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How Ethanol is produced on the industrial level 

• Ethanol fermentation produces ethanol for use in food, beverages, and fuel.
• Yeast convert sugars, like glucose, into cellular energy .
• Ethanol and carbon dioxide are by products of this process. 
• Fermentation occurs in large fermentation tanks.
• The enzyme alpha-amylase is added to tanks to break down corn starch 

into shorter  carbohydrate chains called dextrins.
• During saccharification process the enzyme glucoamylase is added to 

mixture to break down dextrins into glucose.
• Starch is converted to simple sugars, yeast is  added to convert glucose 

into ethanol and carbon dioxide. 
https://www.osha.gov/dts/osta/otm/otm_iv/descriptions.pdf



Chemostats Can Be Used to Model Industrial Ethanol 
Production 

• Chemostat cultures have been used by researchers as a tool to 
simulate the different stages of industrial ethanol production. 

• Chemostat cultures allows scientists to gather data regarding 
metabolic processes of yeast cells.

• Enable researchers to test the effects of specific nutrients on ethanol 
production.
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Saccharomyces cerevisiae is the Most Relevant Yeast Strain 
in Ethanol Production 

• Saccharomyces cerevisiae is commonly used in winemaking, 
banking and brewing 

• S. cerevisiae perform the most common type of fermentation
• Ethanol becomes toxic to yeast cells at high concentrations 
• S. cerevisiae is a preffered yeast strain due to its high stress 

tolerance and its ability to efficiently use carbon and nitrogen 
resources 

• Goal of industrial ethanol production is to produce maximum ethanol 
in shortest period of time 

• Most ethanol is produced in later stages, i.e. at or near zero growth 
rates and stationary phase 



The Flexibility of Saccharomyces cerevisiae 

• S. cerevisiae can rapidly switch between respiratory and fermentative 
sugar metabolism in response to changes in availability of oxygen 
and fermentable sugars 

• S. cerevisiae can increase catabolic rates an start accumulating large 
amounts of ethanol upon this transfer

• Glucose starved yeast can adapt when introduced to high glucose 
concentrations within minutes

• Pathways responsible for fermentation process can suddenly 
catalyze sugar at very high rates, which is why S. cerevisiae is the 
most preferred yeast in industrial ethanol production (Van den Brink, 
et. al 2008). 
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The Role of Glucose in Ethanol Fermentation

• Yeast contain enzyme called zymase which catalyzes fermentation 
process 

• Glucose zymase → Ethanol + Carbon Dioxide 
• 𝐂𝐂𝟔𝟔𝐇𝐇𝟏𝟏𝟏𝟏𝐎𝐎𝟔𝟔 𝐚𝐚𝐚𝐚 → 𝟐𝟐𝐂𝐂𝟐𝟐𝐇𝐇𝟓𝟓𝐎𝐎𝐎𝐎 𝐚𝐚𝐚𝐚 + 𝟐𝟐𝟐𝟐𝐎𝐎𝟐𝟐 𝐠𝐠
• Glycolysis breaks down glucose to form pyruvate. 
• When oxygen is not present pyruvate undergoes fermentation. 



Outline 

• Chemostats and industrial ethanol manufacturing 
• Saccharomyces cerevisiae and the fermentation process 
• The role of glucose feed concentration in the fermentation process 
• A mathematical model of EtOH production  in a chemostat

environment
• Maximization of EtOH production using free final time optimal control 

problem 
• Optimal feed flow rate 



A mathematical model of Ethanol Production in a 
Continuous Culture 
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Parameters and Constants in Model 

• X = Cell mass concentration 
• S = Glucose concentration 
• P = Ethanol concentration 
• μ = Specific growth rate 
• π = Specific productivity 
• F = Feed rate 
• Notation used in  Wang, et. al (1999) 



Parameters and Constants Continued 

• 𝝁𝝁 = 𝝁𝝁𝟎𝟎
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• Growth equations from Wang, et. al (2008). 
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Brief Explanation of Dynamic Optimization 

•
̇

�𝒙̇𝒙 = 𝒇𝒇 𝒙𝒙 𝒕𝒕 ,𝒖𝒖 𝒕𝒕 , 𝒕𝒕
𝒙𝒙 𝟎𝟎 = 𝒙𝒙𝟎𝟎

• Goal: maximize objective function 
• 𝑱𝑱(𝒖𝒖) = ∫𝒕𝒕𝒐𝒐

𝒕𝒕𝒇𝒇 𝑭𝑭 𝒙𝒙 𝒕𝒕 ,𝒖𝒖 𝒕𝒕 , 𝒕𝒕 𝒅𝒅𝒅𝒅 + 𝝀𝝀 𝒙𝒙(𝒕𝒕𝟏𝟏)

• State variable depends on control variable. 
• Decision maker chooses control variable at any given time 
• Final time 𝒕𝒕𝒇𝒇 in this  case is free 
• Dynamic optimization means we aren’t looking for a single steady-

state solution, but for an optimal path amongst all feasible paths for 
the system . 



Transversality Condition For Optimal Path

• 𝒙̇𝒙 = 𝒇𝒇 𝑿𝑿 𝒕𝒕 ,𝑺𝑺 𝒕𝒕 ,𝑷𝑷 𝒕𝒕 ,𝑽𝑽 𝒕𝒕 ,𝒖𝒖 𝒕𝒕 , 𝒕𝒕
• The Hamiltonian:
• 𝑯𝑯 𝒕𝒕 = 𝒇𝒇 𝑿𝑿 𝒕𝒕 , 𝐒𝐒 𝐭𝐭 ,𝐏𝐏 𝐭𝐭 ,𝐕𝐕 𝐭𝐭 ,𝐮𝐮 𝐭𝐭 , 𝐭𝐭 + 𝝀𝝀 𝒕𝒕 𝒈𝒈 𝑿𝑿 𝒕𝒕 ,𝑺𝑺 𝒕𝒕 ,𝑷𝑷 𝒕𝒕 ,𝑽𝑽 𝒕𝒕 ,𝒖𝒖 𝒕𝒕 , 𝒕𝒕
• 𝑯𝑯 𝒕𝒕𝒇𝒇 = 𝟎𝟎, extending beyond 𝒕𝒕𝒇𝒇 has no value because ethanol 

production has already been maximized 
• 𝑯𝑯 𝒕𝒕𝒇𝒇 cannot be  negative, in that case it would have been optimal to 

finish fermentation earlier
• State variables are the elevation of the road, control variable is the 

direction of the road at each point, and 𝒕𝒕𝒇𝒇 is the length  of the road. 
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Optimal control of Fermentation Process 

• Goal is to find optimal feeding rate, feed 
concentration, initial glucose 
concentration, and initial volume such 
that the ethanol production rate is 
maximized at the minimum fermentation 
time. 

• The objective function is: 
• 𝐦𝐦𝐦𝐦𝐦𝐦
𝑭𝑭 𝒕𝒕 ,𝑺𝑺𝒐𝒐,𝑺𝑺𝒇𝒇,𝑽𝑽𝟎𝟎,𝒕𝒕𝒇𝒇

𝑱𝑱 = 𝑷𝑷 𝒕𝒕𝒇𝒇 𝑽𝑽 𝒕𝒕𝒇𝒇

• My Matlab program used a direct 
collocation method to approximate 
numerical solutions for the optimal 
paths 



Optimal Paths For States and Control First Run  



Optimal Paths With 70 g/L Reduction In Initial Glucose 



Optimal Paths With 10 L Increase in Initial Volume 



Results From Previous  Research 

Banga, et. al (2008)



Values For Optimal Production Rate and  Final Time 

• Optimal final time for my first simulation was about 65 hours and the 
maximum ethanol production rate was 4.22kg/hr. 

• Optimal final time for my second simulation was about 61 hours and 
maximum ethanol production rate was 3.96 kg/hr

• Values are similar to values obtained by previous researchers using a 
similar model but with higher number of collocation points. 

• The feed rate concentration had an optimal path similar to the paths 
found in other research. 

• Once EtOH concentration hits a critical point, biomass decreases 
sharply towards  initial point, but EtOH continues to increase. 

• This is consistent with (paper), which states that most EtOH is 
produced in the later stages of fermentation. 



Response to Varying Constraints 

• Under the model I selected, maximum ethanol production is attained 
by adjusting feed rate concentration of glucose according to optimal 
path determined by solution to control problem. 

• EtOH concentration increases despite decreases in biomass 
concentration of yeast. 

• Feed rate and EtOH concentration are both constrained by total 
volume of chemostat/reactor. 

• Reduction in initial glucose concentration by 70 g/l led to only a 
minor decrease in ethanol production rate. 

• An increase in initial volume from 10 L to 20 L causes an increase in 
final time by > 10 hr



Conclusion 

• It is possible to maximize EtOH production through optimal altering 
of feed rate over time. 

• The optimal path of glucose feed rate  is highly sensitive to changes 
in initial conditions. 

• The maximum amount of ethanol production and maximum 
production rate are  much less sensitive to changes in initial 
conditions. 

• Maximum production is reach quickest when initial volume is low. 
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