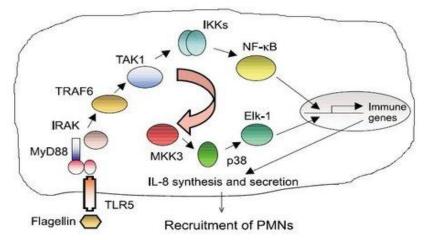
CHE.496 Biological Systems Design

Project 1- Engineered Human Cells: SAY NO TO SEPSIS- A Review of the University of Ljubljana's iGEM Project

Goals:


• Design a feedback pathway that, while retaining an effective pathway against infection, limits excessive cell stimulation and corresponding immune response

Background- Septic Shock

- Most common type of distributive shock
- High mortality rate ~40%
 - No novel advances since 1980s
- Associated mainly with gram-negative bacteremia
- Dysregulated release of chemokines (including cytokines)
- Additional injury due to endotoxins:
 - Coagulation cascade
 - Complement cascade
 - Vessel injury
 - Release of prostaglandins
- Eventually leads to multiple organ dysfunction syndrome (MODS)

Cellular Basis

- Toll-like receptors on surface of leukocytes
- Pathogen associated molecular patterns(PAMPs)
 - Lipopolysaccharides
 - Flagellin
 - Peptidoglycan

- Association of MyD88 (myeloid differentiation primary-response protein 88)
- MyD88- "adapter protein is involved in the signal transduction immediately after ligandinduced TLR oligomerization. This adapter protein is common to most TLRs before the signaling network branches into several phosphpryation cascades."

Solution

- Inhibition via activation of dominant-negative adapter protein
- Decreased lifetime of adapter protein via rapid degradation tag (PEST sequence)

Results

- Construction of Biobricks
 - Promoter
 - Terminator
 - Protein coding sequences
 - Two inhibitory proteins of the signaling cascade (<u>dnMyD88</u> and dnTRAF6)
 - Two reporters: Renilla luciferase
 - PEST sequence to decrease the lifetime of the inhibitor
- Inhibition of cell signaling by a dnMyD88 feedback device
 - Apparently this shows a decreased response in the inhibited form
- Decrease of protein lifetime via PEST sequence
 - Confirmed

Overall View

- Same principles of Biobricks can be used in eukaryotic cells
- Simplified model of the TLR signaling qualitatively captures most of the features of the natural system

Lessons for the VGEM Team

- Use citations
- Analysis- Give a more rigorous explanation of your reasoning behind accepting a hypothesis
- Defend your assumptions
- A model is critical to the understanding and development of your system