Contextualizing context for synthetic biology – identifying causes of failure of synthetic biological systems

Stefano Cardinale and Adam Paul Arkin Biotechnology Journal (2012) 7(7):856-66.

Presented by Ryan 17 April 2013 20.385

Genetic programs constructed from layered logic gates in single cells

Moon Ts, Lou C, Tamsir A, Stanton BC, Voigt CA.

Source	Transcription Factor	Chaperone	Promoter
Salmonella	InvF (100%)	SicA (100%)	P(sicA)
Shigella	MxiE (27%)	lpgC (54%)	P(ipaH)
Yersinia	YsaE (15%)	SycB (50%)	P(syc)
Pseudomonas	ExsA (10%)	ExsC (13%)	P(exsC)

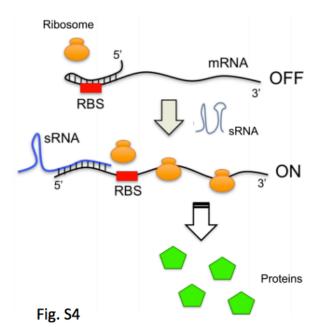
"Yesinia parts were non-functional and were not pursued further."

Learning from Failures

- Goal: to make synthetic biology efficient, safe, understandable and predictable
- Problem: divergence between design and actual function of synthetic system
- What can we learn from our mistakes?
- "A much cited barrier to predictability in design is context."

Context

- The environment in which a system finds itself
 - Compositional Context
 - Host Context
 - Environmental Context

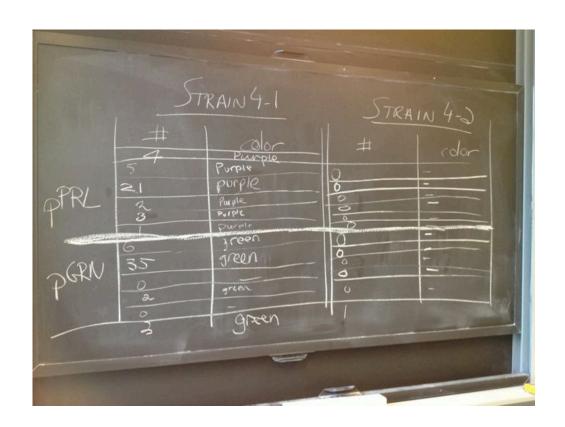


Compositional Context

- Functional composition of devices leading to unexpected circuit failure
- Approximate knowledge of RNA folding and cis/trans regulation

De novo automated design of small RNA circuits for engineering synthetic riboregulation in living cells.

Rodrigo et al. A. PNAS(2012) 109(38):15271-6.



Host Context

- Reliance on limited host resources can impact host homeostasis
 - Nucleotides, tRNAs, polymerases and ribosomes
- Devices are subjected to growth, replication and partitioning
- Non-specific binding and crosstalk
 - Positive vs. negative selection in evolution -> orthogonality

Host Context

- Strain specific results
 - Issues between circuit and host genetic background

Environmental Context

- Can directly affect physical chemical properties of biological parts and thus their function
 - Temperature, especially for RNA parts, can affect predictable functioning
 - pH, tune population density by changing pH to affect quorumsensing signal acyl homoserine lactone
- Host-mediated cross-feeding and cross-protection
- Availability of external nutrients

Relation to 20.020 Projects

- Host chassis choices
- Ocean environment changes in temperature and pressure
- Implementation of multiple devices in a host
- Chauffeur pH of stomach

Discussion

Strengths and Limitations

- Clear review of failures in synthetic biology
- Broad range of context effects covered
- Current lack of knowledge to predict unwanted intra- or intermolecular interactions

Summary and Relation to Today's Topic

- Learn from failures to make designing successes easier
- Kristine's paper: creating an E. coli platform to make designing and debugging easier

Questions

- What kind of compositional, host, or environmental context effects might arise in your 20.020 group project?
- How does knowing about these context effects change how you go about planning your projects (not specifically this class!)?

Context

A – compositional

B – host

C – environmental

