
# SEED Academy, Spring 2011 Synthetic Biology Module

Homework #7 Due April 9, 2011

## 1) Cloning: Complete (Essentially...)

You have essentially completed the necessary steps for cloning a gene (you should remember, though, that verifying whether your product is correct, via sequencing or another method, is a crucial step in the cloning process). Thus, referring to our good friend the lab project schematic below, indicate how you got from start to finish. Notes:

- 1) Treat the small black piece of DNA as the product that you PCRed.
- 2) This diagram suggests that you used XbaI and EcoRI for the digest. You did not. Which enzymes did you use?
- 3) Consider "Gel Purif." and "Gel Anal." one step; disregard "Plan Lig."



| <b>Transformation Efficiency</b> Transformation is actually an inefficient process. We seek to illustrate this point in this problem.                                                                                                                   |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| You note that there are 7 cells in 10 $\mu$ L of medium (LB) after 5 serial 10X dilutions. You transformed 10 $\mu$ L of 100 pg/ $\mu$ L ligation product (a plasmid) with an expected length of 5000 bp and a molecular weight of 650 Dalton per base. |
| If you obtained 100 colonies on the plate                                                                                                                                                                                                               |
| What is the transformation efficiency, i.e. the number of ligation products recovered in cells (Hint: Think about how many ligation products would you expect a single colony to represent)?                                                            |
| What fraction of viable cells obtained a plasmid with antibiotic resistance?                                                                                                                                                                            |
|                                                                                                                                                                                                                                                         |

If you obtained 10,000 colonies on the plate...

c. What is the transformation efficiency?

d. What fraction of viable cells obtained a plasmid with antibiotic resistance?

# 3) Enzyme Activity

- a. Expression Levels
  - i. mRNA

You are using a plasmid which is maintained in the cell at 5 copies per cell and a promoter which recruits RNA polymerase at a rate of 10 per second per plasmid. Assume that every second  $1/4^{th}$  of the mRNA in existence is degraded.

What is the steady concentration of mRNA [#/cell] (HINT: A steady concentration will be reached when the RNA production by the polymerase equals the rate of degradation)?

#### ii. Protein

Use the steady mRNA concentration from above (if you did not get an answer above, use a value of 1 mRNA per cell). The ribosome binding site initiates translation of the mRNA at a rate of 2 per second per mRNA. Assume that every second,  $1/10^{th}$  of the protein in existence is degraded.

What is the steady concentration of protein [#/cell]?

### 4) Final Projects

Continue researching!