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Question 1: A numerical exploration of the Lorenz system

We first consider the three dimensional Lorenz system shown below.
x=0(y—x)
Yy=Trx—XxzZ—Yy

Z=xy—bz

To get a good understanding of the system, we can start by finding the fixed points of the
system by setting all of the equations to zero such that x = y = Z = 0. We obtain that the
fixed points are:

x *=(0,0,0) and (+/b(r — 1), £{/b(r — 1), — 1)

From the form of the fixed points, it can be seen that (0,0,0) is always a fixed point, but the
other fixed point only appears when r > 1. When r < 1, the fixed points are imaginary and are
not seen on the phase plane.

We can also calculate the Jacobian of the system to obtain the stability analysis of the system.
The Jacobian is as follows:

—0 o 0
Jacobianyy, , = (r -z -1 —x)
y x —=b

From this point, we can calculate the eigenvalues of the system via Matlab to determine the
stability of all the fixed points. In the table below, we change the value of r and determine
the eigenvalues of the jacobian for both the (0,0,0) fixed point and the other two fixed points.
In the following analysis we fix the values of o and b:

o =10b=8/3

r=10 Fixed Point Eigenvalues

0 0 0 5.4659, -16.4659, -2.6667

4.8990 4.8990 9.0000 |-12.4757,-0.5955 - 6.1742i, -0.5955 + 6.1742i

-4.8990 -4.8990 9.0000 | -12.4757, -0.5955 - 6.1742i, -0.5955 + 6.1742i

For r = 10, we can see that (0,0,0) is a saddle node and the other fixed points are considered
attracting spirals since two of the eigenvalues are imaginary. Thus, the two fixed points other
than (0,0,0) will be the attractors of the system since it can be seen that the real component of




the imaginary eigenvalues are negative. This negative real component signifies that the
spirals are inward towards the fixed point.

r=245 Fixed Point Eigenvalues

0 0 0 10.7865, -21.7865, -2.6667

7.9162 7.9162 23.5000 | -13.6523, -0.0072 - 9.5814i, -0.0072 + 9.5814i

-7.9162 -7.9162 23.5000 | -13.6523, -0.0072 - 9.5814i, -0.0072 + 9.5814i

For r = 24.5, the situation is the same as for r = 10 with (0,0,0) being a saddle node and the
other fixed points being attracting spirals. Again, the two fixed points other than (0,0,0) will
be the attractors of the system.

r=25 Fixed Point Eigenvalues
0 0 0 10.9393, -21.9393, -2.6667
8 8 24 -13.6825, 0.0079 - 9.6721i, 0.0079 + 9.6721i
-8 -8 24 -13.6825, 0.0079 - 9.6721i, 0.0079 + 9.6721i

For r = 25, we have a slightly different case than for r = 10 or 24.5. Here we again see that
(0,0,0) is a saddle node, but the other two fixed points have become repelling spirals as the
real component of the eigenvalues have become positive meaning that they exponentially
grow away from the fixed point. Later when we take a look at the phase plane and the
bifurcation, we can see that this value of r is greater than the Hopf bifurcation point.
Furthermore, since our fixed points have become unstable, there are no longer any long-term
attractors of the system after the Hopf bifurcation.

r=45 Fixed Point Eigenvalues

0 0 0 -2.6667, 16.1852, -27.1852

10.8321, 10.8321, 44.0000 -14.6165, 0.4749 -12.6619i, 0.4749 +12.6619i

-10.8321, -10.8321, 44.0000 | -14.6165, 0.4749 -12.6619i, 0.4749 +12.6619i

r =220 Fixed Point Eigenvalues

0 0 0 -2.6667, 41.6195, -52.6195

24.1661 24.1661 219.0000 | -17.2826, 1.8080 -25.9337i, 1.8080 +25.9337i

-24.1661 -24.1661 219.0000 | -17.2826, 1.8080 -25.9337i, 1.8080 +25.9337i

For r =45 and 220, we have a similar situation for when r = 25. Since we see the positive
real value in the eigenvalue corresponding to two fixed points which are not (0,0,0), they are
no longer stable fixed points. Again, for these values of r, there are no long-term attractors of
the system.

We can see a definite change of behavior between r values of 24.5 and 25. This Hopf
bifurcation occurs at the r value:

For our specific values of b and o, we find that r; = 24.736. In the phase plane analysis, we
can see this change of behavior occurring in figure 1. We can see that for r = 10 and 24.5, we
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get a spiral getting attracted to the fixed points (which are the long-term attractors of the
system). For r > 24.5, we see that there are no longer any long-term attractors, but the
behavior is chaotic and does not seem to follow a patter except that the trajectories seem to
remain in a bounded area around unstable fixed points. For r = 10 and 24.5, it can be seen
that the trajectories depend on the initial conditions and will either go to the positive or
negative fixed point (figures 2a and 2b).
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Figure 1. Phase plane x vs. y for various r values
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We can further visualize the chaotic nature of the system by plotting the time evolution as
shown in figure 3. Chaotic behavior can be seen starting with r = 25. From our numerical
analysis above, we know that for r = 24.5, the system will continue to be periodic and we
predict that the long-term behavior will be similar to what is occurring already. For r > 24.5,
we see a chaotic behavior which is aperiodic but bounded between values, two key elements
a chaotic system has.

Another key element a chaotic system has is sensitivity to initial conditions. This is
demonstrated by taking two initial values which are very close together.



I, = (8.8756, 16.1229, 11.5828)
I, =(8.8757, 16.1230, 11.5829)
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Figure 3. Time evolution of the Lorenz system

The plots of the two initial conditions are shown superimposed in figure 4 (blue
corresponding to initial conditions I, and red dashed line corresponding to initial conditions

1,).

Figure 4. Sensitivity to Initial Conditions
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We can see that at approximately when time = 15, the two trajectories begin to diverge

significantly. We can calculate the difference to calculate the Lyapunov exponent of the

system which is derived from knowing that as time approaches 0, the two trajectories will be

very close. As time increases, the two trajectories begin to diverge and the distance between

the two is bounded by the elliptical volume in which the trajectories are contained. The

Lyapunov exponent, A, gives the rate of exponential divergence of the two trajectories and
gives the limit to which we can predict the behavior of the system. By considering two



neighboring trajectories, numerical studies have shown that the following relationship holds
true.

I8~ I8, lle*

Plotting In||8,|| vs t (figure 5), we obtain a curve that is close to a straight line with a positive
slope A. A straight line is then fit to the curve to find the value of the slope. The significance
of the positive slope is that the trajectories are always diverging. If the slope were to be
negative, then the trajectories would be considered converging and the system cannot be
considered chaotic. In our system, A was found to be equal 0.74. The fact that it is positive
correlates with the idea that our system is indeed chaotic.

Figure 5. Finding the Lyapunov Exponent
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Another interesting aspect of this system is that when the length of integration is increased,
the system begins to show chaotic behavior even before the Hopf bifurcation as the plots
shown in figure 6 show.
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Figure 6. Phase plane x vs. y for t = [0, 50]



It is unclear what the cause is for the strange behavior at extended time period, but we can
speculate that this is likely due to the chaotic nature of the function and that the two fixed
points are still stable when r is less than ry.

Question 2: Period doubling and chaos in an oscillatory system

We now consider the system shown below which models some types of neurons exhibiting
sub-threshold oscillations.

X=-y—2z
1
y=xToy

Z=§+Z(X—C)

Again, we can find the fixed points of this system using Matlab and calculate their stability.
In this system there are only two fixed points shown below.

1 1 5 1 5 1

X1 *= (—c +—+/25¢?2 —4,—-c—=+25c? —4,-c + =+/25c? —4)
2 10 2 2 2 2
1 1 5 1 5 1

Xy *= (Ec —E\/ZSCZ - 4-,—§C +§\/2502 - 4,56 —5\/25c2 - 4)

From these two fixed points, we can see that a bifurcation occurs at the point where:

2
c=-=

5

However, the values of ¢ that we are considering are all greater than the bifurcation point.
We are only concerned with the following values for c.

c=2.6,3.54.1,and 5

In all of these values of c, the two fixed points will appear, so we should consider the stability
of each of the points for each value of c. The Jacobian matrix for the system is shown below.

0o -1 -1
Jacobiany,, , = (1 1/5 0 )
z 0 x-c

Calculating the fixed points and corresponding eigenvalues for each value of ¢, we obtain the
following:

For ¢ = 2.6 | Fixed points Eigenvalues

2.5845, -12.9226, 12.9226 | -0.0000 + 3.7309i, -0.0000 - 3.7309i, 0.1846

0.0155, -0.0774, 0.0774 -2.5580, 0.0868 - 0.9984i, 0.0868 + 0.9984i

Here, we see that for ¢ = 2.6, one fixed point is a center with respect to the xy plane (the
complex eigenvalues only have an imaginary part) while the second fixed point is unstable,
as determined by the positive real part of the eigenvalue.




For ¢ = 3.5 | Fixed points Eigenvalues

3.4885, -17.4427, 17.4427 | -0.0000 + 4.2942i, -0.0000 - 4.2942i, 0.1886

0.0115, -0.0573, 0.0573 0.0923 - 0.9963i, 0.0923 + 0.9963i, -3.4732

For ¢ = 3.5, the first point is again a center with respect to the xy plane while the second fixed
point is unstable. However, the second point is an unstable spiral with respect to the xy plane
and not the yz plane as seen when ¢ = 2.6.

For c = 4.1 | Fixed points Eigenvalues

4.0902, -20.4511, 20.4511 | -0.0000 + 4.6313i, -0.0000 - 4.6313i, 0.1902

0.0098, -0.0489, 0.0489 0.0943 - 0.9957i, 0.0943 + 0.9957i, -4.0789

For ¢ = 4.1, the stability is the same as for when ¢ = 3.5.

Forc=5 | Fixed points Eigenvalues

4.9920, -24.9599, 24.9599 | -0.0000 + 5.0949i, -0.0000 - 5.0949i, 0.1920

0.0080, -0.0401, 0.0401 -4.9842, 0.0961 + 0.9953i, 0.0961 - 0.9953i

For ¢ = 5, the first fixed point is again a center, but the second fixed point reflects the stability
found when ¢ = 2.6 (ie the unstable spiral is now found in the yz plane.

Let us take a look at the implications of these fixed points by plotting a phase plane. First we
investigate x vs. y in figure 7.
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Figure 7. x vs.y phase plane for various c values. Initial conditions [5, -1, 1]

In figure 7, we start with ¢ = 2.6 and see a closed line suggesting a periodic solution because
of the limit cycle formed. When c is increased to 3.5, the limit cycle seems to loop twice
before closing, suggesting that a bifurcation occurs (a period-doubling bifurcation) between
2.6 and 3.5. When c is further increased to 4.1, the limit cycle loops four times before




closing, and when c is increased even further to 5, the limit cycle seems to loop several times
before closing. Again, another bifurcation occurs between ¢ = 3.5 and 4.1, while it would
seem that several more bifurcations occur between ¢ = 4.1 and 5.

The global attractors of the system are the limit cycles, but through our local stability analysis,
we were not able to predict the existence of these. Although we see that the trajectories seem
to cross, we must remember that the system is actually three dimensional and we are looking
at a projection of the trajectories onto the xy plane. As we increase the value of c, the
trajectories begin to go into the third dimension and folds onto itself to maintain that the
trajectories do not cross. As c increases beyond 5, we see the existence of a strange attractor
whose trajectories, when visualized through a Poincare section, resemble a cantor set.

The period doubling that occurs can be easily visualized by plotting x over time (figure 8) and
seeing the power spectrum (figure 9).
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Figure 8. Time evolution of x for the Rossler system for various ¢ values.

We can see that all of the plots have a periodic behavior but as time increases, it looks like a
periodic envelope begins to appear that is half the frequency (or double the period). To
verify this phenomenon, we can plot the power spectrum for an extended time to get better
sampling (figure 9). We can obtain the power spectrum by using fourier analysis and doing a
fourier transform on the signals in figure 8 (except extended in time to produce a greater
amplitude in the frequency domain). By doing fourier analysis, we can reduce the signal to
its sinusoidal components and plot the frequencies that make up the signal. The major
frequencies in the signal will show up as large spikes as seen in figure 9, and we can confirm
that we are indeed seeing the period double (or frequency half since there is an inverse
relationship between period and frequency).
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Figure 9. Power spectra of time evolution of x for various ¢ values.

Indeed, we can see that the major frequency around 300 halves as we increase the value of ¢
from 2.6 to 3.5. We again see the frequencies halve increasing to 4.1. However, we don’t
see the halving very clearly at ¢ = 5, suggesting that the period doubles several times to
produce the power spectrum seen and individual spikes are no longer visible. In order to see
the spikes clearly, it might be possible to extend the time even further, sampling more of the
time evolution of x.

Question 3: The dynamical response of a spiking neuronal model

In this question we consider the Hodgkin-Huxley equations that were used to model neuronal
spiking. The four-dimensional model is shown below.

dv
- = "M [V1(V —0.5) — 26R(V 4 0.95) — g;T(V — 1.2) — g5 (V + 0.95) + I
R _ 1 R+ R, [V]
ar _ 1 T+ To[V]
dt 14( =lV])
am _ 1 H + 3T
dt 45( )

Where the following relationships also hold:
Me[V] = 17.8 + 47.6V + 33.8V?2
Ro[V] = 1.24 + 3.7V + 3.2V2
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For a regular spiking neuron (RS neuron), the values of the constants are as follows:

For a regular spiking neuron (RS neuron), the values of the constants are as follows:

gT = 0'1'gH s S,TR = 42

The plots in figure 10 below show the time trajectories for different injected currents on the
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Figure 10. Hodgkin-Huxley model, the time evolution of voltage with varying injected current (1) for regular
spiking (RS) cells.

In figure 11, we can see that the spiking rate increases as you increase the injected current.
The spiking rate was calculated on the time interval [100 ms, 300 ms] to avoid the

Figure 11. Spike Rate vs. Injected Current
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irregularity leading up to 100 ms for
most of the time trajectories.

From figure 11, we can see that
currents below 0.4 V are sub-threshold,
but any current 0.4 V and higher do
produce spiking behavior in the neuron.

Repeating the calculations for a fast
spiking cell where the following
parameter values now hold:

gT == 0'25'gH == O,TR S 1.5

We obtain the plots in figure 13 and 14
for the time trajectories and the spike
rate vs. current, respectively.
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Figure 13. Hodgkin-Huxley model, the time evolution of voltage with varying injected current (I) for fast
spiking (FS) cells.

Figure 14. Spike Rate vs. Injected Current
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Now we see that only for | = 0.1 is the current sub-threshold. All other currents will induce
spiking behavior. Also, we note that the rate of spiking is much higher than the RS cells,
reaching a peak of 500 per second as opposed to 60 per second in RS cells (sample interval
taken from [50 ms, 150 ms]).

Comparing the RS to FS cells, we can see that the threshold is lower for FS cells, the spiking
rate is much faster (by an order of at least 9), but the resting potential and shape of spikes
remains the same. The resting potential looks to be about 0.7 x10 mV.

Another group of neurons is the neocortical neurons that produce ‘continuous bursting” under
constant current stimulation. The parameters are change again and are shown below.

gr =2.25,gy =9.5,174, = 4.2

The time trajectory for an injected current is shown in figure 15.
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Figure 15. Model for neocortical neurons (CB) producing continuous bursting for a constant injected current of
0.8 nA.

From figure 15, we can easily estimate the inter-burst period. In the interval from 0 to 500,
there are 4 spike-regions, so a good estimate for the inter-burst period is 125 ms (or a
frequency of 8 per second). We can zoom into one of the bursting periods to get an estimate
of the inter-spike period as shown in figure 16.
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Figure 16. Zoom in of time trajectory for CB cells for injected current of 0.8 nA (see also figure 15)

The inter-spike spacing (or period) is approximately 7 ms corresponding to a frequency of
143 per second. This is significant greater than for RS cells, but much less than for FS cells
when comparing to the spike rates for I = 0.8 nA (25 and 300 per second, respectively).
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