

1 **Experimental evidence and isotopomer analysis of mixotrophic**
2 **glucose metabolism in the marine diatom *Phaeodactylum***
3 ***tricornutum***

4

5 **Yuting Zheng[#], Andrew H. Quinn[#] and Ganesh Sriram^{*}**

6 Department of Chemical and Biomolecular Engineering, University of Maryland, College Park,
7 MD 20742, USA

8

9 [#]These two authors contributed equally to this work and are listed in the order in which they
10 joined the project.

11

12 ***Corresponding author:** Ganesh Sriram

13 1208D, Chemical and Nuclear Engineering Building 090, College Park, MD 20742

14 Phone: +1 301 405-1261; Fax: +1 301 405-0523; Email: gsriram@umd.edu

15

16 **Running head:** Isotopomer evidence for glucose metabolism in *Phaeodactylum tricornutum*

17 **Abstract**

18 **Background:** Heterotrophic fermentation using simple sugars such as glucose is an
19 established and cost-effective method for synthesizing bioproducts from bacteria, yeast and
20 algae. Organisms incapable of metabolizing glucose have limited applications as cell factories,
21 often despite many other advantageous characteristics. Therefore, there is a clear need to
22 investigate glucose metabolism in potential cell factories. One such organism, with a unique
23 metabolic network and a propensity to synthesize highly reduced compounds as a large fraction
24 of its biomass, is the marine diatom *Phaeodactylum tricornutum* (Pt). Although Pt has been
25 engineered to metabolize glucose, conflicting lines of evidence leave it unresolved whether Pt
26 can natively consume glucose.

27 **Results:** Isotope labeling experiments in which Pt was mixotrophically grown under light on
28 100% U-¹³C glucose and naturally abundant (~99% ¹²C) dissolved inorganic carbon resulted in
29 proteinogenic amino acids with an average ¹³C-enrichment of 88%, thus providing convincing
30 evidence of glucose uptake and metabolism. The dissolved inorganic carbon was largely
31 incorporated through anaplerotic rather than photosynthetic fixation. Furthermore, an isotope
32 labeling experiment utilizing 1-¹³C glucose and subsequent metabolic pathway analysis
33 indicated that (i) the alternative Entner-Doudoroff and Phosphoketolase glycolytic pathways are
34 active during glucose metabolism, and (ii) during mixotrophic growth, serine and glycine are
35 largely synthesized from glyoxylate through photorespiratory reactions rather than from 3-
36 phosphoglycerate. We validated the latter result for mixotrophic growth on glycerol by
37 performing a 2-¹³C glycerol isotope labeling experiment. Additionally, gene expression assays
38 showed that known, native glucose transporters in Pt are largely insensitive to glucose or light,
39 whereas the gene encoding cytosolic fructose bisphosphate aldolase 3, an important glycolytic
40 enzyme, is overexpressed in light but insensitive to glucose.

41 **Conclusion:** We have shown that Pt can use glucose as a primary carbon source when grown
42 in light, but cannot use glucose to sustain growth in the dark. We further analyzed the metabolic
43 mechanisms underlying the mixotrophic metabolism of glucose and found isotopic evidence for
44 unusual pathways active in Pt. These insights expand the envelope of Pt cultivation methods
45 using organic substrates. We anticipate that they will guide further engineering of Pt towards
46 sustainable production of fuels, pharmaceuticals, and platform chemicals.

47 **Keywords**

48 *Phaeodactylum tricornutum*; glucose; mixotrophy; isotope labeling; metabolic pathway analysis;
49 Entner-Doudoroff.

50 **1. Background**

51 The search for robust platform organisms suitable for manufacturing economically valuable
52 compounds such as fuels, commodity chemicals, pharmaceuticals and dietary supplements has
53 increasingly turned to unicellular algae. These eukaryotes naturally synthesize many high-value
54 compounds commonly found in plants whilst also displaying the high growth rates and scale-up
55 characteristics of bacteria and yeast. One model species is the marine diatom *Phaeodactylum*
56 *tricornutum* (Pt). Apart from their unique capability to incorporate silica into their cell walls [1],
57 diatoms also synthesize copious amounts of lipids. Pt typically produces lipids up to 30% of its
58 dry weight [2], nearly 40% of which is the nutritional supplement ω -3-eicosapentaenoic acid [3,
59 4]. This high lipid content is indicative of significant reductive potential, which has been
60 harnessed through genetic engineering to produce the bioplastic poly-3-hydroxybutyrate (PHB)
61 in large quantities, up to 11% of dry weight [5].

62 Evidencing the potential of Pt as a cell factory, recent research has suggested or uncovered
63 unique metabolic pathways and combinations of pathways previously unseen in unicellular
64 photosynthetic organisms [6–8, 9]. For instance, sequencing of the Pt genome revealed that
65 7.5% of the genome is of bacterial origin, suggesting the acquisition of many pathways through
66 lateral gene transfer [6]. An investigation of nitrogen metabolism in Pt determined that this
67 organism operates a urea cycle for nitrogen assimilation, contrasting with the nitrogen-
68 eliminating function of the urea cycle in metazoans. However, despite recent advances in
69 understanding and utilizing Pt, several fundamental biological questions still remain
70 unanswered.

71 One question that first arose in the late 1950s is whether Pt can metabolize glucose. The
72 answer is relevant for utilizing Pt as a cell factory, because heterotrophic fermentation using
73 simple sugars such as glucose remains the most cost effective bioproduction strategy, largely

74 due to the significant challenges in optimizing photobioreactors and race ponds for phototrophic
75 growth [10–12].

76 Multiple research groups have reported that Pt cannot grow heterotrophically on glucose in the
77 dark, and that mixotrophic growth on glucose does not noticeably increase growth rates under
78 light [13–15]. On addition of ^{14}C glucose to Pt cultures under light and dark conditions minimal
79 radioactivity was observed in the cell extract after 1–48 h, suggesting that Pt may be
80 impermeable to glucose. These experiments give the impression that Pt does not uptake or
81 metabolize glucose. On this basis, Zaslavskaia et al. [16] engineered *Pt* to express the human
82 glucose transporter protein GLUT1. The transformants exhibited glucose uptake as well as
83 growth on glucose in both light and dark, in contrast to wild type or empty vector control lines
84 that neither grew in the dark, nor appeared to consume glucose.

85 Conversely, many researchers have reported results suggesting that Pt may natively consume
86 and metabolize glucose. For example, one study [17] found that the provision of glucose
87 enhanced the growth rate by 27%, increased the respiration rate by 46% and decreased the net
88 maximum photosynthetic rate by only 3%. This suggests that some glucose was respired for
89 ATP production [17]. A separate study [18] found that the supply of 5 g L⁻¹ glucose increased
90 maximum biomass productivity and maximum biomass concentration by 43% and 49%,
91 respectively.

92 Given this conflicting evidence, the question of glucose metabolism by Pt needs to be
93 addressed by convincing molecular evidence. A unique methodology available for resolving this
94 problem is the isotope labeling experiment (ILE), wherein organic carbon sources such as
95 glucose containing different isotopes (“labels”) of carbon (e.g. ^{13}C and ^{12}C) are supplied to a cell
96 culture. The incorporation of the labeled carbon source into metabolites and biomass
97 components such as proteinogenic amino acids will produce unique ^{13}C - ^{12}C patterns or
98 isotopomers, which can be detected by measuring mass isotopomer distributions (MIDs) of the

99 metabolites or biomass components. Furthermore, analysis of the isotopomer data by metabolic
100 pathway analysis (MPA) will also enable identification of carbon partitioning and flux through
101 metabolic pathways [19–21].

102 Apart from determining whether Pt consumes glucose, it is also necessary to identify the
103 metabolic pathways Pt uses to convert glucose to biomass and products. Annotation of the Pt
104 genome revealed two alternate glycolytic pathways of bacterial origin in addition to the
105 conventional reactions of the Embden-Meyerhof-Parnas (EMP) pathway [9]. Of these, the
106 Entner-Doudoroff (ED) pathway splits one molecule of 6-phospho-D-gluconate to one molecule
107 of pyruvate and one molecule of glyceraldehyde-3-phosphate, whereas the phosphoketolase
108 (PPK) pathway converts one molecule xylulose-5-phosphate to glyceraldehyde-3-phosphate and
109 acetylphosphate, which subsequently forms acetyl-CoA. It is important to resolve the carbon
110 partitioning between these three pathways to develop genetic engineering strategies for
111 improved product yield from organic carbon sources. As an example of the potential benefits of
112 the ED and PPK pathways for cell factories, these pathways have each been utilized to
113 enhance production of PHB in bacteria [22] and yeast [23] by increasing the availability of
114 acetyl-CoA and NADPH for PHB biosynthesis. Therefore, determining the role of the glycolytic
115 pathways in Pt could lead to strategies for enhanced production of PHB and other economically
116 attractive compounds.

117 This article reports various ILEs and MPA that evidence glucose consumption and metabolism
118 by wild type Pt cultures grown under light. Isotopomer analysis revealed that in mixotrophic
119 cultures receiving glucose and dissolved inorganic carbon as carbon sources, glucose
120 accounted for at least 90% of the carbon assimilated into cellular amino acids, the remaining
121 10% being derived from dissolved inorganic carbon. Furthermore, MPA revealed that the ED
122 pathway is active in glucose metabolism, and that glycine and serine are largely synthesized
123 from glyoxylate through photorespiratory reactions rather than from the EMP pathway

124 metabolite 3-phosphoglycerate. Additionally, gene expression measurements suggested that
125 glucose transporters may not be regulated to enable glucose uptake, but fructose-bisphosphate
126 aldolase 3 (Fba3), a rate-limiting step of the EMP pathway, is transcriptionally activated by light,
127 perhaps to facilitate glucose metabolism.

128 **2. Results**

129 To test our hypothesis that Pt metabolizes glucose, we grew Pt cultures for 21 d on media
130 supplemented with 1.917 ± 0.012 g L⁻¹ of U-¹³C glucose under both light and dark, and
131 examined if the supplied ¹³C label appeared in biomass components of Pt. In accordance with
132 previously reported results [13–15], cultures kept in the dark exhibited no growth (Supplemental
133 **Figure S1**); therefore, only cultures grown under light were analyzed for ¹³C-enrichment and
134 glucose consumption. Toward this, we harvested biomass at the end of the 21-d steady state
135 ILE (Supplemental **Figure S2**), acid-hydrolyzed the biomass to degrade cellular protein to
136 amino acids and measured the ¹³C enrichments of the amino acids by mass spectrometry (MS).
137 We also analyzed the media and found that the final glucose concentration was 0.791 ± 0.008 g
138 L⁻¹, indicating that 59% of the glucose was consumed. Furthermore, on finding evidence of
139 mixotrophic glucose metabolism, we employed MPA to identify the metabolic pathways through
140 which glucose is metabolized. **Figure 1** depicts a diagram of potential metabolic pathways
141 including the EMP, the pentose phosphate pathway (PPP), the tricarboxylic acid (TCA) cycle,
142 anaplerosis, glyoxylate shunt and RuBisCO-mediated photosynthesis. The 15 proteinogenic
143 amino acids measured by us are synthesized from precursor metabolites belonging to these
144 pathways; therefore, the labeling patterns in these precursors can be retrobiosynthetically
145 evaluated from those of the amino acids [24]. In our analyses, we also considered the
146 alternative glycolysis pathways (PPK using both hexose and pentose substrates; ED) (**Figure 1**,
147 right).

148 **2.1 Carbon from U-¹³C glucose appears in proteinogenic amino acids of Pt**

149 The ILEs on U-¹³C glucose supplied oppositely labeled glucose (100% U-¹³C or 50% U-¹³C) and
150 dissolved inorganic carbon (naturally abundant; hence, 1.1% ¹³C). Therefore, the ¹³C
151 enrichments of amino acid fragments from these experiments can be used as indicators of the
152 extent to which the carbon atoms of glucose were assimilated into the amino acids. Amino acid
153 fragments from Pt cultures grown on 100% U-¹³C glucose were ¹³C-enriched to 88% ± 3%
154 (average across 38 fragments), whereas fragments from cultures grown on 50% U-¹³C glucose
155 enriched to 45% ± 1% (average across 41 fragments) (Figure 2). These enrichments are
156 substantially higher than the 1.1% enrichment expected if Pt solely consumed dissolved
157 inorganic carbon. In fact, these enrichments are close to those expected (100% and 50%) if Pt
158 solely consumed glucose.

159 In these U-¹³C glucose ILEs, substantial metabolism of glucose can be expected to give a
160 nearly uniform distribution of the ¹³C label throughout the central metabolic network. In support
161 of this, the ratios of the ¹³C enrichments of different amino acid fragments in the 100% U-
162 ¹³C:50% U-¹³C glucose ILEs are generally equal to 100%:50% or 2:1. For example, the
163 enrichment ratios of entire amino acid molecules originating in upper glycolysis and the PPP
164 were 89%:45% (histidine) and 89%:45% (phenylalanine). For amino acids originating in lower
165 glycolysis, the ratios were 91%:46% (alanine) and 89%:45% (valine). Amino acids originating in
166 the TCA cycle displayed the ratios 87%:44% (methionine) and 88%:44% (glutamate).

167 Although a majority of the amino acid fragments showed nearly uniform ¹³C enrichments in the
168 two U-¹³C ILEs, some fragments derived from oxaloacetate and α -ketoglutarate that contained
169 carbon fixed through anaplerotic reactions were enriched to lower extents. Given that the initially
170 present, unlabeled cell mass constituted 2% of the final mass (measurements not shown), the
171 remaining ~10% of unlabeled carbon in the 100% U-¹³C glucose ILE could only have been
172 assimilated from dissolved inorganic carbon, which was ultimately derived from atmospheric,

173 naturally abundant CO₂. Pt assimilates inorganic carbon through two mechanisms: direct,
174 RuBisCO-mediated photosynthesis or anaplerotic fixation mediated by multiple reactions
175 including phosphoenolpyruvate carboxylase (Zheng Y and Sriram G, unpublished data). The
176 latter mechanism incorporates naturally abundant carbon into the oxaloacetate C-4, which is
177 then transferred to α -ketoglutarate C-1 through the TCA cycle. Below, we use an isotopomer
178 notation wherein boldfaced numbers denote ¹³C and numbers in regular font represent ¹²C;
179 thus, glutamate{12345} represents a glutamate isotopomer with ¹²C at C-1 and ¹³C at C-2 to C-
180 5. In our dataset (Figure 2), the anaplerotic mechanism was supported by the higher ¹³C-
181 enrichment of the glutamate{2345} fragment compared to the enrichment of the
182 glutamate{12345} fragment. The abundance of glutamate{12345} as calculated from the MID
183 data by singular value decomposition (SVD) was substantial (22% \pm 3%). This indicates that the
184 ¹²C dilution of some amino acids synthesized from TCA cycle metabolites was primarily the
185 result of ¹²CO₂ incorporation by anaplerotic reactions. In comparison, RuBisCO fixes inorganic
186 carbon through a series of plastidic reactions onto C-1 of valine. The abundance of
187 valine{12345} was significantly lower (3% \pm 1%) than that of glutamate, which indicates that
188 during mixotrophic growth on glucose, the anaplerotic reactions assimilate more carbon than the
189 photosynthetic reactions.

190 **2.2 MPA of a 100% 1-¹³C glucose ILE reveals flux through the ED pathway**

191 Our initial MPA focused on constructing a flux map by using a commonly observed set of central
192 carbon metabolic pathways prevalent in most plants and algae [25–27]. This set included the
193 EMP pathway, the PPP, the TCA cycle, RuBisCO-mediated photosynthesis and anaplerotic
194 fixation of unlabeled inorganic carbon. However, the goodness-of-fit for these models, as
195 quantified by the sum of squared residuals (SSR) between the measured MIDs and MIDs
196 simulated by the model, was well above the statistically acceptable threshold. Therefore, we
197 constructed a series of nine metabolic models containing combinations of various catabolic

198 pathways identified in the annotated Pt genome, so that we could identify (a) set(s) of pathways
199 that would account for the experimental isotope labeling patterns. All models were evaluated by
200 using SSR as an acceptability criterion. See Sec. 5.5 for further details.

201 We limited our models to simulate the confirmed cytosolic and mitochondrial amino acids from a
202 100% 1^{13}C glucose ILE, because amongst the glucose labels used, 1^{13}C glucose has a higher
203 information yield than U^{13}C glucose for a network consisting of glycolysis and related pathways
204 [27]. Additionally, we wanted to eliminate errors from amino acids with identical precursors but
205 different MIDs due to differing compartmentalization. The entire metabolic network is shown in
206 **Figure 3**, with each constituent pathway distinguished by color. **Models I-IX** contain different
207 combinations of pathways, as specified in **Figures 4a and 5a**. A simple model, **Model I**,
208 encompassed only the EMP and PPP pathways. This model simulated the MIDs of serine,
209 glycine and alanine, comprising 22 redundant mass isotopomers. **Model I** yielded an SSR of 87
210 (**Figure 4b**), which is much higher than the statistically acceptable SSR of 37 corresponding to
211 the set of 22 mass isotopomers. The two alanine fragments contributed a majority (58%) of this
212 SSR (Supplemental **Figure S3**), specifically because this model was unable to mimic the high
213 measured abundance of alanine{123}. The inability of the Model I to account for the isotopomer
214 data is evident from the carbon atom rearrangements in **Figure 4c** (dark blue squares denote
215 ^{13}C atoms). Processing of 1^{13}C glucose by the EMP pathway or the PPP results in
216 alanine{123}. In contrast, the ED pathway cleaves the first three carbons of glucose directly to
217 pyruvate yielding the alanine{123} isotopomer that we experimentally observed. Therefore, we
218 extended Model I by incorporating the ED pathway, resulting in **Model II**. This extension
219 reduced the SSR from 87 in **Model I** to 42 in **Model II** (**Figure 4b**). The improvement of **Model II**
220 over **Model I** is evident from a comparison of measured and simulated isotopomers of alanine
221 (**Figure 4d**).

222 We further extended **Models I** and **II** by including the TCA cycle and anaplerotic fixation of a
223 mixture of atmospheric $^{12}\text{CO}_2$ and $^{13}\text{CO}_2$ generated from multiple intracellular decarboxylation
224 reactions. The resulting **Models III** and **IV** simulated the MIDs of aspartate and glutamate in
225 addition to alanine, serine and glycine, which summed to 45 redundant mass isotopomers,
226 corresponding to a statistically acceptable SSR of 65. Just as in **Models I** and **II**, including the
227 ED pathway in **Model IV** significantly increased the fit compared to **Model III**. In this case, the
228 decrease in the SSR from 222 in **Model III** to 50 in **Model IV** was due to an increased fit of all
229 the amino acid fragments with the exception of Gly{2} (**Figure 4b**).

230 The first four models consistently under-simulated the ^{13}C -enrichment of glycine C-2. As shown
231 in **Figure 5d**, higher enrichments of glycine C-2 are possible if a combination of the PPK and
232 the glyoxylate shunt are active. In this situation, ribose-5-phosphate is labeled at C-1 through
233 the transketolase reaction in the PPP/Calvin cycle. The glyoxylate shunt in combination with
234 anaplerotic reactions allows for the C-2 label to reach glycine. Adding the PPK and the
235 glyoxylate shunt in **Model V** to the previous reactions from **Model III** partially corrected this error
236 and lowered the SSR in the glycine and serine fragments from 33 to 20 (**Figure S3**). Though the
237 SSR decreased from 222 in **Model III** to 132 in **Model V**, it was still high in comparison to
238 **Model IV**. This suggested that while the PPK pathway helps fit the isotopomers of glycine and
239 serine, the ED pathway is important for achieving an acceptable fit. We assumed in **Models I**
240 to **V** that serine and glycine were synthesized from 3-phosphoglycerate; however, they can be
241 synthesized from glyoxylate via alanine-glyoxylate aminotransferase (AGAT) and serine
242 hydroxymethyltransferase (SHMT) as shown in **Figure 5c**. We dramatically reduced the SSR to
243 an acceptable value of 30 in **Model VI** by including these reactions along with the ED and PPK
244 pathways.

245 While **Model VI** fit the experimental MIDs extremely well, the high ^{13}C -enrichment on C-1 of
246 alanine that the ED pathway successfully mimicked could also result from anaplerotic carbon

247 fixation or photosynthesis. This would indicate that Pt generates a significant amount of labeled
248 $^{13}\text{CO}_2$ intracellularly from decarboxylation reactions, which it then recycles through either of the
249 carbon fixation mechanisms (**Figures 5e and 5f**; light blue squares represent a mixture of $^{12}\text{CO}_2$
250 and $^{13}\text{CO}_2$). Anaplerotic $^{13}\text{CO}_2$ fixation manifests on C-1 of glutamate, which was enriched to
251 6%. This was far less than the 15% enrichment of Alanine{123}, indicating that anaplerotic
252 fixation alone could not account for the labeling patterns of alanine. A combination of
253 photosynthetic and anaplerotic fixation was also ruled out by **Model VII**, which lacked the ED
254 and PPK pathways and yielded a high SSR of 221. We were able to produce a nearly
255 acceptable simulation without the ED or PPK pathways in **Model VIII**. This model added
256 photorespiration, with serine and glycine synthesized from glyoxylate, to the pathways in **Model**
257 **VII**. This lowered the SSR to 84; however, it was still above the acceptable value of 65. Finally,
258 we constructed **Model IX** with all of the pathways used in previous models. This model yielded
259 nearly identical results as **Model VI**, with an SSR of only 27.

260 The average flux values for the three models that met the SSR acceptability criteria (**Models IV**,
261 **VI** and **IX**), calculated from 100 perturbed simulations, diverged due to significant differences in
262 their metabolic pathways. Despite these discrepancies, we noticed a number of trends
263 consistent across all three models. Both the lower and the upper portions of the EMP pathway
264 operated in the reverse direction in nearly all of our simulations, meaning that all of the carbon
265 directed towards acetyl-CoA flowed through the ED or PPK pathways. **Table 1** lists the fluxes of
266 the ED pathway, the PPK pathway and the oxidative PPP towards the total flux to acetyl-CoA as
267 well as the ratio of the fluxes through the ED and EMP pathways. The ED pathway contribution
268 to acetyl-CoA synthesis steadily decreased from 100% in **Model IV** to $33\% \pm 22\%$ in **Model IX**,
269 which corresponded to an increase in metabolic cycling as evidenced by the decrease in the
270 ratio of the forward ED pathway flux to the reverse EMP flux from $75\% \pm 12\%$ in **Model IV** to
271 $44\% \pm 13\%$ in **Model IX**.

272 **2.3 Glycine and serine are predominantly produced from glyoxylate rather than 3PG**

273 Our models consistently explained isotopomer data if they included a biosynthetic route for

274 glycine and serine from glyoxylate via the photorespiratory reactions AGAT and SHMT. This

275 contrasts with the conventional biosynthesis of glycine and serine from 3-phosphoglycerate.

276 Particularly, the ^{13}C enrichments on C-2 of both amino acids was unexpectedly high (**Figure**

277 **5g**). To test if serine and glycine can be synthesized under mixotrophic conditions from

278 glyoxylate in addition to 3-phosphoglycerate, we grew Pt cultures on 100% 2- ^{13}C glycerol. An

279 examination of carbon atom rearrangements indicated that synthesis of serine from 3-

280 phosphoglycerate via phosphoserine transaminase (PSAT) would yield serine{123}. Conversely,

281 synthesis from glyoxylate would yield serine{123} due to the loss of pyruvate{1} during

282 decarboxylation to acetyl-CoA and subsequent transamination of glyoxylate to glycine (**Figure**

283 **6**). Isotopomer data from the 2- ^{13}C glycerol ILE revealed that as would be expected from

284 glycolytic processing of glycerol, the abundance of alanine{123} ($6\% \pm 1\%$) was much lower than

285 that of alanine{123} ($\leq 56\%$). However, the abundance of serine{123} ($24\% \pm 1\%$) was

286 substantially greater than that of alanine{123} and nearly equaled that of serine{123} ($25\% \pm$

287 1%). We determined the relative contributions of SHMT ($V_1 = 91\%$) and PSAT ($V_2 = 9\%$) towards

288 serine biosynthesis by assuming the MID of 3-phosphoglycerate equaled the MID of pyruvate

289 and solving:

$$290 \text{serine}\{123\}_i = V_1 \cdot \text{alanine}\{123\}_i + V_2 \cdot \text{glycine}\{123\}_j \cdot \text{MTHF}\{1\}_k; i = 1 \dots 8, j = 1 \dots 4, k = 1, 2$$

291 where the indices ***i***, ***j***, and ***k*** denote the individual isotopomers of each metabolite. Although we

292 assumed in our MPA that glycine was the only source of the methyl group transferred to

293 tetrahydrofolate (THF) via glycine decarboxylase (GDCH), there are other methyl group donor

294 reactions that form 5,10-methylene tetrahydrofolate (MTHF) from THF. Therefore, the ^{13}C -

295 enrichment of this transferred methyl group was allowed to freely vary along with V_1 and V_2

296 when we minimized the SSR between the calculated and measured isotopomers of serine. In

297 addition to estimating that 91% of the serine was produced from the photorespiratory reactions,
298 this calculation also estimated that MTHF was only 8% ^{13}C -enriched. Since glycine{2} was
299 enriched to 26%, this substantially lower enrichment indicates that compounds other than
300 glycine contribute the majority of the C-1 methyl groups to MTHF.

301 **2.4 *Fba3* is upregulated significantly under light while glucose transporters are less
302 sensitive to light and carbon substrates**

303 By using qRT-PCR, we profiled genes encoding (i) the upper glycolysis enzyme fructose
304 bisphosphate aldolase *Fba3* (GenBank 7202915) catalyzing the reversible conversion of
305 fructose-1,6-bisphosphate to glyceraldehyde-3-phosphate and dihydroxyacetone phosphate;
306 and (ii) membrane glucose transporters *GLUT1* (GenBank 7198458) and *GLUT3* (GenBank
307 NC_011676). We performed qRT-PCR on cells in four different media to measure changes in
308 gene expression 1.5 h after switching from light to dark, resulting in eight independent
309 conditions: L1 medium under light (light/L1), L1 medium under dark (dark/L1), HCO_3^- -
310 supplemented L1 medium under light (light/ HCO_3^-), HCO_3^- -supplemented L1 medium under
311 dark (dark/ HCO_3^-), glucose-supplemented L1 medium under light (light/Glc), glucose-
312 supplemented L1 medium under dark (dark/Glc), urea-supplemented L1 medium under light
313 (light/urea) and urea-supplemented L1 medium under dark (dark/urea). The HCO_3^- and urea
314 samples acted as additional controls to gauge the relative transcription level changes due to
315 light/dark versus changes caused by altering the carbon and nitrogen sources. **Fig. 7** depicts
316 fold changes with respect to the housekeeping gene *18S* for all genes whose expression levels
317 were consistent across three housekeeping genes (*18S*, *HIS4* and *EF1 α* ; Supplementary **Table**
318 **S14**). Clearly, *Fba3* was repressed upon switching from light to dark, irrespective of carbon
319 source supplementation. Exposure to light upregulated *Fba3* by 7.7 ± 1.7 -fold ($p < 0.01$) in
320 unsupplemented L1 medium, by 24 ± 2.4 -fold ($p < 0.01$) in HCO_3^- -supplemented L1 medium, by
321 9.2 ± 2.1 -fold ($p < 0.01$) in glucose-supplemented L1 medium and by 18 ± 1.9 -fold ($p < 0.05$) in

322 urea-supplemented L1 medium. Furthermore, urea repressed *Fba3* expression significantly.
323 Under light, *Fba3* expression in urea-supplemented L1 medium was lower by 4.1 ± 0.2 -fold ($p <$
324 0.05) than in unsupplemented L1 medium. Similarly, *Fba3* expression in the dark with urea-
325 supplemented L1 medium was lower by 9.6 ± 1.6 -fold ($p < 0.05$) than in unsupplemented L1
326 medium.

327 In contrast to *Fba3*, transcription levels of genes encoding glucose transporters did not show
328 consistent trends in light versus dark conditions. The only significant change was the 2.4 ± 1.1 -
329 fold ($p < 0.05$) overexpression of *GLUT1* between the light and dark conditions in
330 unsupplemented L1 medium (**Fig. 7**).

331 In accordance with previous gene expression studies [28], our results show that light
332 transcriptionally activates genes encoding the cytosolic enzyme *Fba3*, which reversibly breaks
333 down fructose 1,6-bisphosphate to three-carbon metabolites in Pt. This suggests that upper
334 glycolysis rather than glucose transportation may be critical to glucose assimilation under light.
335 In addition, urea inhibited expression of *Fba3* in *P. tricornutum* without effecting a significant
336 change on the transcription level of glucose transporters.

337 **3. Discussion**

338 One of the goals for developing cell factories is finding flexible organisms that can be rapidly
339 tailored to produce any of a large range of products using the most cost effective substrate
340 available. Unicellular diatoms have the potential to meet this role due to their unique metabolic
341 capabilities and the ease in which they can be genetically manipulated. While Pt has
342 demonstrated a host of advantageous characteristics for cell factories, its utility has been limited
343 by the perception that it cannot consume simple sugars such as glucose.
344 The ILEs reported in this work have convincingly shown that Pt mixotrophically metabolizes
345 glucose and uses the resulting carbon to synthesize each of the 15 amino acids we measured.

346 As these amino acids are synthesized from multiple nodes encompassing all of primary
347 metabolism across at least three separate intracellular compartments (cytosol, plastid,
348 mitochondrion), it is reasonable to generalize that Pt metabolizes glucose and uses its carbon
349 for the full range of biosynthetic activities. Given this information, it is natural to question why Pt
350 mixotrophically consumes glucose only under light. Our gene expression analysis revealed that
351 transcription level changes of membrane glucose transporters in Pt poorly correlate with
352 exposure to light or glucose. This suggests that the inability of Pt to grow on glucose in the dark
353 is not due to insufficient expression of glucose transporters. However, we cannot discount the
354 possibility that the products of either or both *GLUT1* and *GLUT3* does not transport glucose into
355 the cell, but instead shuttles glucose from the vacuole to the cytosol.

356 In Pt, light availability has a significant effect over a 24 h period on the expression levels of
357 many genes encoding enzymes in central carbon metabolism [28]. Of the genes encoding
358 glycolysis and glucan biosynthesis, cytosolic *Fba3* is most strongly regulated by light,
359 suggesting that its product may be a rate-limiting enzyme in this pathway. Our gene expression
360 analysis assays confirmed that *Fba3* expression is upregulated by light and further showed that
361 glucose has a negligible regulatory effect under light or dark. Allen et al. [29] showed that of the
362 five fructose bisphosphate aldolase-3 genes in Pt, cytosolic *Fba3* is the only one actively
363 involved in glycolysis and gluconeogenesis, facilitating synthesis of photosynthetically fixed
364 triose phosphates into chrysolaminaran (β :1-3 and β :1-6 glucose polymers) [7]. Our results
365 taken together with previous work on the role of *Fba3*, suggest that in the dark, glucose
366 metabolism is impeded either by the lack of sufficient *Fba3* expression or insufficient transport
367 of glucose into the cell. Our ongoing work is focused on testing the hypothesis that glucose is
368 not transported in the dark by elucidating a light-dependent mechanism for glucose transport
369 and metabolism.

370 We tested several models of carbohydrate metabolism in Pt. Based upon the SSR criteria, it is
371 clear that an accurate metabolic model includes multiple glycolytic pathways. However, it is
372 certainly possible that other reactions or different combinations of the reactions we chose could
373 produce equally valid results. For example, **Model VIII** nearly approached the acceptable SSR
374 threshold despite not utilizing the ED and PPK pathways. In this instance, photosynthesis and
375 photorespiration nearly accounted for the unusual observed labeling patterns. If some variation
376 of this model were accurate, it would indicate that Pt uses photosynthesis to re-fix a significant
377 fraction of the CO₂ that it generates from intracellular reactions, thus conserving organic carbon.

378 These conflicting possibilities are ordinarily resolved through the use of parallel labeling
379 experiments using large sets of measured metabolites, which greatly increase the confidence
380 intervals of key fluxes and narrow the number of possible pathway models to one or only a small
381 handful of options [30]. However, the high degree of uncertainty regarding the metabolic
382 significance and role of these pathways poses a significant challenge for large-scale ¹³C
383 metabolic flux analysis in Pt. In addition, the compartmentalization of various catabolic and
384 biosynthetic pathways between the cytosol, plastid and mitochondrion is incompletely defined,
385 and the possible effects of metabolic channeling have not been investigated [31]. As a result,
386 we limited our MPA to a single compartment model only including measurements of known
387 cytosolic and mitochondrial amino acids [32]. Due to these simplifications, this article does not
388 report a full quantitative flux map for glucose metabolism using the measurements from multiple
389 ILEs, as was done for multiple bacterial species with active ED pathways [33]. Nevertheless,
390 MPA unraveled much information on the usage of pathways, providing a basis for further
391 developing a quantitative flux map of glucose metabolism in Pt.

392 MPA suggested that the ED pathway plays an important role in glucose catabolism. Our models
393 consistently showed cycling from both the ED and PPK pathways through the reverse EMP
394 pathway. Such a cycle generates significant excess NADPH that is available for numerous

395 functions including increased lipid production, quenching of reactive oxidative species, and
396 nitrogen assimilation. The traditional oxidative PPP pathway maximally yields 2 moles each of
397 NADPH and NADH per mole of glucose with a 56% carbon yield for lipid synthesis. In
398 comparison, the maximal ED/PPK pathway yields are 1.67/3.33 moles of NADPH and 2.33/0.67
399 moles of NADH with a matching 67% carbon yield. This hypothesis that Pt can use a
400 combination of the ED and PPK pathways to enhance carbon and cofactor yields for lipid
401 synthesis agrees with the previously reported 17% increase in Pt EPA content when glucose
402 was used in a mixotrophic fed-batch system [34]. Such a metabolic cycle need not be limited to
403 mixotrophic growth on glucose, as the upper reactions in the EMP shuttle carbon in this manner
404 to replenish the supply of 5-C compounds during photosynthesis. Therefore, it is also plausible
405 this metabolic cycling enhances Pt's ability to synthesize such a high proportion of its biomass
406 as lipids [2,3,4].

407 Our gene expression analysis also hints at metabolic cycling, as *Fba3* expression levels were
408 largely unchanged in response to differing carbon sources (dissolved CO₂, HCO₃⁻, and glucose),
409 yet changing the nitrogen source from nitrates to urea dramatically inhibited expression in both
410 light and dark conditions. Given that *Fba3* is a key regulator of a major carbon assimilation
411 pathway during photosynthesis, we expected that different carbon sources would have a larger
412 effect on expression levels than changing the nitrogen source. Urea is produced as a
413 consequence of amino acid breakdown, which is then converted to ammonia for nitrogen
414 assimilation. Cells normally synthesize ammonia from nitrates, which requires a substantial
415 supply of reductant. Therefore, urea inhibition of *Fba3* expression may serve to regulate
416 reductant generation.

417 It is also important to note that the majority of the EMP pathway genes have been found in the
418 cytosol, mitochondria, and plastid; however the gene encoding enolase in the lower half of the
419 pathway has only been identified in the plastid and mitochondria, e.g. from the Diatomcyc

420 metabolic pathway database [9]. Therefore, Pt may lack a complete cytosolic EMP and instead
421 utilize a combination of the ED and PPK pathways to feed the lower half of the mitochondrial
422 EMP.

423 Another key result we predicted by using MPA and subsequently confirmed through a 2-¹³C
424 glycerol ILE was that serine and glycine are largely derived from glyoxylate instead of 3-
425 phosphoglycerate under some mixotrophic growth conditions. The 2-¹³C glycerol label was used
426 instead of a 2-¹³C glucose label in an attempt to minimize scrambling of the label through the
427 PPP, ED, and upper EMP. Identification of the precursor of serine/glycine could be complicated
428 by PPP carbon atom rearrangements (mostly) and phototrophic ¹³CO₂ re-fixation. Both these
429 effects can produce 1-¹³C GAP 1-¹³C 3PG and 1-¹³C serine. However, since pyruvate and
430 alanine are synthesized downstream of 3PG without net carbon rearrangement, the
431 aforementioned effects should also manifest in the isotopomer distribution of alanine and should
432 generate 1-¹³C alanine with an abundance greater than the abundance of 1-¹³C serine (26%).
433 However, our measurements indicate that the abundance of 1-¹³C alanine is only 6%,
434 substantially less than 26%. Therefore, the caveats of PPP carbon rearrangement and
435 phototrophic ¹³CO₂ fixation are insufficient to explain the observed 1-¹³C serine, leaving
436 glyoxylate-based synthesis as the only remaining explanation.

437 These findings are important for future metabolic flux analysis on Pt, as prior work on bacteria
438 and plants grown on glucose has long held that 3-phosphoglycerate [24, 35, 36] is the sole
439 source of serine and glycine. Further explorations into the mixotrophic synthesis of serine and
440 glycine using multiple organic carbon substrates are warranted, as both AGAT and SHMT are
441 key intermediate reactions in photorespiration and our analysis of the serine and glycine
442 isotopomers indicated that the reactions are active when grown on glycerol. However, the
443 calculated labeling on the transferred methyl group of THF was significantly lower than the
444 labeling on C-2 of glycine, indicating that GDCH is minimally active. Formate is the other major

445 methyl group donor to THF, which is formed as a byproduct of reactions in sterol and cofactor
446 synthesis pathways. Therefore, it is possible that photorespiratory synthesis of glycine and
447 serine is partially due to the need for Pt to recycle THF and clear formate from the cell [37].
448 Formate is also enzymatically oxidized to CO₂; however, the reincorporation of formate into
449 serine minimizes carbon loss and should thus be the metabolically favored reaction.

450 **4. Conclusions and Future Work**

451 Our ILEs and analyses convincingly showed that Pt mixotrophically metabolizes both glucose
452 and dissolved inorganic carbon. Specifically, glucose contributes 90% of the carbon assimilated
453 into biomass during exponential growth in batch cultures. MPA provided strong evidence that
454 glucose is metabolized at least partially through the ED pathway, and pinpointed the
455 predominant mechanism for glycine and serine synthesis. Finally, gene expression assays
456 suggested that the cytosolic enzyme *Fba3* may be a rate-limiting step in the EMP pathway.
457 Together, our studies resolve a longstanding debate about glucose metabolism in Pt and
458 unraveled the mechanisms through which this sugar is catabolized. We expect that this work will
459 serve as a foundation for future experimental interrogations of diatom metabolism, including an
460 investigation of a unique glucose assimilation mechanism and the possibility of a novel
461 reductant generating pathway via metabolic cycling through parallel glycolytic pathways. This
462 will require an interdisciplinary effort to identify all of the major active pathways in carbon
463 assimilation, unravel their intracellular locations, and understand the metabolic crosstalk
464 between compartmented pathways.

465 **5. Materials and Methods**

466 **5.1 Cell culture and counting**

467 *P. tricornutum* (strain CCMP 632) was obtained from the Provasoli-Guillard National Center for
468 Marine Algae and Microbiota (NCMA) (East Boothbay, ME), and maintained aseptically by

469 subculturing biweekly. Cultures were grown at 24.5 °C under constant light in 125 mL
470 Erlenmeyer flasks containing 50 mL L1 culture medium (NCMA) prepared in sea water (NCMA).
471 Irradiance levels ranged between 40-80 $\mu\text{mol m}^{-2} \text{s}^{-1}$ of photons depending on the location of
472 each flask in our shakers as measured using a MQ-100: Quantum integral sensor with handheld
473 meter (Apogee Instruments) (Logan, UT). No changes in algal growth rates were observed
474 across this range of light intensities (data not shown). The flasks were placed in refrigerated
475 New Brunswick Innova 44R shakers (Eppendorf, Hauppauge, NY) with a 2-inch stroke and
476 programmable temperature, light and photoperiod controls. Flasks were sealed with a porous
477 foam stopper to prevent contamination and allow free exchange of air. Cell numbers were
478 measured daily by aseptically transferring small aliquots (10 μL) of cell suspension from cultures
479 to INCYTO C-Chip disposable hemacytometers (ThermoFisher Scientific, Waltham, MA) and
480 counting visible cells with an Axiovert 135 TV microscope (Zeiss Oberkochen, Germany) at 20X
481 resolution. Three biological replicates each with two technical replicates were counted for each
482 time point. During later stages of growth, cell suspensions were diluted in sea water to prevent
483 overcrowding and to maintain cell densities at less than ~100 cells per chip. Glucose
484 measurements were performed in triplicate by pipetting ~1 ml of media into a 2 ml
485 microcentrifuge tube, and inserting the tube into YSI 2300 STAT Plus Glucose & Lactate
486 Analyzer (YSI Life Sciences) (Yellow Springs, OH) .

487 **5.2 Gene expression analysis by quantitative real-time polymerase chain reaction (qRT-
488 PCR)**

489 Cells were grown as described in the previous paragraph for 9 d to obtain sufficient biomass.
490 The biomass was divided into eight groups: (i) dark/L1, (ii) light/L1, (iii) dark/ HCO_3^- (iv) light/
491 HCO_3^- , (v) dark/glucose, (vi) light/glucose, (vii) dark/urea and (viii) light/urea [same order as in
492 figure], with each condition being represented by three biological replicates. The flasks in the L1
493 groups (L1) were incubated in (50 mL of) L1 medium, whereas the flasks in the HCO_3^- , glucose

494 (Glc) and urea (Urea) groups were incubated in (50 mL of) L1 medium supplemented aseptically
495 with 0.5 mL of 33 g L⁻¹ NaHCO₃ solution, 2 g L⁻¹ glucose solution and 3.7 g L⁻¹ urea,
496 respectively. After incubation for 14 h under constant light and normal growth conditions, the
497 flasks in the dark/L1, dark/ HCO₃⁻, dark/glucose and dark/urea groups were transferred to
498 complete darkness and incubated for 90 min. Following this, the cell suspension from each flask
499 was centrifuged at 8000 min⁻¹ for 5 min. The wet cell pellets, suspended in less than 0.5 mL
500 medium, were transferred to separate 2 mL sterilized micro-centrifuge tubes, which were
501 quenched immediately with liquid nitrogen. RNA was extracted by using RNeasy Plant Mini Kits
502 and RNase-Free DNase Set (QIAGEN, Valencia, CA). RNA concentrations in the extracts were
503 quantified with a NanoDrop 2000 UV-Vis spectrophotometer (Thermo Scientific). cDNA was
504 synthesized from RNA using a High Capacity RNA-to-cDNA Kit (Life Technologies, Grand
505 Island, NY) and random primers. qRT-PCR analyses were conducted with Power SYBR Green
506 PCR Master Mix (Life Technologies) on a 7500 Real-Time PCR System (Life Technologies).
507 The genes encoding 18S rRNA (18S), histone 4 (*HIS4*) and elongation factor 1 α (*EF1 α*) were
508 used as housekeeping genes [38]. The gene-specific primers used for amplification are listed in
509 Supplementary **Table S14**. The three biological replicates for each condition were each
510 analyzed three times. For each of the eight conditions tested, gene expression fold changes
511 relative to the dark/L1 condition were obtained by using the 2^{-ΔΔCt} method [39], and statistical
512 significance was determined by using a Student's *t*-test.

513 **5.3 Mixotrophic ILEs, cell harvest, protein extraction, hydrolysis and derivatization**

514 Steady-state, mixotrophic ILEs were performed by adding one of 100% U-¹³C glc, 50% U-¹³C
515 glc, 100% 1-¹³C glc, or 100% 2-¹³C glycerol to L1 medium. Only one isotopically labeled
516 substrate was added in each experiment. The addition was performed aseptically before
517 subculturing so as to result in the final concentration of 2 g L⁻¹ of substrate. Each mixotrophic
518 ILE was represented by 3 to 4 biological replicates. Additionally, the 100 % U-¹³C glc

519 experiment was repeated with matching results (data not shown) on a second cell line of the
520 identical strain of Pt purchased from the NCMA. Cells from the mixotrophic ILEs were harvested
521 at 21 d of culture. Evidence supporting the establishment of isotopic steady state at this time
522 point is shown in **Supplemental Figure S2**. The cell suspensions were centrifuged at 8000 min⁻¹
523 for 30 min, and the supernatant was removed. The cell pellet was briefly resuspended in 50
524 mL deionized water to rinse out salts and then centrifuged again, after which the supernatant
525 was removed. Cellular metabolism was quenched by immersing tubes containing the pellets in
526 liquid nitrogen. The quenched cells were lyophilized overnight at room temperature and 133
527 μbar. The lyophilized pellet was hydrolyzed by adding 3 mL 6N HCl and incubating at 155 °C for
528 4 h to obtain proteinogenic amino acids. Before hydrolysis, the hydrolysis tube was evacuated,
529 then flushed with nitrogen to remove residual oxygen, and then re-evacuated, followed by two
530 more repetitions of these steps. The resulting hydrolysate was cooled to room temperature,
531 filtered by glass wool and dried overnight in a RapidVap evaporator (Labconco, Kansas City,
532 MO) at 55°C, 80 mbar. The dried sample was mixed with deionized water and lyophilized again.
533 After lyophilization, this mixture was reconstituted in 200 μL dimethylformamide (DMF) and
534 derivatized with 80 μL N-(tert-butyldimethylsilyl)-N-methyltrifluoroacetamide MTBSTFA + 1%
535 tert-butyldimethylchlorosilane (TBDMCS) (Thermo Scientific, Rockford, IL) at 70°C for 1.5 h.
536 The derivatized sample was injected into a gas chromatograph (GC)- MS, using DMF as
537 solvent.

538 **5.4 Quantification of mass isotopomer abundances by GC-MS**

539 All GC-MS analyses were performed on a Varian 300MS quadrupole GC-MS unit (Bruker
540 Corporation, Fremont, CA), equipped with an autoinjector and a VF5-ms column of dimensions
541 0.25 mm × 30 m × 0.25 μm. Typically, 1 μL of derivatized amino acids, in 3 technical replicates,
542 was automatically injected at a split ratio of 1:15, with helium as the carrier gas at a constant
543 flow rate of 1.0 mL min⁻¹. The oven temperature was initially held at 150°C for 2 min, then

544 increased at 3°C min⁻¹ to 250°C and then at 10°C min⁻¹ to 275°C, where it was held constant up
545 to a run time of 43 min. The MS ran in electron ionization mode with a collection delay for 3 min.
546 Mass spectra were recorded in the selected ion monitoring (SIM) mode. All mass spectral data
547 were analyzed and quantified with the manufacturer's Varian MS Workstation software (Bruker,
548 Billerica, MA). Raw mass spectral data were processed to filter out natural abundances of
549 elements other than metabolic carbon, using a previously developed in-house MATLAB
550 program [see Supplementary Material of 40], whose accuracy has been verified by us by
551 processing a variety of amino acid isotopomer mixtures of known isotopomeric compositions
552 (data not shown). The resulting mass isotopomer distribution data were converted to ¹³C
553 enrichments of individual amino acid fragments by using SVD. The accuracy of the SVD method
554 for obtaining ¹³C enrichments was verified by processing a synthetic set of amino acid MIDs and
555 ensuring that the predicted enrichments were obtained (G. Sriram, unpublished calculations).
556 MIDs obtained from steady-state ILEs are listed in Supplementary **Tables S1 to S4**. Selected
557 MIDs and ¹³C enrichments are shown and discussed in Results. The MIDs were adjusted to
558 account for the presence of initially present unlabeled material that was used to inoculate each
559 flask, so that the MIDs would reflect their true values if no unlabeled material were present. The
560 corrected isotopomers were calculated (data not shown) using the equation
561 $C_i = (M_i - D * NA_i) / (1 - NA_i)$ for each mass isotopomer $i = 0:n$, where n is the number of carbon
562 atoms, C is the corrected value, M is the measured value, NA is the natural abundance of that
563 isotopomer, and D is the dilution factor from initially present material. The amount of initially
564 present material was calculated as the ratio of the number of cells on day zero over the number
565 of cells on the final day (data not shown). The calculation of a single dilution factor for all amino
566 acids using the initial and final cell numbers is valid as long as both the weight percent of protein
567 and the amino acid composition do not vary during the experiment. We calculated new dilution
568 factors assuming the mass percent of protein could vary $\pm 50\%$ over the timeframe of the

569 experiment and we found that the new mass isotopomers fell within the standard deviations of
570 our original calculations. We further analyzed the mass spectra of Pt cells grown on multiple
571 substrates and found that changes in the percent composition of the amino acids again yielded
572 smaller changes in the MID's than the standard deviations of our measurements.

573 **5.5 Evaluation of metabolic fluxes from steady-state isotopomer data**

574 We used our computer program NMR2Flux+ [26, 27, 40] to evaluate and compare the nine
575 different pathway models using corrected MIDs from the steady-state 100% $1-^{13}\text{C}$ glucose ILE.
576 The program employs cumomer balancing to simulate ILEs, a simulated annealing-based global
577 optimization algorithm to evaluate fluxes from MS- and NMR-derived isotopomer abundances
578 and a bootstrap Monte Carlo algorithm [41] to evaluate standard deviations or confidence
579 intervals of fluxes. The SSR of each model is calculated with a lower limit on the standard
580 deviation of each mass isotopomer set at 0.01 to account for imprecision in the MS and
581 unknown ^{13}C kinetic isotope effects [42]. SSR values are deemed acceptable if they fit a normal
582 χ^2 -distribution, with the degrees of freedom equal to the sum of the redundant mass
583 isotopomers. The metabolic models used by us for flux evaluation from the 100% $1-^{13}\text{C}$ glucose
584 ILE are listed in Supplementary **Tables S5 to S13**. The extracellular CO_2 incorporated through
585 anaplerotic and photosynthetic fixation was labeled to the natural carbon abundance of 1.1% in
586 all of the simulations. Biomass effluxes were taken from the literature for the amino acid [43]
587 lipid and starch composition [44] under phototrophic conditions. Metabolite effluxes, scaled per
588 mole of glucose consumed, were allowed to vary $\pm 50\%$ for the lower and upper bounds in the
589 models in order to account for potential variations in biomass composition. The biomass effluxes
590 are listed in Supplementary **Table S15**.

591 **6. Abbreviations and acronyms**

592 3PG, 3-phosphoglycerate (used in figures); 6PG, 6-phosphogluconate (used in figures); αKG, α-
593 ketoglutarate (used in figures); ACoA, acetyl-CoA (used in figures); Cit, citrate (used in figures);
594 E4P, erythrose 4-phosphate (used in figures); ED, Entner-Doudoroff; EMP, Embden-Meyerhof-
595 Parnas; F6P, fructose 6-phosphate; Fum, fumarate (used in figures); G6P, glucose 6-phosphate
596 (used in figures); GAP, glyceraldehyde 3-phosphate and dihydroxyacetone phosphate (used in
597 figures); GC-MS, gas chromatography-mass spectrometry; Glc, glucose (used in figures); GOx,
598 glyoxylate (used in figures); Icit, isocitrate (used in figures); ILE, isotope labeling experiment;
599 Mal, malate (used in figures); MID, mass isotopomer distribution; MPA, metabolic pathway
600 analysis; MTHF, 5,10-methylene tetrahydrofolate; OAA, oxaloacetate (used in figures); P5P,
601 ribose 5-phosphate, pentose 5-phosphate or xylose 5-phosphate (used in figures); PEP,
602 phosphoenolpyruvate (used in figures); PHB, poly-3-hydroxybutyrate; PPK, phosphoketolase;
603 PPP, pentose phosphate; Pt, *Phaeodactylum tricornutum*; S7P, sedoheptulose 7-phosphate
604 (used in figures); Pyr, pyruvate (used in figures); SCoA, succinyl-CoA (used in figures); SSR,
605 sum of squared residuals; SVD, singular value decomposition; Succ, succinate (used in figures);
606 THF, tetrahydrofolate; Amino acids are referred to by their three-letter abbreviations.

607 **7. Author contributions**

608 GS and YZ conceived this study; GS, YZ and AHQ designed it. YZ and AHQ performed the
609 experiments; AHQ and YZ interpreted and analyzed data. AHQ, YZ and GS wrote the
610 manuscript and prepared a revised version. All authors approved the final version.

611 **8. Acknowledgments**

612 This work was supported by a grant from the National Science Foundation (award number
613 CBET-1134115). AHQ was partially supported by a Hulka Energy Research fellowship from the
614 University of Maryland Energy Research Center.

615 **9. Table**

616 **Table 1. Flux values of reductant-generating pathways from acceptable metabolic models**

617 The metabolic fluxes of the ED, PPK and oxidative PPP pathways were estimated in the three
618 models that met the SSR acceptability criteria, and are reported here in addition to the ratio of
619 the (glycolytic) ED pathway flux versus the (gluconeogenic) EMP pathway flux. Fluxes and
620 ratios are reported as average \pm standard deviation, as calculated from distributions generated
621 by 100 bootstrap simulations. All flux values are normalized to an input of 1 mol of glucose.
622 Some flux values are substantially higher than the flux of glucose entering the cell, indicating a
623 metabolic cycle that uses the ED and PPK pathways to produce two and three carbon
624 metabolites, a large fraction of which are then recycled through the reverse EMP pathway.
625 Nevertheless, carbon is strictly conserved in all reactions in our model.

Metabolic Model			
Pathway	Model IV	Model VI	Model IX
ED flux	1.84 \pm 0.90	1.41 \pm 0.89	3.85 \pm 0.92
PPK flux	N/A	1.71	3.90
Oxidative PPP flux	4.36 \pm 0.39	1.60 \pm 0.66	1.63 \pm 0.78
ED:EMP flux ratio	0.75 \pm 0.12	0.69 \pm 0.56	0.44 \pm 0.13

626

627 **10. Figure captions**

628 **Figure 1. Principal pathways for the mixotrophic metabolism of glucose and CO₂ to
629 amino acids in Pt**

630 Central carbon metabolic pathways convert glucose and/or CO₂ (fixed photosynthetically or
631 anaplerotically) to the 15 amino acids (metabolites shown as open circles) experimentally
632 detected by GC-MS in hydrolysates of Pt cell pellets. In most organisms, glycolysis proceeds via
633 the EMP pathway. However, two alternate glycolytic pathways of bacterial origin were found in
634 this organism's annotated genome. Of these, the phosphoketolase (PKP) enzyme converts
635 phosphorylated pentose and/or hexose sugars to glyceraldehyde 3-phosphate/erythrose 4-
636 phosphate and acetylphosphate, which is then converted to either acetate via acetate kinase, or
637 acetyl-CoA via phosphate acetyltransferase. Both phosphorylated pentose and hexose sugars
638 are shown as substrates for the PPK pathway because the enzyme specificity in Pt is unknown.
639 The second alternative pathway (ED) uses two enzymes to convert 6-phospho-D-gluconate to
640 pyruvate and glyceraldehyde 3-phosphate. Differences in the carbon atom rearrangements of
641 the EMP, PPK and ED pathways become evident in the MIDs of glycolytic amino acids.

642

643 **Figure 2. ¹³C-enrichments of amino acid fragments synthesized from 100% and 50% U-¹³C
644 glucose evidence significant glucose uptake**

645 The 41 measured proteinogenic amino acid fragments in cell hydrolysates of Pt are grouped
646 according to their metabolic precursor(s) (Figure 1). In each of the 100% and 50% U-¹³C
647 glucose ILEs, the fragments show a ¹³C-enrichment approximately proportional to the ¹³C
648 enrichment of the supplied glucose. In contrast, purely photoautotrophic cells would only be ¹³C-
649 enriched to the 1.1% natural abundance CO₂ from the flask headspace. A 2% dilution by initially
650 present biomass and a combination of anaplerotic and photosynthetic inorganic carbon fixation

651 explain the slightly lower average enrichments than would be expected for cells consuming
652 glucose as their sole carbon source: 88% \pm 3% in the 100% U-¹³C Glc ILE and 45% \pm 1% in the
653 50% U-¹³C Glc ILE.

654

655 **Figure 3. Pathways used to assemble the metabolic pathway analysis models**

656 This metabolic network includes 10 metabolic pathways distinguished by line color. Metabolic
657 **Models I-IX** consist of different combinations of these pathways. Open circles represent amino
658 acids detected in cell hydrolysates, whose isotope labeling patterns were used in the MPA. The
659 amino acids are connected to their metabolic precursor(s) by dotted lines. Genes encoding
660 proteins catalyzing all reactions in these pathways were found in the annotated Pt genome.

661

662 **Figure 4. MPA of the 100% 1-¹³C glucose ILE data suggests an active ED pathway**

663 (a) Four different Metabolic **Models (I-IV)** were constructed to explain the ILE data; each
664 column represents a different model. Pathways included in a model are denoted by a "Y", color-
665 coded according to the color of the pathway in **Figure 3**. (b) Vertical bars represent the SSR of
666 each model and horizontal lines represent the acceptable SSR corresponding to the number of
667 redundant isotopomer measurements in each model. **Models II** and **IV**, both containing the ED
668 pathway show a significantly decreased SSR compared to otherwise identical models lacking
669 the ED pathway. (c) The carbon rearrangements of the EMP and ED pathways are shown, with
670 ¹³C atoms shown as blue squares and ¹²C atoms shown as white squares. The EMP pathway
671 transfers ¹³C from glucose C-1 to pyruvate C-3, whereas the ED pathway transfers ¹³C from
672 glucose C-1 to pyruvate C-1 (red boxes). (d) The isotopomers of pyruvate reflect those of the
673 amino acid alanine. The measured abundances of alanine isotopomers are compared against
674 the simulated enrichments of **Models I** and **II**. **Model I** that lacks the ED pathway over-simulates

675 the abundance Ala{123}, and under-simulates the abundance of Ala{123}. These errors are
676 corrected in **Model II**, which utilizes the ED pathway. Isotopomer notation is explained in text.

677

678 **Figure 5. Unique carbon-carbon bond re-arrangements explain abnormal isotope**
679 **abundances from the 100% 1-¹³C Glc ILE**

680 **(a)** Five different Metabolic **Models (V-IX)** were constructed to explain the ILE data; each
681 column represents a different model. Pathways included in a model are denoted by a "Y", color-
682 coded according to the color of the pathway in **Figure 3**. **(b)** Vertical bars represent the SSR of
683 each model and horizontal lines represent the acceptable SSR (65) corresponding to the
684 number of redundant isotopomer measurements (45) in each model. **(c)** The carbon
685 rearrangements of SGAT and SHMT demonstrate how 3-¹³C triose phosphates (derived from 1-
686 ¹³C glucose through glycolysis) result in 2-¹³C serine and glycine. Serine is conventionally
687 known to be synthesized directly from 3-phosphoglycerate without carbon rearrangements via
688 PSAT shown with the dashed arrow. **(d)** The photorespiratory action of RuBisCO yields
689 glyoxylate from pentose phosphate, whereas the PPK pathway yields acetate that is converted
690 to glyoxylate via the glyoxylate shunt. Each pathway yields 2-¹³C glycine and serine from 1-¹³C
691 pentose phosphate arising from the reductive PPP. **(e)** Anaplerotic fixation of a mixture of
692 intracellular ¹²CO₂ and ¹³CO₂ results in 1-¹³C pyruvate through reversible reactions in the TCA
693 cycle. Succinate is a symmetric molecule; therefore C-1 and C-4 are equivalent. Oxaloacetate is
694 6% ¹³C-enriched at the C-4 position and 13% enriched at C-1. In comparison, pyruvate is 18%
695 enriched at C-1, indicating that anaplerotic fixation cannot fully account for the labeling on
696 pyruvate. **(f)** The oxidative PPP yields ¹³CO₂ and U-¹²C ribulose 5-phosphate from 1-¹³C
697 glucose-6-phosphate. Photosynthetic fixation of CO₂ via RuBisCO then results in 1-¹³C
698 pyruvate. **(g)** The predominant isotopomers of serine and glycine that were simulated in the

699 poorly fit **Model VII** and the well fit **Model IX** are compared against the experimental abundance
700 of each isotopomer.

701

702 **Figure 6. 100% 2-¹³C glycerol ILE shows that Gly and Ser are predominantly synthesized
703 from glyoxylate rather than 3PG**

704 Feeding 2-¹³C glycerol to Pt confirmed the MPA prediction that the MIDs of glycine and serine
705 do not represent the labeling of 3-phosphoglycerate as is usual in many organisms. Were this
706 the case, the majority of the ¹³C label from 2-¹³C glycerol would appear on the C-2 of glycine
707 and serine, contradicting observation. The observed isotope labeling patterns in serine and
708 glycine can be explained as follows. First, 2-¹³C glycerol is metabolized to pyruvate and alanine.
709 Carbon rearrangements in the TCA cycle (gray) and back-mixing through anaplerotic reactions
710 and the pentose phosphate pathway account for the small amount of label on Alanine{1}. As
711 3PG and pyruvate are closely linked to one-another, their MID's are assumed to be identical.
712 The high abundance of the Gly{12} and Ser{123} result from the conversion of pyruvate to
713 acetyl-CoA and glyoxylate. Aminotransferases convert glyoxylate to glycine, which then
714 combines with MTHF to form serine via SHMT. A linear combination of the fluxes from alanine
715 to serine and (glycine + MTHF) to serine produced a set of isotopomers that exactly matched
716 the measured values when the SHMT reaction contributed 91% of the total flux and
717 phosphoserine transaminase contributed 9% of the flux. Arrow widths correspond to relative
718 fluxes. See text for isotopomer notation.

719

720 **Figure 7. Expression levels of key glucose-related and glycolytic genes under different**
721 **environmental conditions**

722 Expression levels of genes under eight conditions (light/L1, dark/L1, light/ HCO_3^- , dark/ HCO_3^- ,
723 light/Glc, dark/Glc, light/urea, and dark urea, see Materials and Methods for details), as
724 compared to the dark/L1 condition. Light exposure induces a significant increase in the
725 expression of the cytosolic fructose bisphosphate aldolase 3 gene (*Fba3*) catalyzing the
726 reversible conversion of fructose 1,6-bisphosphate to glyceraldehyde 3-phosphate and
727 dihydroxyacetone phosphate. The overexpression is independent of the presence of glucose or
728 bicarbonate in the growth media. Conversely, the expression levels of the two genes
729 corresponding to known glucose transporters in Pt (*GLUT1* and *GLUT3*) appear to be
730 unaffected by light exposure and the presence of organic carbon sources. Fold changes were
731 calculated with respect to the housekeeping gene *18S* and were verified with respect to two
732 other housekeeping genes. Results are presented as mean \pm SD of three biological and three
733 technical replicates (a total of 9 replicates per gene and condition). *: $0.01 < p < 0.05$ when
734 compared to the dark/L1 condition; **: $p \leq 0.01$ when compared to the dark/L1 condition.

735 **10. Supplementary material**

736 **Figure S1. Cell counts evidence that Pt grows on glucose under light but not under dark**

737 Pt cells were grown on L1 media supplemented with 2 g L⁻¹ glucose were sampled and counted
738 on a hemacytometer over a 13 d growth period. Cell numbers increased exponentially for the
739 first 10 d under continuous light (open circles), but did not increase under continuous dark-
740 (closed circles). “**” represents statistically significant differences between light-grown and dark-
741 grown cells at the same time point with $p < 0.05$.

742

743 **Figure S2. Evidence for isotopic steady state from 20-22 d**

744 This analysis of Pt cells grown on 100% U-¹³C glucose for 20, 21, and 22 d shows that the
745 MID's of the amino acid fragments remain nearly constant immediately before and after the
746 standard harvesting time of 21 d. (a) A principal component analysis of 200 mass isotopomers
747 from 38 amino acid fragments using a control sample at time zero and two biological replicates
748 at each time-point shows that the 1st principle component explains 88% of the variance. The
749 abundance of [M+0], [M+n-1], and [M+n] mass isotopomers of key fragments of aspartic acid
750 and glutamic acid (b) and serine and alanine (c) are plotted from time zero to 22 d. The
751 abundances are noticeably different from time zero to 20 d, but remain constant over the
752 following two days.

753

754 **Figure S3. Errors contributed by amino acid fragments to SSR in various MFA Models I to
755 IX**

756 This heat map depicts the goodness-of-fit SSR criterion for **Models I-IX**, broken down by amino
757 acid fragment. SSR is representative of the error between the measured mass isotopomers and
758 their simulated values from a particular model; thus, SSR quantifies how well a model accounts

759 for the measured isotope labeling patterns. As shown in the legend, the intensity of red color is
760 proportional to the SSR: darker shades indicate higher SSR and hence a poor fit. Boxes filled
761 with a hashed pattern indicate fragments that were not simulated by that model. On comparing
762 the different fragments (rows), it is clear that some fragments such as Gly{12} and Ser{12} are
763 easily fit by all models, whereas others such as Gly{2} and Asp{12} are only fit by a few of the
764 models.

765

766 **Tables S1 to S4.** MIDs measured in 100% U-¹³C glucose ILE (**S1**), 50% U-¹³C glucose ILE
767 (**S2**), 100% 1-¹³C glucose ILE (**S3**) and 100% 2-¹³C glycerol ILE (**S4**). We obtained MIDs from
768 GC-MS analysis samples prepared from cell pellet hydrolysates, after correcting for natural
769 abundances of elements other than metabolic carbon (see Materials and Methods). A few
770 amino acids could not be detected in certain spectra or produced obviously erroneous MIDs due
771 to their low abundance; the corresponding MIDs are marked as not determined (nd).

772

773 **Table S5 to S13.** Stoichiometries and carbon atom rearrangements for Metabolic **Models I-IX**
774 used for flux evaluation from the 100% 1-¹³C glucose ILE data. The columns titled 'DiatomCyc'
775 and 'KEGG' refer to the two annotated genome databases for Pt [9]. The color-coded circles
776 indicate whether genes coding for the proteins catalyzing the reaction(s) listed in the row are
777 identified in the database. Some reactions in the models condense multiple metabolic reactions
778 into a single step; therefore green circles indicate that all reactions have corresponding genes,
779 yellow circles indicate that some reactions have corresponding genes, and red circles indicate
780 that none of the reactions have corresponding genes.

781

782 **Table S14.** Primers used for qRT-PCR.

783

784 **Table S15.** Biomass efflux values for Metabolic **Models I-IX**. The lower bounds (**LB**) and upper

785 bounds (**UB**) deviate 50% from the calculated value.

786 11. References

787 1. Lopez PJ, Desclés J, Allen AE, Bowler C: **Prospects in diatom research.** *Curr Opin*
788 *Biotechnol* 2005, **16**:180–186.

789 2. Dunstan GA, Volkman JK, Barrett SM, Leroi J-M, Jeffrey SW: **Essential polyunsaturated**
790 **fatty acids from 14 species of diatom (Bacillariophyceae).** *Phytochemistry* 1993, **35**:155–
791 161.

792 3. Alonso DL, Segura del Castillo CI, Grima EM, Cohen Z: **First insights into improvement of**
793 **eicosapentaenoic acid content in *Phaeodactylum tricornutum* (Bacillariophyceae) by**
794 **induced mutagenesis.** *J Phycol* 1996, **32**:339–345.

795 4. Yongmanitchai W, Ward OP: **Growth of and omega-3 fatty acid production by**
796 ***Phaeodactylum tricornutum* under different culture conditions.** *Appl Environ Microbiol*
797 1991, **57**:419–425.

798 5. Hempel F, Bozarth AS, Lindenkamp N, Klingl A, Zauner S, Linne U, Steinbuchel A, Maier UG:
799 **Microalgae as bioreactors for bioplastic production.** *Microb Cell Factories* 2011, **10**:81.

800 6. Bowler C, Allen AE, Badger JH, Grimwood J, Jabbari K, Kuo A, Maheswari U, Martens C,
801 Maumus F, Ollilar RP, Rayko E, Salamov A, Vandepoele K, Beszteri B, Gruber A, Heijde M,
802 Katinka M, Mock T, Valentin K, Verret F, Berges JA, Brownlee C, Cadoret J-P, Chiovitti A, Choi
803 CJ, Coesel S, De Martino A, Dettter JC, Durkin C, Falciatore A, et al.: **The *Phaeodactylum***
804 **genome reveals the evolutionary history of diatom genomes.** *Nature* 2008, **456**:239–244.

805 7. Kroth PG, Chiovitti A, Gruber A, Martin-Jezequel V, Mock T, Parker MS, Stanley MS, Kaplan
806 A, Caron L, Weber T, Maheswari U, Armbrust EV, Bowler C: **A model for carbohydrate**
807 **metabolism in the diatom *Phaeodactylum tricornutum* deduced from comparative whole**
808 **genome analysis.** *PLoS ONE* 2008, **3**:e1426.

809 8. Allen AE, Dupont CL, Obornik M, Horak A, Nunes-Nesi A, McCrow JP, Zheng H, Johnson
810 DA, Hu H, Fernie AR, Bowler C: **Evolution and metabolic significance of the urea cycle in**
811 **photosynthetic diatoms.** *Nature* 2011, **473**:203–207.

812 9. Fabris M, Matthijs M, Rombauts S, Vyverman W, Goossens A, Baart GJE: **The metabolic**
813 **blueprint of *Phaeodactylum tricornutum* reveals a eukaryotic Entner-Doudoroff glycolytic**
814 **pathway.** *Plant J* 2012, **70**:1004–1014.

815 10. Wen Z-Y, Chen F: **Heterotrophic production of eicosapentaenoic acid by microalgae.**
816 *Biotechnol Adv* 2003, **21**:273–294.

817 11. Simionato D, Basso S, Giacometti GM, Morosinotto T: **Optimization of light use efficiency**
818 **for biofuel production in algae.** *Biophys Chem* .

819 12. Morales-Sánchez D, Tinoco-Valencia R, Kyndt J, Martinez A: **Heterotrophic growth of**
820 ***Neochloris oleoabundans* using glucose as a carbon source.** *Biotechnol Biofuels* 2013,
821 **6**:100.

822 13. Lewin JC: **The taxonomic position of *Phaeodactylum tricornutum*.** *J Gen Microbiol*
823 1958, **18**:427–432.

824 14. Ukeles R, Rose W.: **Observations on organic carbon utilization by photosynthetic**
825 **marine microalgae.** *Mar Biol* 1976, **37**:11–28.

826 15. Hayward J: **Studies on the growth of *Phaeodactylum tricornutum*. II. The effect of**
827 **organic substances on growth.** *Physiol Plant* 1968, **21**:100–108.

828 16. Zaslavskaya LA, Lippmeier JC, Shih C, Ehrhardt D, Grossman AR, Apt KE: **Trophic**
829 **conversion of an obligate photoautotrophic organism through metabolic engineering.**
830 *Science* 2001, **292**:2073–2075.

831 17. Liu X, Duan S, Li A, Xu N, Cai Z, Hu Z: **Effects of organic carbon sources on growth,**
832 **photosynthesis, and respiration of *Phaeodactylum tricornutum*.** *J Appl Phycol* 2009,
833 **21**:239–246.

834 18. Ceron Garcia M, Camacho FG, Miron AS, Sevilla JMF, Chisti Y, Grima EM: **Mixotrophic**
835 **production of marine microalga *Phaeodactylum tricornutum* on various carbon sources.**
836 *J Microbiol Biotechnol* 2006, **16**:689.

837 19. Crown SB, Indurthi DC, Ahn WS, Choi J, Papoutsakis ET, Antoniewicz MR: **Resolving the**
838 **TCA cycle and pentose-phosphate pathway of *Clostridium acetobutylicum* ATCC 824:**
839 **Isotopomer analysis, in vitro activities and expression analysis.** *Biotechnol J* 2011, **6**:300–
840 305.

841 20. Feng X, Bandyopadhyay A, Berla B, Page L, Wu B, Pakrasi HB, Tang YJ: **Mixotrophic and**
842 **photoheterotrophic metabolism in *Cyanothece* sp. ATCC 51142 under continuous light.**
843 *Microbiol Read Engl* 2010, **156**(Pt 8):2566–2574.

844 21. Wiechert W, Möllney M, Petersen S, de Graaf AA: **A universal framework for ^{13}C**
845 **metabolic flux analysis.** *Metab Eng* 2001, **3**:265–283.

846 22. Hong SH, Park SJ, Moon SY, Park JP, Lee SY: **In silico prediction and validation of the**
847 **importance of the Entner-Doudoroff pathway in poly(3-hydroxybutyrate) production by**
848 **metabolically engineered *Escherichia coli*.** *Biotechnol Bioeng* 2003, **83**:854–863.

849 23. Kocharin K, Siewers V, Nielsen J: **Improved polyhydroxybutyrate production by**
850 ***Saccharomyces cerevisiae* through the use of the phosphoketolase pathway.** *Biotechnol*
851 *Bioeng* 2013, **110**:2216–2224.

852 24. Szyperski T: **^{13}C -NMR, MS and metabolic flux balancing in biotechnology research.** *Q*
853 *Rev Biophys* 1998, **31**:41–106.

854 25. Young JD, Shastri AA, Stephanopoulos G, Morgan JA: **Mapping photoautotrophic**
855 **metabolism with isotopically nonstationary ^{13}C flux analysis.** *Metab Eng* 2011, **13**:656–665.

856 26. Sriram G, Fulton DB, Iyer VV, Peterson JM, Zhou R, Westgate ME, Spalding MH, Shanks
857 JV: **Quantification of compartmented metabolic fluxes in developing soybean embryos by**
858 **employing biosynthetically directed fractional ^{13}C labeling, two-dimensional [^{13}C , ^1H]**
859 **nuclear magnetic resonance, and comprehensive isotopomer balancing.** *Plant Physiol*
860 **2004, 136**:3043–3057.

861 27. Nargund S, Sriram G: **Designer labels for plant metabolism: statistical design of**
862 **isotope labeling experiments for improved quantification of flux in complex plant**
863 **metabolic networks.** *Mol Biosyst* 2013, **9**:99.

864 28. Chauton MS, Winge P, Brembu T, Vadstein O, Bones AM: **Gene regulation of carbon**
865 **fixation, storage, and utilization in the diatom *Phaeodactylum tricornutum* acclimated to**
866 **light/dark cycles.** *Plant Physiol* 2013, **161**:1034–1048.

867 29. Allen AE, Moustafa A, Montsant A, Eckert A, Kroth PG, Bowler C: **Evolution and**
868 **functional diversification of fructose bisphosphate aldolase genes in photosynthetic**
869 **marine diatoms.** *Mol Biol Evol* 2011, **29**:367–379.

870 30. Crown SB, Antoniewicz MR: **Parallel labeling experiments and metabolic flux analysis:**
871 **Past, present and future methodologies.** *Metab Eng* 2013, **16**:21–32.

872 31. Tang JK-H, You L, Blankenship RE, Tang YJ: **Recent advances in mapping**
873 **environmental microbial metabolisms through ¹³C isotopic fingerprints.** *J R Soc Interface*
874 2012, **9**:2767–2780.

875 32. Bromke M: **Amino acid biosynthesis pathways in diatoms.** *Metabolites* 2013, **3**:294–311.

876 33. Fuhrer T, Fischer E, Sauer U: **Experimental identification and quantification of glucose**
877 **metabolism in seven bacterial species.** *J Bacteriol* 2005, **187**:1581–1590.

878 34. Cerón García MC, Sánchez Mirón A, Fernández Sevilla JM, Molina Grima E,
879 Garcí[combining acute accent]a Camacho F: **Mixotrophic growth of the microalga**
880 ***Phaeodactylum tricornutum*: Influence of different nitrogen and organic carbon sources**
881 **on productivity and biomass composition.** *Process Biochem* 2005, **40**:297–305.

882 35. Libourel IGL, Gehan JP, Shachar-Hill Y: **Design of substrate label for steady state flux**
883 **measurements in plant systems using the metabolic network of *Brassica napus***
884 **embryos.** *Phytochemistry* 2007, **68**:2211–2221.

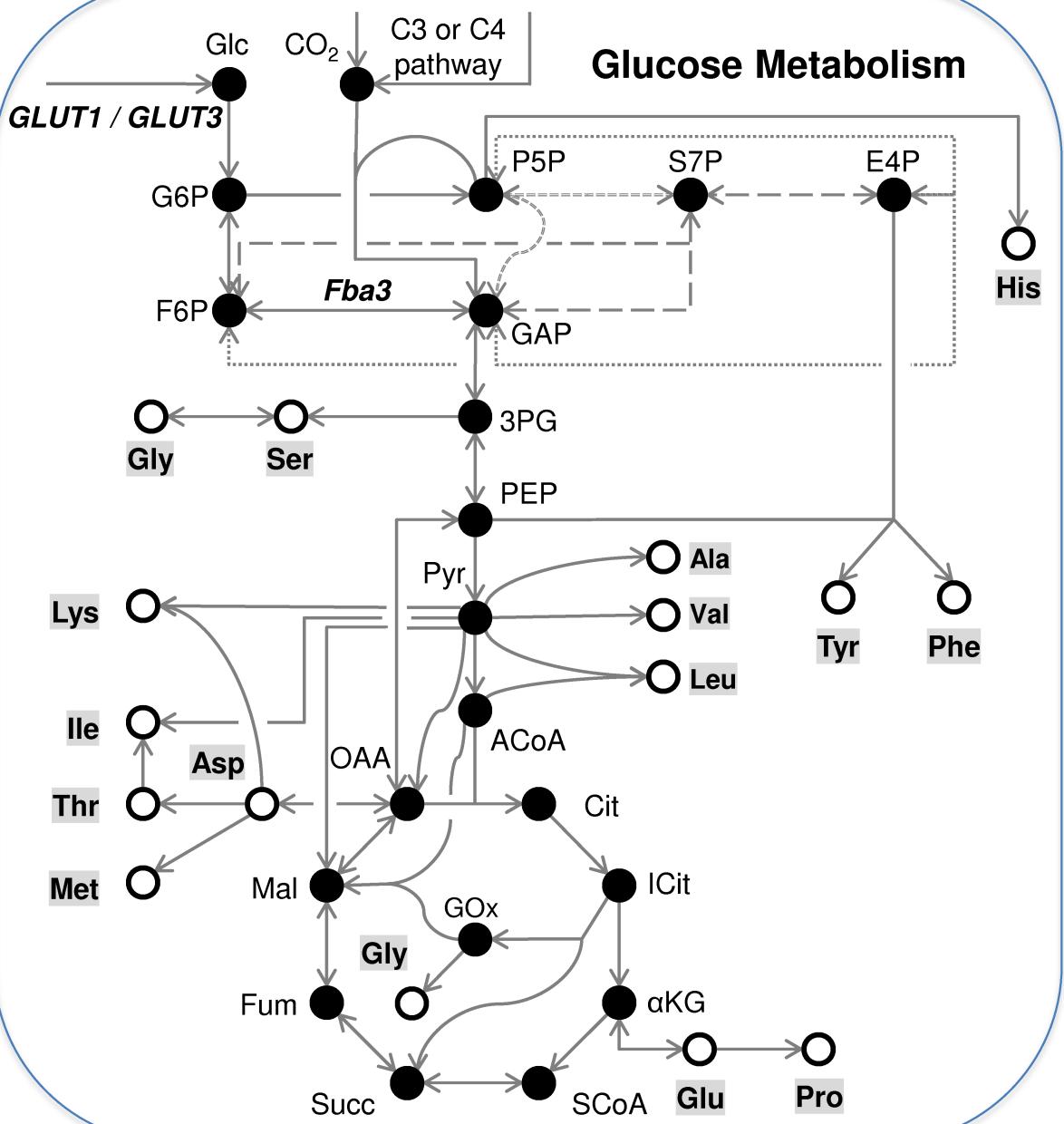
885 36. Sriram G, Fulton BD, Shanks JV: **Flux quantification in central carbon metabolism of**
886 ***Catharanthus roseus* hairy roots by ¹³C labeling and comprehensive bondomer**
887 **balancing.** *Phytochemistry* 2007, **68**:2243–2257.

888 37. Igamberdiev AU, Bykova NV, Kleczkowski LA: **Origins and metabolism of formate in**
889 **higher plants.** *Plant Physiol Biochem* 1999, **37**:503–513.

890 38. Siaut M, Heijde M, Mangogna M, Montsant A, Coesel S, Allen A, Manfredonia A, Falciatore
891 A, Bowler C: **Molecular toolbox for studying diatom biology in *Phaeodactylum***
892 ***tricornutum*.** *Gene* 2007, **406**:23–35.

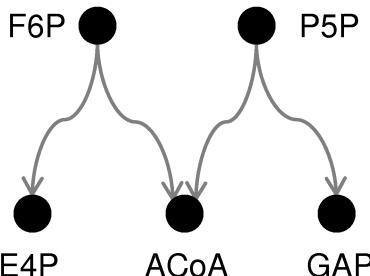
893 39. Livak KJ, Schmittgen TD: **Analysis of relative gene expression data using real-time**
894 **quantitative PCR and the 2^{-ΔΔCT} method.** *Methods* 2001, **25**:402–408.

895 40. Sriram G, Rahib L, He J-S, Campos AE, Parr LS, Liao JC, Dipple KM: **Global metabolic**
896 **effects of glycerol kinase overexpression in rat hepatoma cells.** *Mol Genet Metab* 2008,
897 **93**:145–159.

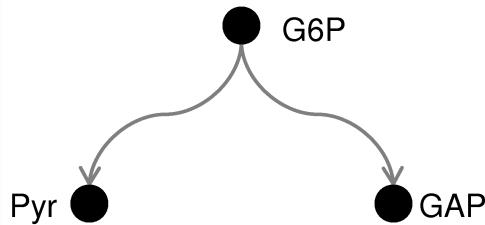

898 41. Press WH, Teukolsky SA, Vetterling WT, Flannery BP: *Numerical Recipes 3rd Edition: The*
899 *Art of Scientific Computing*. 3rd edition. Cambridge University Press; 2007.

900 42. Wasylenko TM, Stephanopoulos G: **Kinetic isotope effects significantly influence**
901 **intracellular metabolite ¹³C labeling patterns and flux determination**. *Biotechnol J* in press.

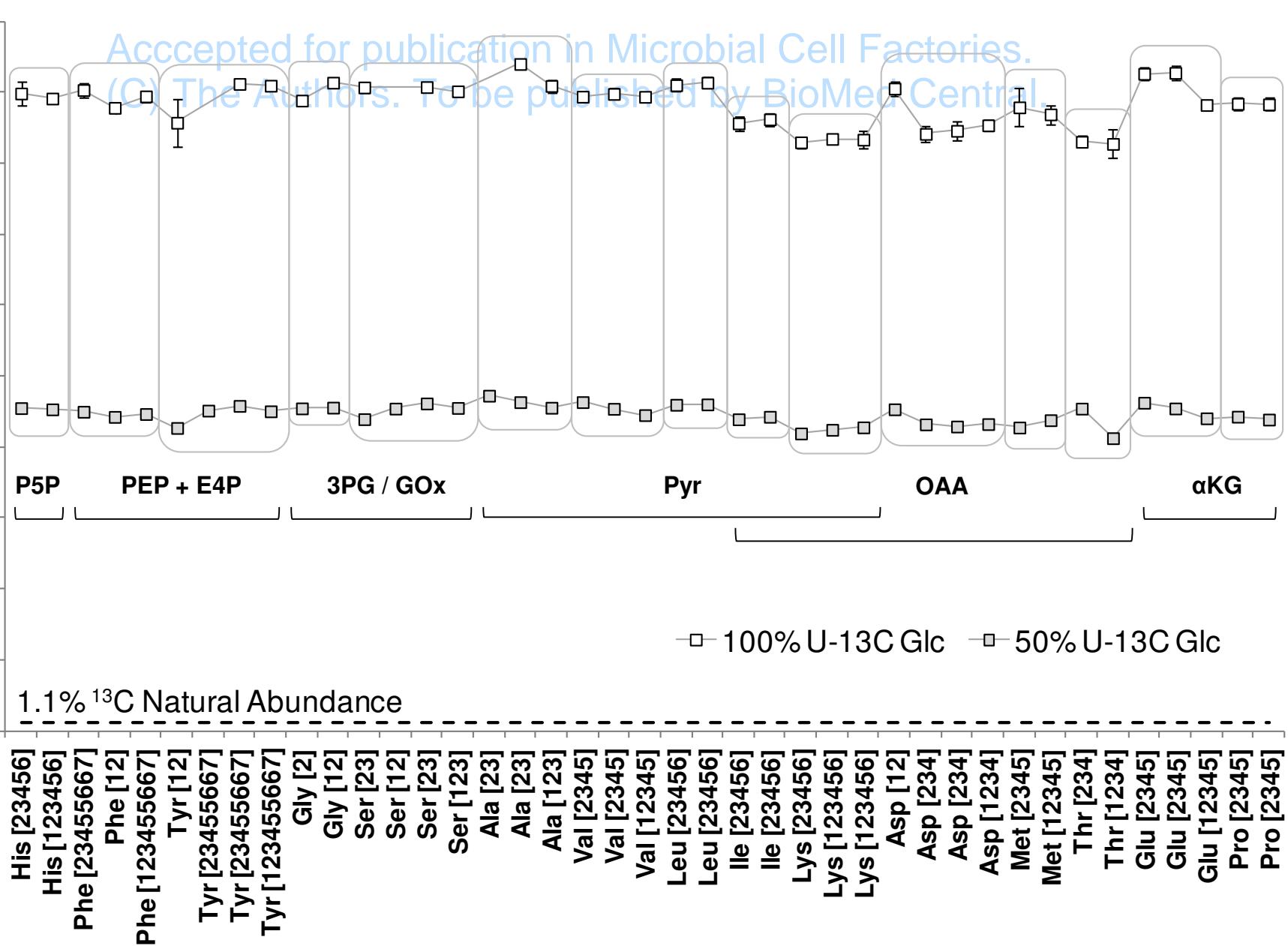
902 43. Brown MR: **The amino-acid and sugar composition of 16 species of microalgae used**
903 **in mariculture**. *J Exp Mar Biol Ecol* 1991, **145**:79–99.


904 44. Rebolledo-Fuentes M m., Navarro-Pérez A, Ramos-Miras J j., Guil-Guerrero J l.: **Biomass**
905 **Nutrient Profiles of the Microalga *Phaeodactylum Tricornutum***. *J Food Biochem* 2001,
906 **25**:57–76.

907



Alternate Glycolysis Pathways


Phosphoketolase pathway

Entner-Doudoroff pathway

^{13}C Enrichment

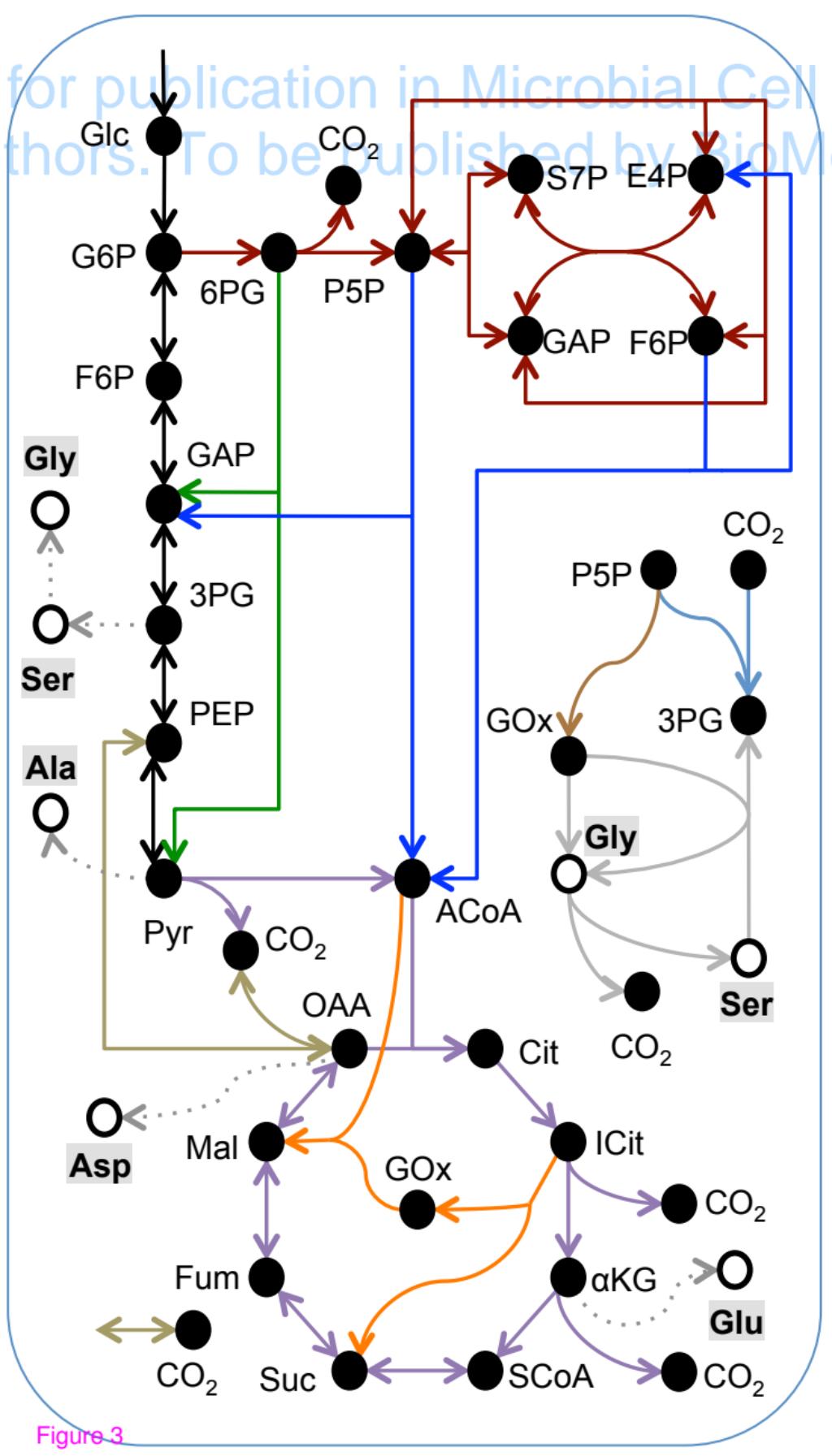
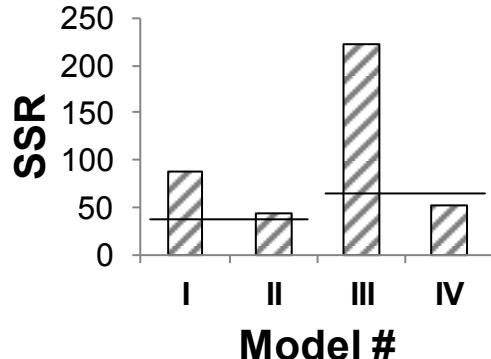
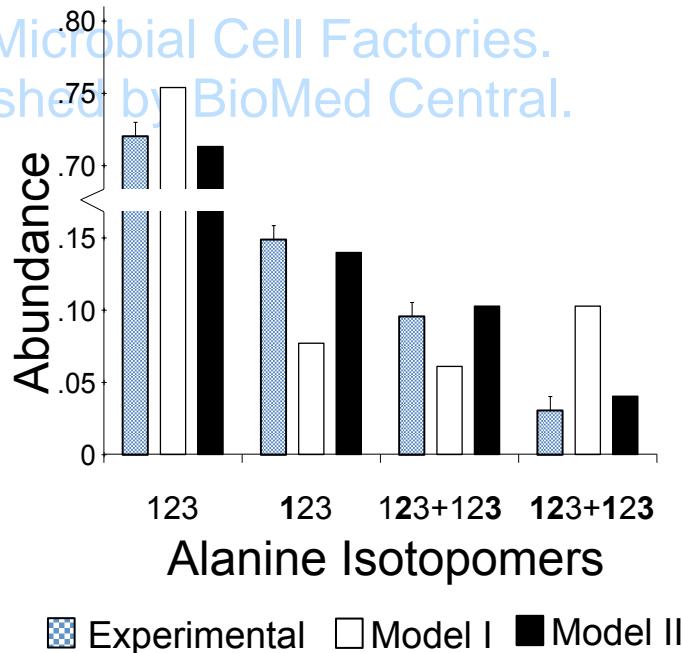
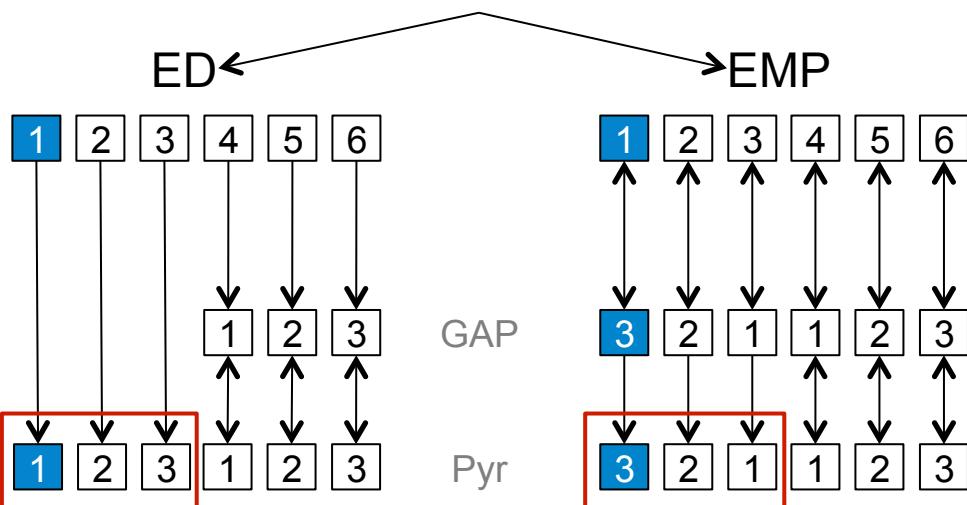




Figure 3

b)



tion d) Microbial Cell Factories.
e published by BioMed Central.

c)

100 % 1-¹³C Glucose

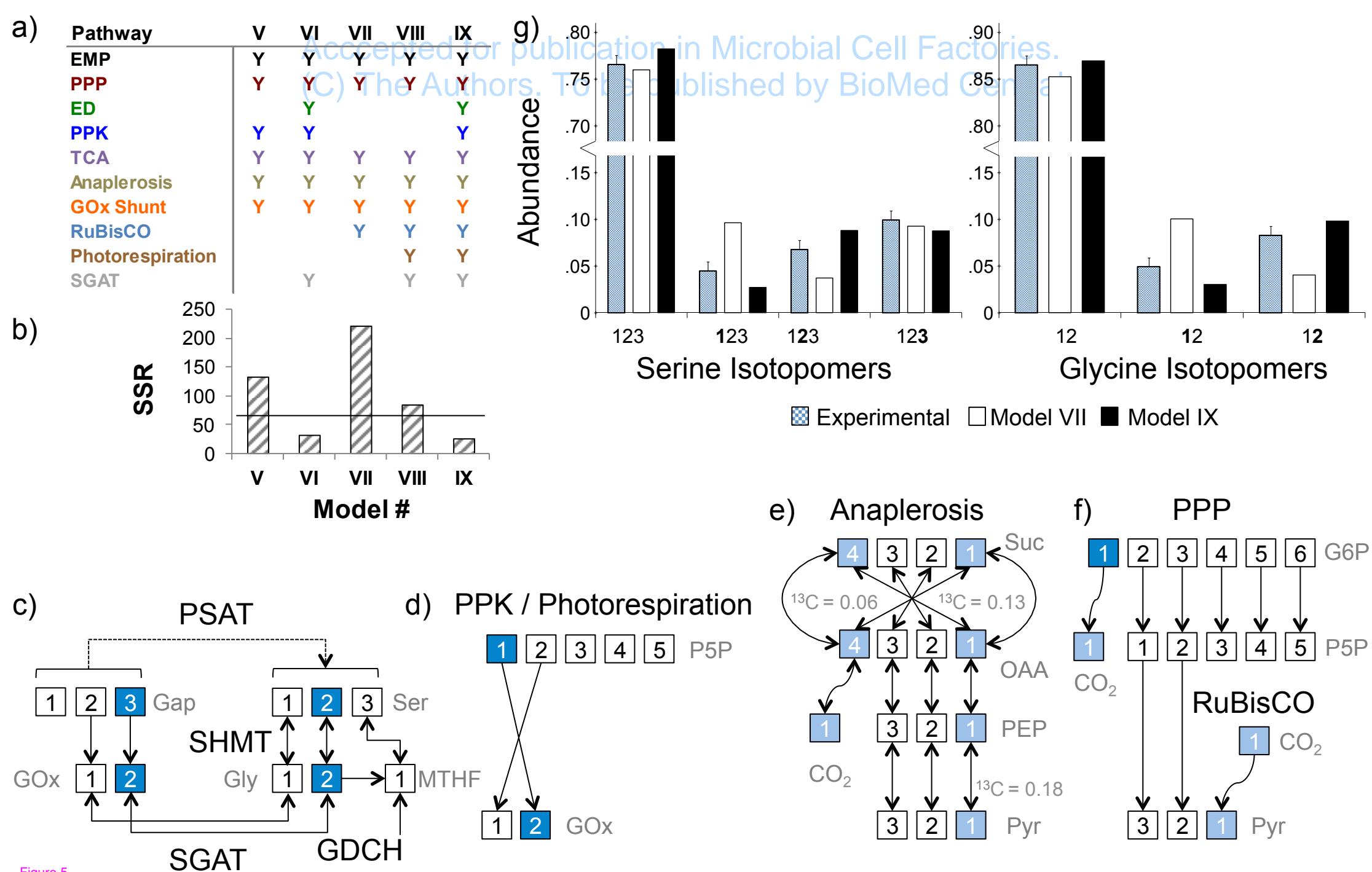


Figure 5

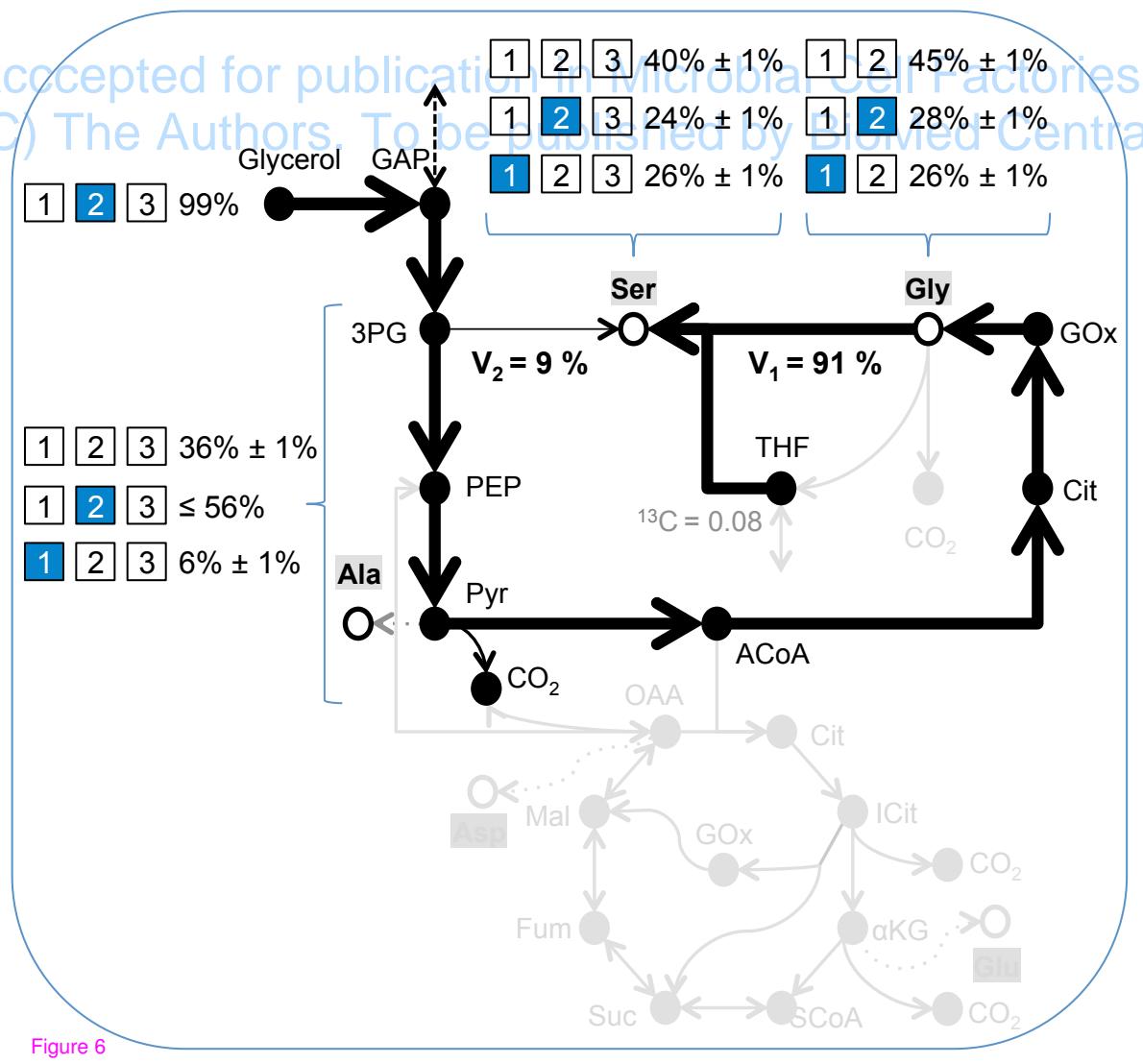
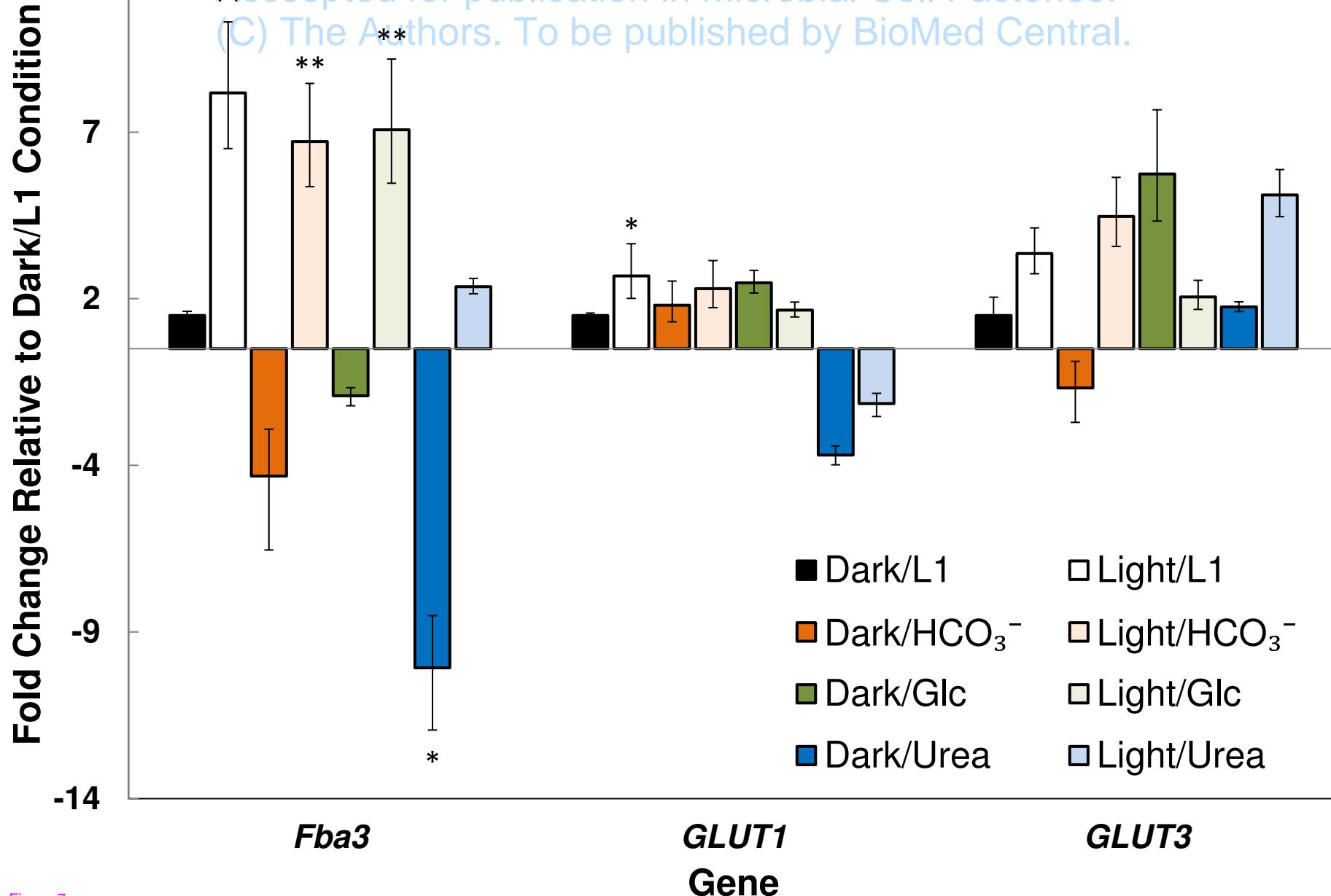



Figure 6

Additional files provided with this submission:

Additional file 1: Figure S1.pdf, 83K

<http://www.microbialcellfactories.com/imedia/9567994710397418/supp1.pdf>

Additional file 2: Figure S2.pdf, 94K

<http://www.microbialcellfactories.com/imedia/8481490041120942/supp2.pdf>

Additional file 3: Figure S3.pdf, 53K

<http://www.microbialcellfactories.com/imedia/1429165329112105/supp3.pdf>

Additional file 4: Supplementary Tables 2.2.xlsx, 171K

<http://www.microbialcellfactories.com/imedia/1213071881112244/supp4.xlsx>