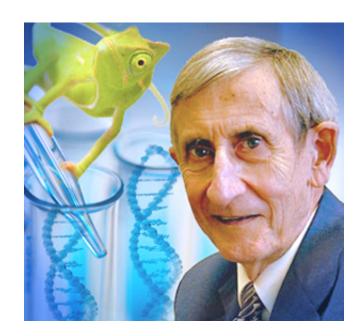

Natalie Kuldell February 3rd, 2009

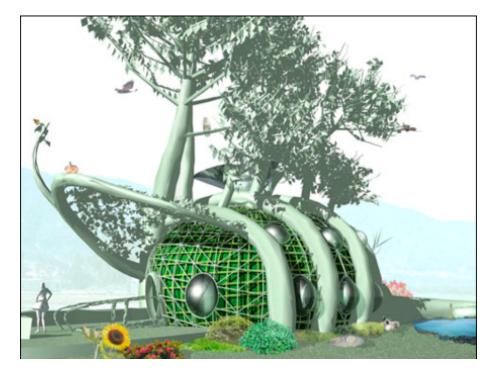
http://openwetware.org/wiki/20.20(S09)

2020: Futurists

Freeman Dyson writes:

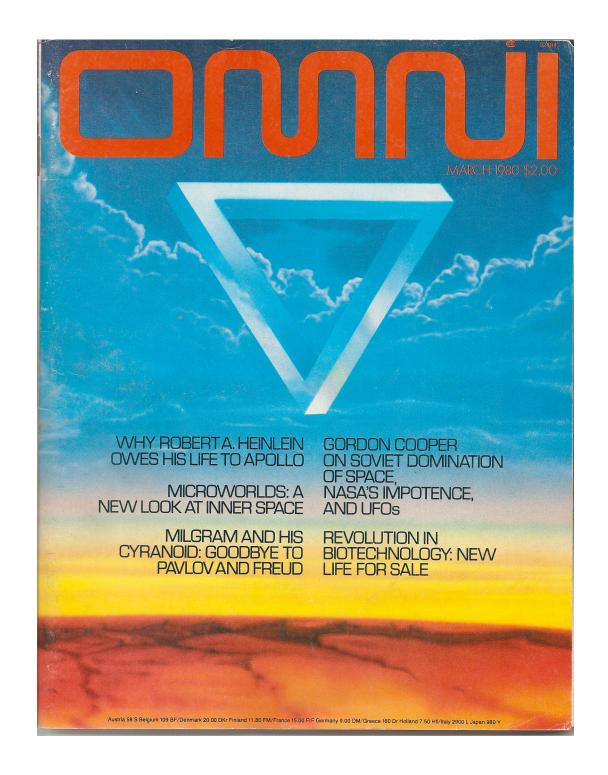
"Biotechnology will become as domesticated as computer games and children and housewives will create their new animal and plant species at home."

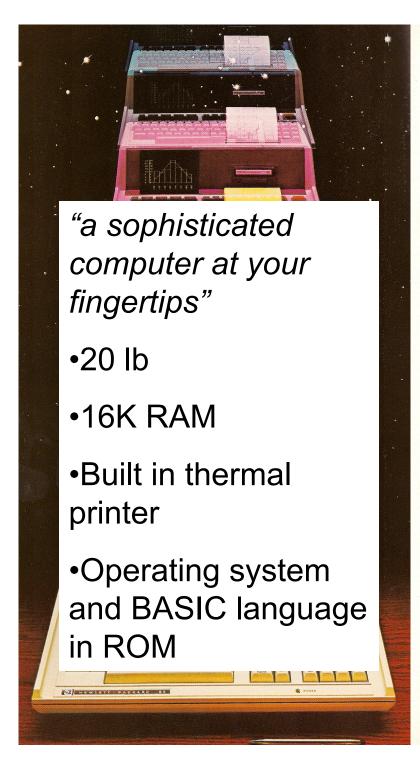

Quack? Genius?


2020: Futurists

Freeman Dyson writes:

"Biotechnology will become as domesticated as computer games and children and housewives will create their new animal and plant species at home.




Quack? Genius?

MIT Human Ecology Design team

2020: Historians

INTRODUCING HP-85.

A NEW WORLD OF PERSONAL-PROFESSIONAL COMPUTATION.

Imagine the new world that would unfold before you if you had a powerful, portable, completely integrated computer system at your personal disposal. And at an affordable price. That's exactly what Hewlett-Packard has just created.

THE HP-85: A PERSONAL COMPUTER FOR PROFESSIONALS.

At the lab, on your desk or in your study this 20-pound, self-contained system provides professional computing power when and where you need it. That means no more waiting for data to be remotely processed and returned.

A COMPLETE COMPUTER SYSTEM IN ONE SMALL PACKAGE.

You get all this in the HP-85: Interactive graphics under keyboard control.

16K RAM Memory standard.
Standard typewriter keyboard with
separate numeric key pad and eight
user-definable special function keys.
High resolution CRT display with
powerful editing capability.
Built-in thermal printer produces
a hard copy of the display on
command.

Built-in tape cartridge drive. Each cartridge provides 217K bytes of storage capacity.

Operating system and BASIC language, permanently stored in ROM. A SOPHISTICATED COMPUTER AT YOUR FINGERTIPS.

Hewlett-Packard has combined these sophisticated capabilities with advanced design to give you a system that is easy to use yet uncompromised in its power.

A key to this achievement is Hewlett-Packard's choice of BASIC for the HP-85's language. BASIC is easy to learn and lets you solve complex problems in an Englishlike, conversational style.

Sixteen graphic commands have been added to the HP-85's extended BASIC to give you easy control of its amazingly versatile graphic capabilities. You can draw graphs, label axes, set the scale of the X and Y axes independently, plot data and control the graphics display either from the keyboard or in programs.

Other advanced capabilities include software security, flexible string commands, an internal clock, programmable beeps—more than 150 commands and statements to give you the power you need to solve your problems swiftly and easily.

DESIGNED FOR TODAY AND TOMORROW.

Whether you're in science, engineering, industry or business, the HP-85 you need today can easily be expanded or customized to meet your needs tomorrow.

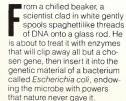
You can double RAM capacity to 32K or expand ROM firmware to 80K with optional modules that plug right into the HP-85.

It's easy to enhance the system's capability by adding powerful HP peripherals like a high-speed, full-width line printer, full-size plotter, or flexible disc drives.

You can also streamline your problem solving with HP Application Paes which offer preprogrammed solutions in a wide variety of disciplines on prerecorded magnetic tape cartridges.

The HP-65's versatility, expandability and sophisticated simplicity all grew out of Hewlett-Packard's underlying principle of excellence by design. Excellence by design means rigorous quality control and testing as well as a worldwide maintenance support network.

When you buy the HP-85, you're not just buying a computer system, you're buying the confidence that the Hewlett-Packard name brings and the knowledge that the HP-85 can expand with your changing needs.


For the address of your nearest HP dealer, CALL TOLL-FREE 800-648-4711 except from Alaska or Hawaii. In Nevada, 800-992-5710. For details on the HP-85, send the attached coupon, or write: Hewlett-Packard, 1000 N.E. Circle Blvd., Corvallis, OR 97330, Dept. 272C.

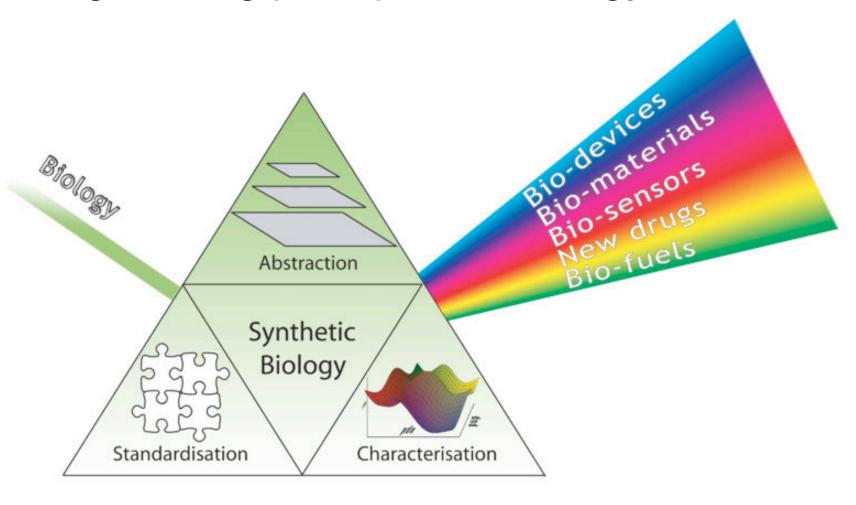
HEWLETT-PACKARD Dept. 272C 1000 N.E. Circle Blvd. Corvallis, OR 97330
Please send details on HP-85.
NAME
TITLE
COMPANY
ADDRESS
CITY
STATEZIP

"a scientist clad in white spools threads of DNA onto a glass rod. He is about to treat it with enzymes, then insert it into E. coli, endowing the microbe with powers nature never gave it."

Not long ago experiments with recombinant DNA stirred visions of strange, artificial diseases against which humanity would have no natural defense; such experiments provoked sharp controversy over whether scientists should be allowed to tamper with life itself. Today most of the fears have died down, and biotechnology is filling the heads of businessmen with visions of immense profits.

In the past ten years or so, dozens of new companies have begun to harness the life processes and put them to work in industry. Quietly, almost unnoticed in a world dazzled by innovative electronic products, these firms are fomenting a technological revolution that promises to shake the foundations of medicine, agriculture, food processing, energy production, and the chemical and pharmaceutical industries.

Already included among biotechnology's success stories are bacteria engineered to produce human insulin, drug-delivery systems that


THE GENE TRUST

BY KATHLEEN AND SHARON MCAULIFFE

Science and business join forces to exploit the machinery of life

PHOTOGRAPHS BY DOUGLAS KIRKLAND

What's new: Application of engineering principles to biology

•genome reengineering Molecular Systems Biology (2005) doi:10.1038/msb4100025 © 2005 EMBO and Nature Publishing Group All rights reserved 1744-4292/05 www.molecularsystemsbiology.com molecular systems biology

Refactoring bacteriophage T7

Leon Y Chan^{1,3}, Sriram Kosuri^{2,3} and Drew Endy^{2,4}

genome reengineering

Complete Chemical Synthesis, Assembly, and Cloning of a *Mycoplasma* genitalium Genome

Daniel G. Gibson, Gwynedd A. Benders, Cynthia Andrews-Pfannkoch, Evgeniya A. Denisova, Holly Baden-Tillson, Jayshree Zaveri, Timothy B. Stockwell, Anushka Brownley, David W. Thomas, Mikkel A. Algire, Chuck Merryman, Lei Young, Vladimir N. Noskov, John I. Glass, J. Craig Venter, Clyde A. Hutchison III, Hamilton O. Smith*

We have synthesized a 582,970—base pair Mycoplasma genitalium genome. This synthetic genome, named M. genitalium JCVI-1.0, contains all the genes of wild-type M. genitalium G37 except MG408, which was disrupted by an antibiotic marker to block pathogenicity and to allow for selection. To identify the genome as synthetic, we inserted "watermarks" at intergenic sites known

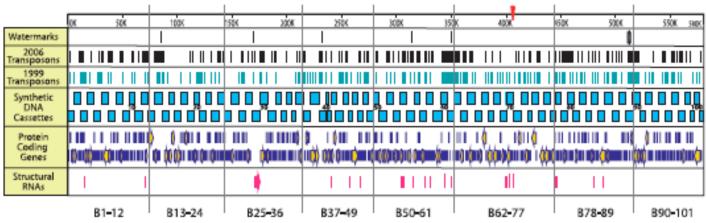


Fig. 1. Linear GenomBench (Invitrogen) representation of the circular 582,970-bp M. genitalium (CM-1.0 genome. Features shown include locations of watermarks and the aminoglycoside resistance marker, viable Tn4001 transposon insertions determined in our 1999 and 2006 studies (3, 4), overlapping synthetic DNA cassettes that comprise the whole genome seguence, 485 M. genitalium protein-

coding genes, 43 M. gentalium rRNA, tRNA, and structural RNA genes, and Bseries assemblies (Fig. 2). The red dagger on the genome coordinates line shows the location of the yeast/E coli shuttle vector insertion. Table S1 lists cassette coordinates table S2 has FASTA files for all 101 cassettes; table S3 lists watermark coordinates; table S4 lists the sequences of the watermarks.

•genome reengineering

Characterization of the Reconstructed 1918 Spanish Influenza Pandemic Virus

Terrence M. Tumpey, ^{1*} Christopher F. Basler, ²
Patricia V. Aguilar, ² Hui Zeng, ¹ Alicia Solórzano, ²
David E. Swayne, ⁴ Nancy J. Cox, ¹ Jacqueline M. Katz, ¹
Jeffery K. Taubenberger, ³ Peter Palese, ² Adolfo García-Sastre ²

The pandemic influenza virus of 1918–1919 killed an estimated 20 to 50 million people worldwide. With the recent availability of the complete 1918 influenza virus coding sequence, we used reverse genetics to generate an influenza virus bearing all eight gene segments of the pandemic virus to study the properties associated with its extraordinary virulence. In stark contrast to contemporary human influenza H1N1 viruses, the 1918 pandemic virus had the ability to replicate in the absence of trypsin, caused death in mice and embryonated chicken eggs, and displayed a high-growth phenotype in human bronchial epithelial cells. Moreover, the coordinated expression of the 1918 virus genes most certainly confers the unique high-virulence phenotype observed with this pandemic virus.

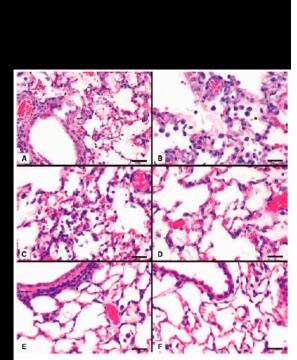
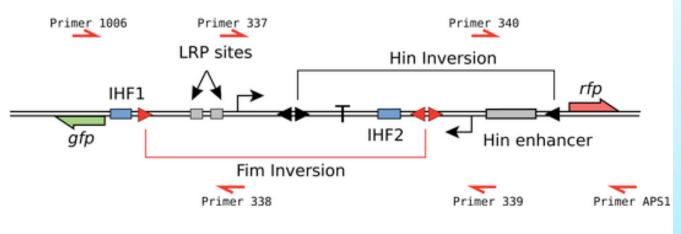
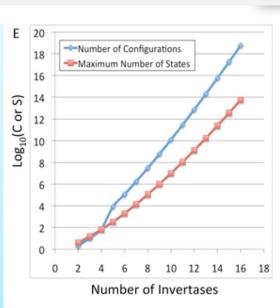


Fig. 2. Photomicrographs of hematoxylin and eosin-stained lung sections. (A to C), lungs from mice infected with the 1918 influenza wires: (A) necrotizing brondrollists and severe alwoultst, (B) several sheedar edems and histocytic alweolitis with scattered neutrophils, and (C) alweditis, predominantly neutrophilic, and secolisted hemomrage. (D) Moderate alweolitis and adema in lungs from a mountered with 1918 HANNAMYNR/NST/M91 (vins. (E) Mild perharbonish lafiammation with adjacent minimal alweolitis in a mouse infected with TX/91 HAT-1918 vins. (F) Lung tissue from a TX/91-infected mouse showing the paucity of lesions. Scale bars, 25 µm (A) and 15 µm (B to T).

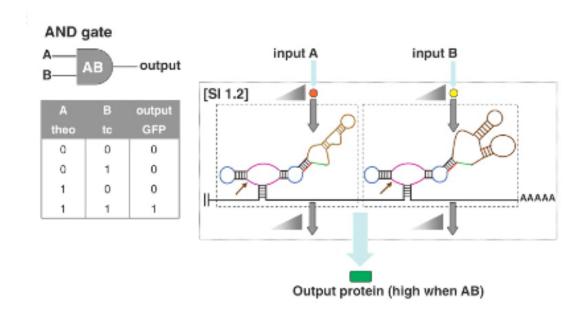

- •genome reengineering
- DNA based memory


RESEARCH ARTICLE

Design and Construction of a Double Inversion Recombination Switch for Heritable Sequential Genetic Memory

Timothy S. Ham¹, Sung K. Lee², Jay D. Keasling^{1,2,3}, Adam P. Arkin^{1,2*}

Citation: Ham TS, Lee SK, Keasling JD, Arkin AP (2008) Design and Construction of a Double Inversion Recombination Switch for Heritable Sequential Genetic Memory. PLoS ONE 3(7): e2815. doi:10.1371/journal.pone.0002815


Science 17 October 2008: Vol. 322. no. 5900, pp. 456 – 460 DOI: 10.1126/science.1160311 < Prev | Table of Contents | Next >

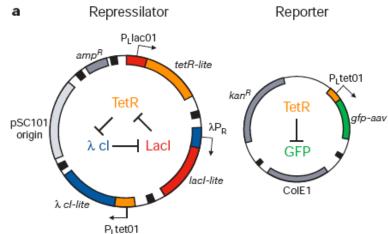
- •genome reengineering
- DNA based memory
- logicengineering

REPORTS

Higher-Order Cellular Information Processing with Synthetic RNA Devices Maung Nyan Win and Christina D. Smolke²

The engineering of biological systems is anticipated to provide effective solutions to challenges that include energy and food production, environmental quality, and health and medicine. Our ability to transmit information to and from living systems, and to process and act on information inside cells, is critical to advancing the scale and complexity at which we can engineer, manipulate, and probe biological systems. We developed a general approach for assembling RNA devices that can execute higher-order cellular information processing operations from standard components. The engineered devices can function as logic gates (AND, NOR, NAND, or OR gates) and signal filters, and exhibit cooperativity. RNA devices process and transmit molecular inputs to targeted protein outputs, linking computation to gene expression and thus the potential to control cellular function.

- genome reengineering
- DNA based memory
- logicengineering
- circuitengineering

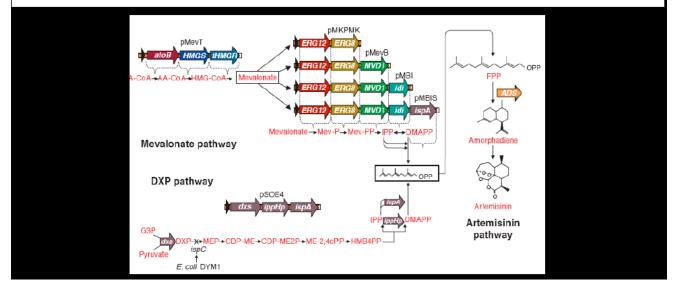

A synthetic oscillatory network of transcriptional regulators

Michael B. Elowitz & Stanislas Leibler

Departments of Molecular Biology and Physics, Princeton University, Princeton, New Jersey 08544, USA

Networks of interacting biomolecules carry out many essential functions in living cells¹, but the 'design principles' underlying the functioning of such intracellular networks remain poorly understood, despite intensive efforts including quantitative analysis of relatively simple systems². Here we present a complementary approach to this problem: the design and construction of a synthetic network to implement a particular function. We used three transcriptional repressor systems that are not part of any natural biological clock^{3–5} to buil

NATURE VOL 403 20 JANUARY 2000 www



- •genome reengineering
- •DNA based memory
- logicengineering
- circuitengineering

Engineering a mevalonate pathway in *Escherichia coli* for production of terpenoids

Vincent JJ Martin^{1,2,3}, Douglas J Pitera^{1,3}, Sydnor T Withers¹, Jack D Newman¹ & Jay D Keasling¹

Isoprenoids are the most numerous and structurally diverse family of natural products. Terpenoids, a class of isoprenoids often isolated from plants, are used as commercial flavor and fragrance compounds and antimalarial or anticancer drugs. Because plant tissue extractions typically yield low terpenoid concentrations, we sought an alternative method to produce high-value terpenoid compounds, such as the antimalarial drug artemisinin, in a microbial host. We engineered the expression of a synthetic amorpha-4,11-diene synthase gene and the mevalonate isoprenoid pathway from Saccharomyces cerevisiae in Escherichia coli. Concentrations of amorphadiene, the sesquiterpene olefin precursor to artemisinin, reached 24 µg caryophyllene equivalent/ml. Because isopentenyl and dimethylallyl pyrophosphates are the universal precursors to all isoprenoids, the strains developed in this study can serve as platform hosts for the production of any terpenoid compound for which a terpene synthase gene is available.

- •genome reengineering
- •DNA based memory
- logicengineering
- circuitengineering
- system engineering

- •genome reengineering
- DNA based memory
- logicengineering
- circuitengineering
- system engineering

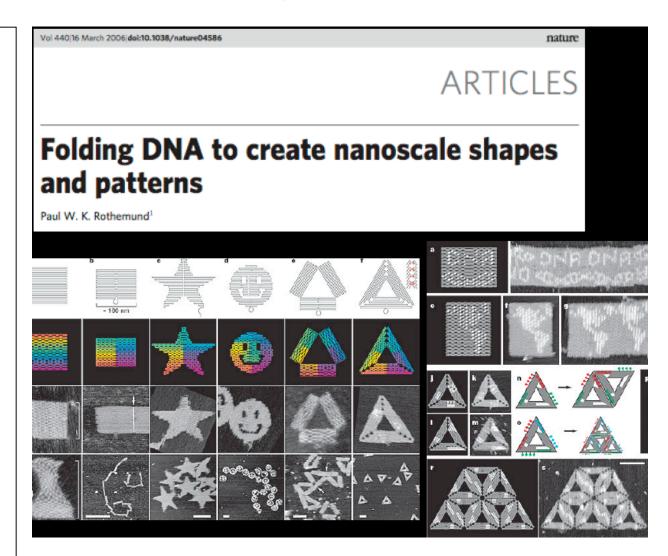
doi:10.1016/j.jmb.2005.10.076

J. Mol. Biol. (2006) 355, 619-627

Available online at www.sciencedirect.com

Environmentally Controlled Invasion of Cancer Cells by Engineered Bacteria

J. Christopher Anderson^{1,3}, Elizabeth J. Clarke³, Adam P. Arkin^{1,2*} and Christopher A. Voiqt^{2,3}



Tumor-killing bacteria

- Engineered bacteria are injected into the bloodstream; polysaccharide molecules on their surfaces allow them to evade the immune system
- When they detect the low-oxygen environment of a tumor, the bacteria produce invasion, a protein that allows them to infiltrate the cancer cells
- The invasion binds to the cancer cells, prompting the cells to engulf the bacteria
- The cancer cell bursts the bacterium, releasing an enzyme that is toxic to the cancer cell

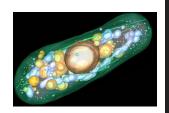
Image courtesy Tami Tolpa

- •genome reengineering
- •DNA based memory
- logicengineering
- circuitengineering
- systemengineering
- biomaterials engineering

- •genome reengineering
- DNA based memory
- logicengineering
- circuitengineering
- system engineering
- biomaterials engineering

What you'll work on...

- 1. design a plausible and compelling synthetic biological system
- 2. develop a detailed design plan and construction roadmap
- 3. evaluate ownership, commercial, ethical aspects of the project


Understand the operation of genetic programs in prokaryotes and eukaryotes.

Understand the operation of genetic programs in prokaryotes and eukaryotes.

Describe key enabling technologies that support the engineering of biology, including synthesis, abstraction and standardization.

Understand the operation of genetic programs in prokaryotes and eukaryotes.

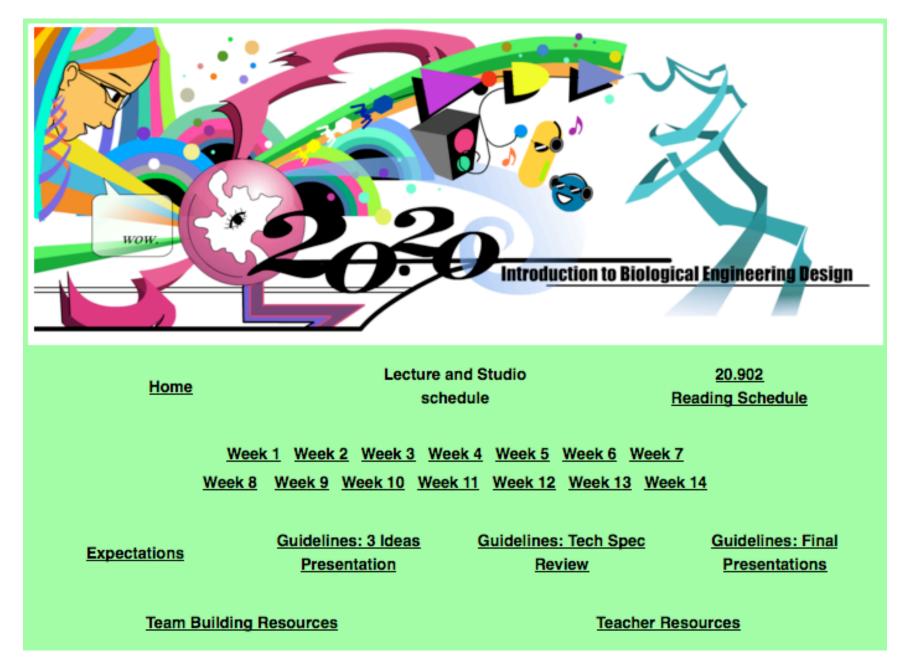
Describe key enabling technologies that support the engineering of biology, including synthesis, abstraction and standardization.

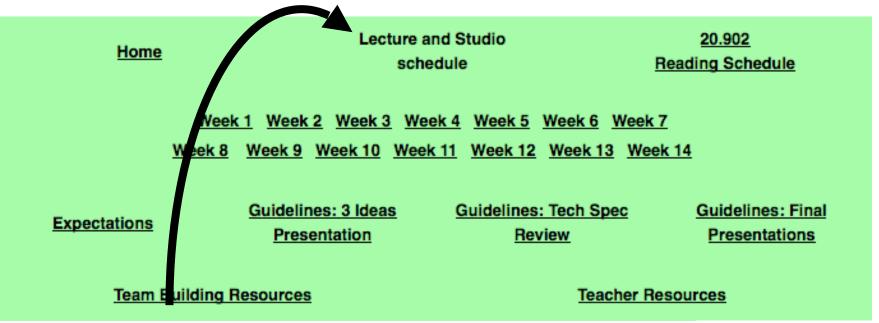
Develop awareness of issues of human practice that impact & result from the development and application of biological technologies.

Understand the operation of genetic programs in prokaryotes and eukaryotes.

Describe key enabling technologies that support the engineering of biology, including synthesis, abstraction and standardization.

Develop awareness of issues of human practice that impact & result from the development and application of biological technologies.





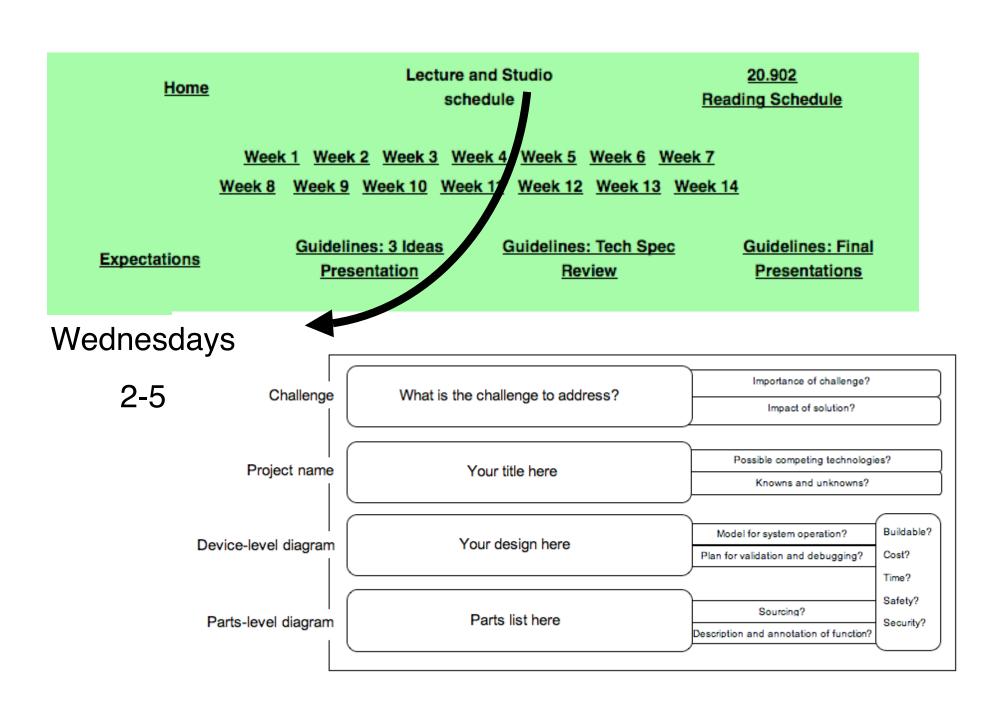
http://openwetware.org/wiki/20.20(S09)

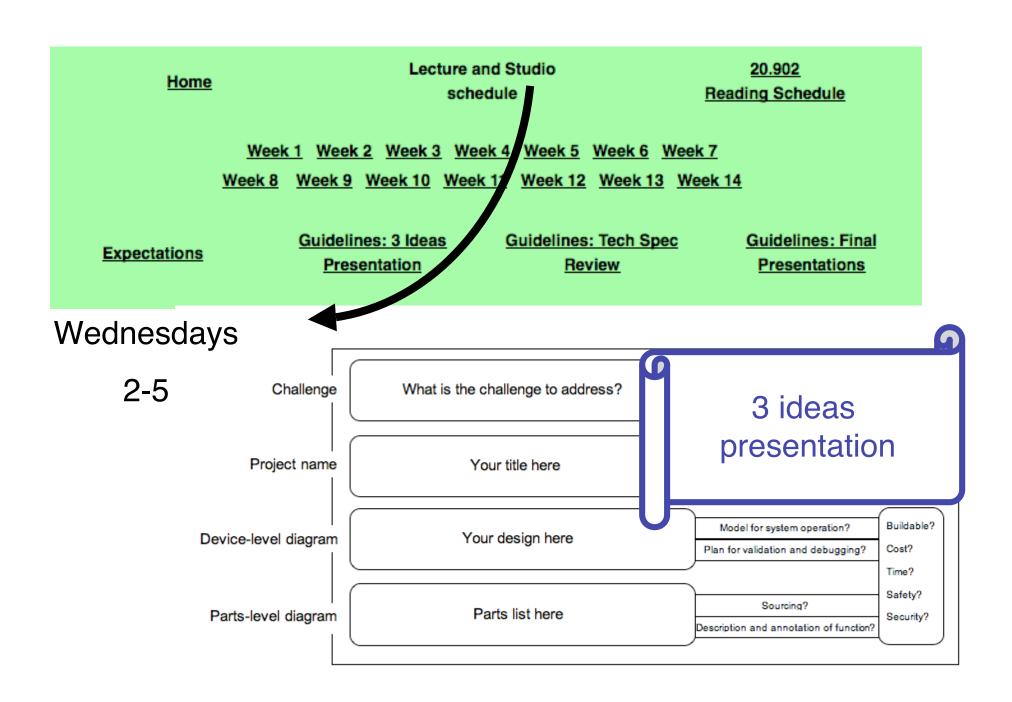
3-3-3

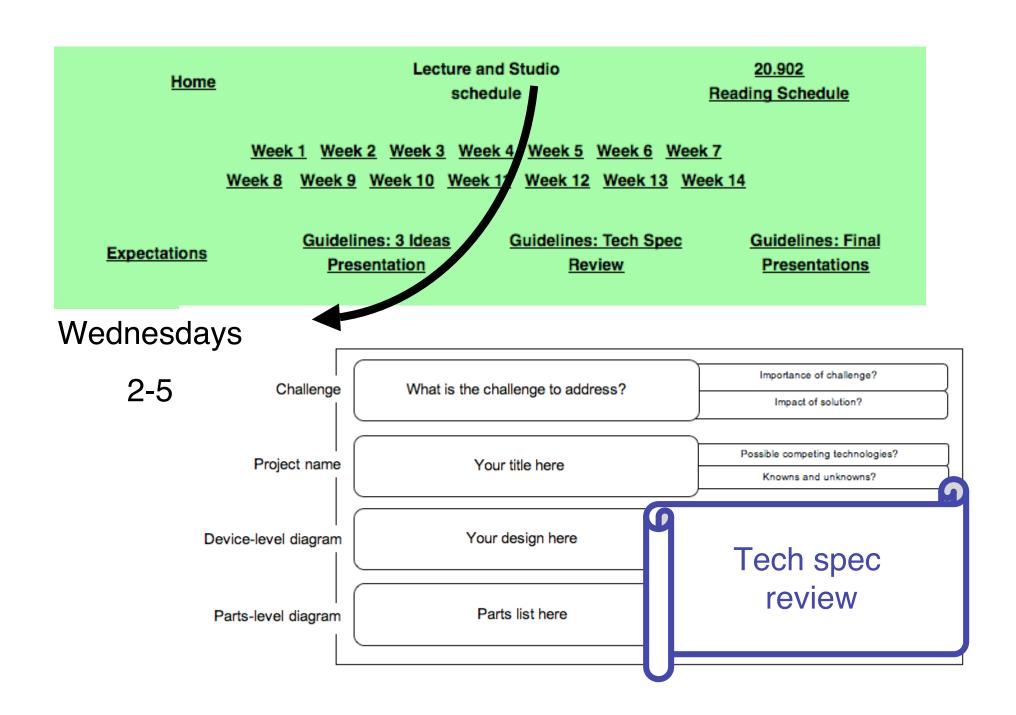
Tuesdays/Thursdays

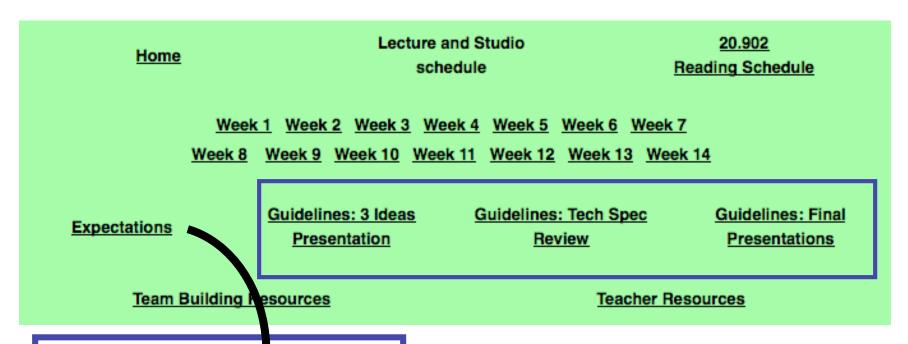
11:30-1

Start with challenge/puzzle/activity




Occasional homework




- How can biology be made easier to engineer?
- What are the consequences of success?
- How has nature solved physical challenges?
- In what ways does nature innovate?

Project

- 3 ideas presentation
- Tech spec review
- Final presentation

60%, team grades

Guidelines: Tech Spec Review Guidelines: Final Presentations

Project

- 3 ideas presentation
- Tech spec review
- Final presentation

60%, team grades

Personal Design Portfolio

25%, individual grades

Project Development Ntbk

10%, team grades

Instructor Leverage

5%, individual grades

Home

Lecture and Studio schedule

20.902 Reading Schedule

Week 1 Week 2 Week 3 Week 4 Week 5 Week 6 Week 7

Week 8 Week 9 Week 10 Week 11 Week 12 Week 13 Week 14

Expectations

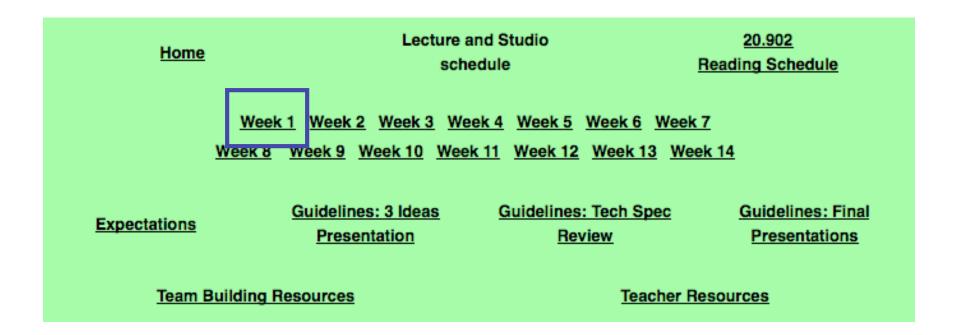
Guidelines: 3 Ideas
Presentation

Guidelines: Tech Spec Review Guidelines: Final Presentations

Team Building Resources

Teacher Resources

Part 1: Readings


- Paper 1 (10%): presented with a partner
- Paper 2 (15%): presented solo
- Response record (25%): your thoughts about the papers you don't present.

Instructions for these assignment are here

Part 2: Team Mentoring

- Progress reports (15%): one page summaries of your freshman team's work
- Mentoring journal(15%): one page summary of your freshman team's dynamics
- Team's project average (15%): based on the grade for the 3 major assignments submitted by your freshman team
- Instructor Leverage (5%): discretionary adjustment by NK

Instructions for these assignments are here

any ???s

Let's get building!!!

the end