=k2*s/(ck2+5s)

if (rt.gt.rt) then
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rf=rt-rr
. unsat = 0.d0
( else
IT=r1t
- f=0.d0
unsat =1.d0-s/ (ck2 + s)
endif
if (s.le.1.d-4) unsat = 1.d0
re =k3 *unsat *e /(ck3 +¢)
fbase = 0.d0
if (ichf.eq.0) then
call flow0 (time, fin, fout)
else if (ichf.eq.1) then
call flowl (time, fin, fout)
else if (ichf.eq.2) then
call flow? (time, fin, fout)
else if (ichf.eq.3) then
call flow3 (time, fin, fout)
else if (ichf.eq.4) then
call flow4 (time, fin, fout)
fbase = 17.d-3
else if (ichf.eq.5) then
call flow5 (time, fin, fout)
- else-if (ichf.eq.6) then
( call flow6 (time, fin, fout)
endif
if (s.1e.0.d0) then
rmu =re * yxe
yprime(1) = y(1) * rmu - fout * x
yprime(2) = fin * sf
else
C rmu =1r * yrx + 1f * yfx +re * yxe
rmu =11 * yrx +rf * yfx
yprime(1) = y(1) * rmu - fout * x
~yprime(2) =- y(1) * rt + fin * sf - fout * s
endif
yprime(3) = y(1) * (yex * rf - re) - fout * ¢
yprime(5) = fin - fout + fbase

Invertase production model

(oNeXe!

yprime(4) = k4 * s /(ck4 + s + ck6*s**2) - (k5 + rmu)*y(4)
check4 = dabs(yprime(4))
if (check4.1t.1.d-5) yprime(4) = 0.d0

return
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end

oNoNoX®!

Dummy subroutine required by DIVPAG

subroutine fcnj(neq, x, y, dypdy)
implicit double precision (a-h, 0-z)
dimension y(neq), dypdy(neq,neq)
return

end

oXoloXoXoXoXoXoXoXeXoNoRoeXeXoXo ko Xo Xo o Xe)

C

Subroutine to plot simulatica results.
Written by Anant Pqtkar (01/29/89)

Variables:
nvaz, = number of independent variables * 2

Variables with odd indices are assumed to be experimental

data, and ones with even indices are simulation results.
ndata = number of data points for each independent variable. ")
maxd = maximum number of data points in all data sets -
xdata = data for independent variables (all sets)
ydata = data for dependent variables (all sets)
xlabel, ylabel = axis labels
naxis = number of axis = nvar / 2
xmin = value corresponding to left end point of abscissa
xmax =""right ""
ymax, ymin = similar
yes = Array nvar x 1, the value 1 corresponds to plot

0 means do not plot

!
subroutine myplot(nvar, ndata, maxd, xdata, ydata, xlabel,
! ylabel, naxis, xmin, xmax, ymin, ymax,
! yes)
implicit double precision (a-h,0-z)

C ndata is a vector of number of data points in each dataset.
C maxd = max(ndata(i)),i=1, ..., nvar.

C

integer ndata(nvar), digits, where, flag, odd, yes(nvar)

dimension xdata(nvar,maxd), ydata(nvar,maxd), ymin(nvar),
! ymax(nvar)

character*10 xlabel, ylabel(nvar), y1, y2, y3, y4, y5, sym*1
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C
C
C

C

if (naxis.gt.5) then
write (6,11)
format(2x, ’Plotting program is limited to a maximum of °,
! ’five dependent variables.’)
stop
endif

Setting some parameters.

xorigin = 3.0
yorigin = 3.0
xsize =7.0
ysize = 6.0
ticdis = 1.0
digits =4
xdis = 1.6
ht=0.12

call site("-kp")

call plots(6,0) s
call plots(5,0, "plot.out™)

call factor (1.0)

call plot(xorigin, yorigin, -3)

C Change parameters of axis

C
C

call axisv(ticdis, digits)

C Draw main dataspace window.

C

C

flag=0

where =0

call axis(0.,0., xlabel, where, xsize, xmin, xmax, flag)
where = 1

y1 = ylabel(1)(1:10)

logmin = ymin(1)

logmax = ymax(1)

call laxis(0.,0., y1, where, ysize, logmin, logmax, flag)
call plot(0.0, ysize, 3)

call plot(xsize, ysize, 2)

call plot(xsize, 0.0, 2)

call plot(0.0, 0.0, 3)

C Draw other axis (if required).

C

if (naxis.gt.1) then

182
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where =3

g flag=0
( y2 = ylabel(2)(1:10)
call axis(xsize, 0., y2, where, ysize, ymin(3),
! ymax(3), flag)
endif
if (naxis.gt.2) then
where =1
flag=0
posit = - xdis
y3 = ylabel(3)(1:10) _
call axis(posit, 0., y3, where, ysize, ymin(5),
! ymax(5), flag)
endif
if (naxis.gt.3) then
where =3
flag=0
posit = xsize + xdis
y4 = ylabel(4)(1:10)
call axis(posit, 0., y4, where, ysize, ymin(7),
! ymax(7), flag)
endif
if (naxis.gt.4) then
- where =1
( ' flag =0
posit = -2.d0 * xdis
y5 = ylabel(5)(1:10)
call axis(posit, 0., y5, where, ysize, ymin(9),

! ymax(9), flag)
endif
C
C Data scaling and plotting.
C

xfact = xsize / (xmax - xmin)
do10i=1, nvar
if (yes(i).eq.1) then
yfact = ysize / (ymax(i) - ymin(i))
xsca = (xdata(i,1) - xmin) * xfact
ysca = (ydata(i,1) - ymin(i)) * yfact
odd = mod(i,2)
if (odd.eq.1) then
idummy = (i - 1)/2 + 1 +ichar(’0")
sym = char(idummy)
call plot (xsca, ysca, 3)
call symbol (xsca, ysca, ht, sym, 0.0)
do 20 j = 2, ndata(i)
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xsca = (xdata(i,j) - xmin) * xfact

(‘_ ‘ ysca = (ydatai,j) - ymin(i)) * yfact

l/\\\

xsca = xsca - 2.0 * ht/7.0
ysca =ysca-ht/2.0
call symbol (xsca, ysca, ht, sym, 0.0)
20 continue
else

call plot(xsca, ysca, 3)

do 30 j = 2, ndata(i)
xsca = (xdata(i,j) - xmin) * xfact
ysca = (ydata(i,j) - ymin(i)) * yfact

call plot(xsca, ysca,2)
30 continue
endif
endif
10 continue

C

C Quitting the plotting routine and returning the terminal

C to alpha-numeric mode.

C
. call plot (-3.0, -2.0, -3)
call plot(0.0, 0.0, 999)
call alpha()
return
end
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Appendix F - A modification to the cell growth model

One of the major assumptions of the cell growth model is that the cell tries to
maximize flux through the respiratory pathway. However, at low glucose
concentrations, the respiratory pathway is unsaturated, i.e. it is not using its full
capacity. Under such unsaturated conditions, if the medium contains ethanol, it is likely
that the cell will consider uptake of ethanol as a plausible solution to maximization of
flux through the respiratory pathway. Under aerobic conditions, ethanc! can be utilized
through respiratory metabolism. Using this reason, it was postulated that the rate of
uptake of ethanol is proportional to the degree of unsaturation of the respiratory
pathway. Rate of production of ethanol can be assumed to be proportional to the flux
through the fermentative pathway.

d kg S
— = - ——— ] - ————
ar EV) = ReYe Kg + E [ K; + S]

The yield of cell mass based on ethanol uptake was assumed to be constant.
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