
ILLUMINA READ DATA PARSING

ANDOLFATTO LAB

1. Background

1.1. What is read parsing? Read parsing is the process of extracting the sequencing
reads belonging to a particular project, or even a particular sample, from the complete read
set from a sequencing run. After you send your sample out for sequencing, the sequencing
facility will provide you with at least two FASTQ files, corresponding to all of the reads
(and corresponding index reads, see subsection 1.4) from a single run of the sequencer.

1.2. Why do we parse? For various reasons, including cost, it is beneficial to sequence
multiple individuals, and even multiple projects, in the same sequencing run (a process
known as multiplexing). However, we cannot just throw the DNA from all these individuals
straight into the same tube and expect to be able to tell which reads come from which
individuals. In order to distinguish the DNA from different individuals or projects, we
must add index adapters and/or barcode adapters to each sample prior to pooling . The
process of demultiplexing (aka read parsing) involves using the sequence information from
these adapters to separate reads by sample. Thus, we can sequence many samples in the
same run, and afterwards be sure which reads came from which sample.

1.3. How are sequencing libraries made? Illumina sequencing libraries are generally
prepared using one of two methods: TruSeq and Nextera. These two methods follow the
same general procedure of:

(1) Fragmenting the sample DNA (whether genomic DNA or cDNA)
(2) Ligating sequencing adapters (no PCR)
(3) Adding index adapters by PCR
(4) Quality control checking the fragment size of the library and concentration

The differences between these two methods are primarily in steps 1 and 2. In the An-
dolfatto lab, we often use customized protocols derived from either of these two methods.
Specifically, you will often hear the term Tn5 library used. This refers to a customized
version of the Nextera protocol, which uses the Tn5 transposome in order to fragment
the sample DNA (step 1). Because of the way the Tn5 transposome works, no barcode
adapters are used, and instead two sets of index adapters are used. If, instead, MseI is
used for fragmentation, barcode adapters are used with a single index adapter (the barcode
adapters identify individuals in a single 96-well plate, and the index adapter identifies the
plate and/or project).
Thus, generally a DNA fragment from a completed library will look like this:

1

2 ANDOLFATTO LAB

Figure 1. Typical library fragment, where the 3’ adapter is always an
index adapter, but the 5’ adapter may or may not be an index adapter.

1.4. Types of reads. Due to the way the Illumina HiSeq performs indexed sequencing, a
single run can produce between 2 and 4 FASTQ files, corresponding to 1-2 sequence reads
(1 for single-end, 2 for paired-end), and 1-2 index reads. All libraries prepared for use with
MSG are single-end libraries, so you will get 2-3 FASTQ files from the sequencing facility.
R1 (aka Read 1) is always the sequence read , and R2 and R3 (aka Reads 2 and 3, or Index
Reads 1 and 2) are always the index reads. Traditionally, the index adapters are referred
to as the i7 and i5 adapters (i7 is the 3’ adapter, and i5 is the index adapter version of the
5’ adapter). According to the Illumina Dual-indexed sequencing User Guide[1], Index Read
1 (aka R2) thus contains the i7 index sequence, and Index Read 2 (if it exists) contains the
i5 index sequence.

2. Pre-parsing information to gather

Prior to submitting your samples for sequencing, you should record several pieces of
information critical to proper demultiplexing:

(1) Knowledge of which library preparation protocol you used
(2) A file of some kind specifying which combinations of indices and barcodes corre-

spond to which samples
(3) A rough idea of how many reads you expect per sample

The library prep protocol used determines the number of index reads and the specific
index and barcode sequences used for demultiplexing. Often, the index adapters we use
correspond to standard Illumina adapters, so you can always look up the index sequences
using the Illumina Adapter Sequences Document[2].
This information helps tremendously in diagnosing parsing and sequencing problems. For
example, you can diagnose a problem with normalization during library pooling if there is a
mismatch between your expected number of reads per sample and the realized distribution.

3. Nomenclature

Here is a quick overview of what the different parts of commands in later sections imply:

\t

is the TAB character

https://support.illumina.com/content/dam/illumina-support/documents/myillumina/7f899767-773e-48d7-b03e-d126c80943dc/dualindexedlibraries_onhiseq_15032071_b.pdf
https://support.illumina.com/downloads/illumina-customer-sequence-letter.html

ILLUMINA READ DATA PARSING 3

\n

is the NEWLINE character, produced by pressing the ENTER key

[file name]

implies that you should substitute the appropriate file name in this position, e.g.

cp [file to copy] [place to copy it]

might become

cp /tigress/ANDOLFATTO/Sequencing_raw_data/MyReadSet_R1_001.fastq.gz \

/tigress/ANDOLFATTO/myname/myproject/

This type of text

typically implies commands to be run or the contents of a file

4. Parsing

4.1. Index Parsing. Index parsing consists of two simple steps that are repeated for every
pair of sequence read and index read:

(1) Scan the index/barcode file to match (allowing for n possible mismatches) the
current index read

(2) Output the sequence read to the appropriate sample file (and also output the index
read to its appropriate sample file)

The sequence read and index read files provided by the sequencing facility are always
line-matched. This implies that the first sequence read corresponds with the first index
read, the second sequence read corresponds with the second index read, and so on. Thus,
we can provide the barcode splitter.py script with the sequence read and index read
files, and a couple of other parameters including n, and it will iterate through these pairs,
splitting the sequence and index reads into individual files per index sequence. That is, if
index sequence ATACGT, found as the first index read, corresponds to sample 1, and index
sequence CTTAGA, found as the second index read, corresponds to sample 2, then sequence
read 1 will be placed in the sample 1 sequence read file, and sequence read 2 will be placed
in the sample 2 sequence read file.

Table 1. Example of how index matching works for the i5 parsing com-
mand in subsection 4.2

Sequence read Index read Matched Index Index ID Output file for sequence read
ACGTATCCGA ATACGT ATACGA Plate1 Plate1 read 1.fastq.gz
TTAGCGCGTA CTTAGA CTTACA Plate2 Plate2 read 1.fastq.gz
TTCACTCAGG ATACGG ATACGA Plate1 Plate1 read 1.fastq.gz
AGGGATTCTC ATTACA CTTACA Plate2 Plate2 read 1.fastq.gz
CGGATTATCG CTTACA CTTACA Plate2 Plate2 read 1.fastq.gz

4 ANDOLFATTO LAB

4.2. Tn5 Libraries. Tn5 libraries generally have two sets of index reads, R2 and R3,
corresponding to the i7 and i5 indices, respectively. Index parsing requires an index file
conforming to the following format:

[index ID]\t[index sequence]\n

Thus, a typical i5 index file will look like:

i5_1\tGGAGGTTT\n

i5_2\tAACGCCAA\n

i5_3\tGCGCTGAT\n

i5_4\tCCTATTTA\n

i5_5\tCCGAGATC\n

i5_6\tATTATTCG\n

i5_7\tCATGCTGC\n

i5_8\tTAGATCAA\n

i5_9\tAATATGAC\n

i5_10\tACGTAAAC\n

i5_11\tAGGGTAAA\n

i5_12\tGATTACTT\n

As discussed above, barcode splitter.py allows for index matching within a certain
number of mismatches we called n. This same n is used in all calls to barcode splitter.py

below as the argument to the “--mismatches” parameter. In order to parse Tn5 libraries
into plates, we must parse all three read files using the R3 (i.e. i5) indices using the
following command (path is specific to Malinche; see the subsection on Della/Tigress paths
for Della):

/home/guest/bin/barcode_splitter.py --mismatches=[n] --idxread=3 --gzip \

--suffix=".fastq.gz" --bcfile=[i5 index file] [R1 file] [R2 file] [R3 file]

This will produce a set of 3 files for each index in the i5 index file, corresponding to the
R1, R2, and R3 reads associated with that i5 index. Of course, that means the R3 files are
not useful to the end-user after i5 parsing.

After parsing by i5 index, we must parse each pair of i5-parsed R1 and R2 files by their
i7 indices using the following command (again, path is specific to Malinche):

/home/guest/bin/barcode_splitter.py --mismatches=[n] --idxread=2 --gzip \

--suffix=".gz" --bcfile=[i7 index file] [i5-parsed R1 file] [i5-parsed R2 file]

This will produce a set of 2 files for each index in the i7 index file, corresponding to the
R1 and R2 reads associated with that i7 index.

ILLUMINA READ DATA PARSING 5

Note that if the i5 index file has p lines, and the i7 index file has q lines, this
will produce p× q R1 files, ignoring the “unmatched” files.

Also note that the final R1 files often need to be renamed and processed (e.g.
adapter and/or quality trimming) for further analysis pipelines, like MSG.

4.3. Barcode Parsing. The distinction between a barcode and an index is often ignored,
but is very important during demultiplexing. Barcode adapters are prepended to the ge-
nomic sequence by ligation and contain a pre-defined sequence called the linker , whereas
index adapters are generally PCRed.

Why does this matter? Well, for the sequencer, it means the barcode sequence is not as
easily distinguished from the genomic read (since it is not sequenced separately), and so we
need to computationally remove the barcode sequence and the linker region simultaneously
to demultiplex individuals from a plate.

What do barcoded libraries look like? Take a look:

Figure 2. A typical fragment from a barcoded library. Note the position
of the sequencing adapter 5’ of the barcode, linker, and genomic sequence
such that the sequence read (R1) captures them all.

4.4. MseI Libraries. MseI libraries are prepared by performing a restriction digest of
genomic DNA using the MseI enzyme, which recognizes the sequence:

5’-T^TAA-3’

3’-AAT^T-5’

In order to incorporate these sticky-end fragments into a library, we use adapters with
complementary sticky ends, namely the barcode adapters, and FC2 adapters. The FC2
adapters are specially-modified i7 adapters, so it is important to make sure that the index
sequence of the FC2 adapter you use is NOT the same as ANY i7 index sequence in
ANY other library being sequenced in the same lane. This is because MseI libraries do
not use an i5 adapter, so R3 will be gibberish for MseI library reads.

Clearly there are only a few FC2 adapters (around 12), so these are used to identify
96-well plates. To identify the well within a 96-well plate, we use barcode adapters. Each
individual is uniquely identified by a combination of i7 index sequence and barcode se-
quence. So when parsing MseI libraries from a run, the first task is i7 parsing, to isolate

6 ANDOLFATTO LAB

the MseI library from all other libraries in the lane.

Once the MseI plate is parsed out, we use a script specially written for the barcode
adapters used here in the Andolfatto lab (and more specifically, designed for MSG library
preparations) called parse BCdata2BWA.pl in order to demultiplex by barcode, and strip
the sequence reads (R1) down to only the genomic read after the MseI cut site. That is, the
script scans each read for the linker region sequence, and upon recognition, searches for the
barcode sequence. When the barcode sequence is matched, the script deletes the barcode,
linker, and restriction site from the read, leaving only the genomic read, and places this in
the appropriate file for that individual.

Incidentally, as this script is intended for use with MSG, it produces files formatted for
MSG (e.g. indiv15 AGTTCT), and an extra set of files used to compile parsing statistics
(e.g. junk, bad barcodes, etc.).

5. Recommendations

5.1. Quality Control. Quality control should be performed after parsing, but may addi-
tionally be performed prior to parsing. This involves checking for biases in the sequencing
data or quality scores, typically using FastQC[3]. FastQC is available on both Malinche
and Della/Tigress (see section 7).

5.2. Pre-parsing. One of the simplest diagnostics possible prior to parsing is to generate
a sorted histogram of various indices and compare these read counts to your expected read
counts. For instance, generating a sorted histogram of i5 indices and comparing the results
to expected read counts per plate can quickly show that a plate was not pooled properly,
or did not sequence successfully. The same can be done for i7 indices after i5 parsing to see
if individuals from a plate had the aforementioned problems, or before i5 parsing to see if
other sequencing or library preparation problems occurred. A quick script for generating
histograms for n = 0 is:

zcat [gzipped FASTQ file] | awk ’NR%4==2’ | sort | uniq -c | sort -k1nr \

> [histogram TSV file]

5.3. During parsing. One minor but potentially important strategy to maximize the
yield of demultiplexing is to perform a second round of parsing on the “unmatched” files.
Oftentimes, it is easiest to do a first pass demultiplexing with “--mismatches=0”, and then
perform a second round of parsing on the unmatched reads while increasing n. It may also
be useful to perform i7 parsing on the i5 unmatched, then i5 parsing on the results of the
i7 parsing, since the i7 parsing filters out most of the i5 noise.

5.4. Post-parsing. Most downstream analysis pipelines require that the raw reads pro-
duced by demultiplexing be adapter and/or quality trimmed. In the Andolfatto lab, we use
TQSfastq gz.py for quality trimming, using a threshold of quality score Q20 over 30 consec-
utive bases (i.e. the output files will have an additional suffix “ T20C30.trim.fastq.gz”).

ILLUMINA READ DATA PARSING 7

The command for quality trimming is thus (on Malinche):

/home/guest/bin/TQSfastq_gz.py -f [FASTQ file] -q -t 20 -c 30 -z

A consensus has yet to be reached regarding adapter trimming software, but cutadapt and
its wrapper Trim Galore! are suggested.

6. Troubleshooting

6.1. barcode splitter.py is taking a long time. If barcode splitter.py is taking
longer than a day to parse your Illumina data, you may have run into the pathological
case for that program, where none or very few of the index reads match your barcode list.
barcode splitter.py is very slow when it has to add the majority of your reads into the
unmatched read [123].fastq.gz files, and this also indicates something is wrong with
your barcode file. The most common error here is putting the reverse complement of the
index into your barcode file, which generally only happens for the i7 parsing step. Recalling
that the i7 adapter sequence’s 5‘ end attaches to the 3‘ end of the genomic DNA insert,
the i7 index is sometimes reported in the 5‘ to 3‘ direction. However, when Index Read 1
(aka Read 2) occurs, the sequencing primer binds on the opposite strand, so your i7 index
read will actually be the reverse complement of the reported i7 index sequence.

Thus, the simple solution is to reverse complement all of the index sequences in your i7
barcode file, and re-run the i7 parsing step.

You should be able to tell if reverse complementing is a problem even before i7 parsing
by generating a histogram of the i7 index reads, and comparing this to your i7 barcode
file. Thus, it is ALWAYS recommended that you generate at least one i5 histogram and
one i7 histogram before performing the associated parsing, and cross-validate your barcode
files against these histograms.

7. Program paths

7.1. Malinche.

• FastQC: /home/guest/bin/FastQC/fastqc
• barcode splitter.py: /home/guest/bin/barcode splitter.py

• TQSfastq gz.py: /home/guest/bin/TQSfastq gz.py

7.2. Della/Tigress.

• FastQC: /tigress/ANDOLFATTO/bin/FastQC/fastqc
• barcode splitter.py: /tigress/ANDOLFATTO/patrick/barcode splitter.py

• TQSfastq gz.py: /tigress/ANDOLFATTO/bin/TQSfastq gz.py

• parse BCdata2BWA.pl: /tigress/ANDOLFATTO/MSG.custom/msg/parse BCdata2BWA.pl

• cutadapt (version 1.7.1): /tigress/ANDOLFATTO/bin/cutadapt-1.7.1/bin/cutadapt
• Trim Galore! (version 0.4.0): /tigress/ANDOLFATTO/bin/trim galore zip/trim galore

8 ANDOLFATTO LAB

8. Glossary

• Adapter: A piece of DNA ligated or PCRed onto the end of a DNA fragment,
containing specialized sequence used by the sequencer (e.g. to attach the fragment
to the flowcell, or bind the sequencing primer)

• Barcode: A short DNA sequence near the linker region of the sequencing adapter
that is used (often in combination with an index) to identify the sample of origin

• Barcode adapter: A special type of sequencing adapter that contains a sequenc-
ing primer binding site, barcode sequence (usually 6 bp), and linker

• Index: A short DNA sequence within the index adapter that is used to identify the
sample or project of origin; multiple indices (indexes) can be used combinatorically
to multiplex a large number of samples

• Index adapter: A special type of adapter that contains a binding site for the
index read sequencing primer followed by the index sequence (6-8 bp), and some
extra sequence for binding to the sequencing adapter

• Index read: A read produced by the sequencer that contains an index sequence;
the FASTA/Q header of an index read matches the FASTA/Q header of its corre-
sponding sequence read (except for a one-character difference)

• Linker: A segment of DNA used to connect a complementary sticky end (for
ligation to restriction enzyme-cut genomic DNA or cDNA) with the sequencing
adapter; the final pattern is: sequencing adapter-¿barcode-¿linker-¿sticky end-
¿genomic DNA or cDNA

• Multiplexing: Combining sequencing libraries from multiple samples, identify-
ing the samples with a combination of index adapters (and sometimes barcode
adapters)

• Read parsing: (aka demultiplexing) Using index (and sometimes barcode) se-
quences to separate out the sequence reads corresponding to different samples from
the main sequence read file from the sequencer

• Pooling: The physical process of combining multiple sequencing libraries into a
single tube or well

• Sequence read: A read produced by the sequencer that contains the sequence of
genomic or cDNA of interest; may also contain the barcode sequence and a linker
sequence, if a barcode adapter was used

References

[1] Illumina. Sequencing Dual-Indexed Libraries on the HiSeq System - User Guide;. Available
from: https://support.illumina.com/content/dam/illumina-support/documents/myillumina/

7f899767-773e-48d7-b03e-d126c80943dc/dualindexedlibraries_onhiseq_15032071_b.pdf.
[2] Illumina. Illumina Adapter Sequences;. Available from: https://support.illumina.com/downloads/

illumina-customer-sequence-letter.html.
[3] Andrews S. FastQC: A quality control tool for high throughput sequence data.;. Available from: http:

//www.bioinformatics.babraham.ac.uk/projects/fastqc/.

https://support.illumina.com/content/dam/illumina-support/documents/myillumina/7f899767-773e-48d7-b03e-d126c80943dc/dualindexedlibraries_onhiseq_15032071_b.pdf
https://support.illumina.com/content/dam/illumina-support/documents/myillumina/7f899767-773e-48d7-b03e-d126c80943dc/dualindexedlibraries_onhiseq_15032071_b.pdf
https://support.illumina.com/downloads/illumina-customer-sequence-letter.html
https://support.illumina.com/downloads/illumina-customer-sequence-letter.html
http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
http://www.bioinformatics.babraham.ac.uk/projects/fastqc/

	1. Background
	1.1. What is read parsing?
	1.2. Why do we parse?
	1.3. How are sequencing libraries made?
	1.4. Types of reads

	2. Pre-parsing information to gather
	3. Nomenclature
	4. Parsing
	4.1. Index Parsing
	4.2. Tn5 Libraries
	4.3. Barcode Parsing
	4.4. MseI Libraries

	5. Recommendations
	5.1. Quality Control
	5.2. Pre-parsing
	5.3. During parsing
	5.4. Post-parsing

	6. Troubleshooting
	6.1. barcode_splitter.py is taking a long time

	7. Program paths
	7.1. Malinche
	7.2. Della/Tigress

	8. Glossary
	References

