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Abstract In the McGurk effect, incongruent auditory and
visual syllables are perceived as a third, completely different
syllable. This striking illusion has become a popular assay of
multisensory integration for individuals and clinical popula-
tions. However, there is enormous variability in how often the
illusion is evoked by different stimuli and how often the
illusion is perceived by different individuals. Most studies of
the McGurk effect have used only one stimulus, making it
impossible to separate stimulus and individual differences. We
created a probabilistic model to separately estimate stimulus
and individual differences in behavioral data from 165 indi-
viduals viewing up to 14 different McGurk stimuli. The noisy
encoding of disparity (NED) model characterizes stimuli by
their audiovisual disparity and characterizes individuals by
how noisily they encode the stimulus disparity and by their
disparity threshold for perceiving the illusion. The model
accurately described perception of the McGurk effect in our
sample, suggesting that differences between individuals are
stable across stimulus differences. The most important benefit
of the NED model is that it provides a method to compare
multisensory integration across individuals and groups with-
out the confound of stimulus differences. An added benefit is
the ability to predict frequency of the McGurk effect for
stimuli never before seen by an individual.
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Introduction

When we watch someone speaking, we combine visual
speech information from the talker’s mouth with the auditory
speech information from the talker’s voice to increase recog-
nition speed and accuracy. When the auditory and visual
speech are incongruent, combining the two information
sources can lead to a fused percept distinct from both the
auditory and visual speech. This illusion, termed the McGurk
effect, has been widely used to understand temporal con-
straints on audiovisual binding (Munhall, Gribble, Sacco, &
Ward, 1996; Stevenson, Zemtsov, & Wallace, 2012) and to
characterize differences in multisensory integration across
different individuals (Green, Kuhl, Meltzoff, & Stevens,
1991; MacDonald & McGurk, 1978; Nath & Beauchamp,
2012; Sekiyama, 1997), different ages in the lifespan
(Tremblay et al., 2007), and different clinical populations
(Irwin, Tornatore, Brancazio, & Whalen, 2011; Mongillo
et al., 2008; Woynaroski et al., 2013).

Using the McGurk effect to measure multisensory integra-
tion is advantageous because it can be measured simply: a few
repetitions of a simple language stimulus. However, the
McGurk effect is not homogenous, and shows large
differences across both different stimuli and different
individuals. In the original report, McGurk and MacDonald
(1976) found that 98 % of adults perceived the illusion for one
stimulus (reporting the fused “da” percept when auditory
speech “ba” was dubbed onto visual speech “ga”), while only
81 % perceived the illusion with a different stimulus
(reporting the fused “ta” percept when an auditory “pa” was
dubbed onto a visual “ka”). Across individuals, some partic-
ipants almost always perceive the McGurk effect while others
rarely do (Nath & Beauchamp, 2012; Stevenson, Zemtsov, &
Wallace, 2012).

We created a model of the McGurk effect to provide a
rational description of these inter-stimulus and inter-
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individual differences. If the same individual perceives differ-
ent stimuli differently, we assume that this reflects stimulus
differences; if different individuals perceive the same stimulus
differently, we assume that this reflects individual differences.

Recent evidence suggests that individual differences in
McGurk perception are linked to differences in brain activity
in the superior temporal sulcus (STS). Nath and Beauchamp
(2012) used blood-oxygen level-dependent functional mag-
netic resonance imaging (BOLD fMRI) to show that the
response amplitude in the left superior temporal sulcus
(STS) was 50 % higher for individuals that frequently per-
ceived the McGurk effect, compared to individuals that only
infrequently perceived the illusion. Beauchamp, Nath, and
Pasalar (2010) showed that interrupting activity in the left
STS using transcranial magnetic stimulation reduced illusion
perception by as much as 50 %, while Keil, Muller, Thssen,
and Weisz (2012) showed that the ongoing activity in STS
regions just prior to presentation of an incongruent stimulus
predicted perception of the McGurk effect. Therefore, another
goal of the model is to use parameters that reflect our current
understanding of the neural basis of multisensory integration
and that have the potential to be relatable to neuroimaging
measures of human brain function.

Studies of neural processing estimate a measure of neural
activity that contains a single parameter, such as the neuronal
firing rate in single neuron studies or the amplitude of activity
in BOLD fMRI studies. To allow for comparison with brain
activity measures, our model contains a single parameter
describing each individual’s propensity to integrate auditory
and visual information.

Studies of neural processing may also estimate a measure
of neural variability. Even when the same stimulus is present-
ed repeatedly, the neurons encoding it show variability in their
firing patterns (Mainen & Sejnowski, 1995). This variability
represents a fundamental limitation on the representational
precision of any stimulus. To account for this noise, the brain
is thought to use Bayesian inference: given a noisy sensory
observation, the brain infers the most likely state of the world
(Angelaki, Gu, & DeAngelis, 2009; Knill & Pouget, 2004;
Ma, Zhou, Ross, Foxe, & Parra, 2009). To aid in comparison
with studies of brain activity (which typically report a single
measure of neural variability) our model estimates a single
sensory noise parameter for each participant.

Different stimuli are differently able to elicit the McGurk
effect (Jiang & Bernstein, 2011; McGurk & MacDonald,
1976). Because the stimuli used in the original McGurk and
MacDonald study are not available, different studies common-
ly use different stimuli. Comparing the raw proportion of
McGurk perception between individuals tested with different
stimuli that likely differ in their efficacy is problematic. The
NED model characterizes each stimulus with a single param-
eter termed audiovisual disparity, which describes the differ-
ence between the auditory and visual components of the
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stimulus and is inversely related to its ability to elicit the
illusion. This gives the model the ability to describe individ-
uals tested with different stimuli, even if the physical proper-
ties of the stimulus are unknown.

The NED model’s use of three simple parameters — sensory
noise, disparity threshold, and stimulus disparity — highlights
the differences between it and other models of the McGurk
illusion, such as the seminal model of auditory and visual
speech known as the fuzzy logical model of perception
(FLMP; Massaro, 1998). The FLMP model creates distinct
parameters for the auditory and visual component for
each stimulus for each participant, resulting in a very
large number of parameters (13 times more parameters
than the NED model for the data described in this paper).
Because each FLMP parameter represents the interaction
between a particular stimulus and a particular individual,
there is no way to use the parameters to separately
examine individual differences and differences between
stimuli.

We tested the NED model against real data and measured
whether independent stimulus and participant parameters
could explain a significant portion of the variance in McGurk
perception. We demonstrate the utility of the model for group
comparisons using published data on a clinical population,
individuals with autism spectrum disorder.

Method

The noisy encoding of disparity (NED) model of the McGurk
[llusion contains three types of parameters. The first parame-
ter, the disparity of each stimulus (D), captures the likelihood
that the auditory and visual components of the syllable pro-
duce the McGurk effect, averaged across all presentations of
the stimulus to all participants.

The second parameter describes the sensory noise in
each participant (o). When an individual perceives multi-
sensory speech, the auditory and visual features are mea-
sured with noise (Bejjanki, Clayards, Knill, & Aslin, 2011;
Ma et al., 2009), resulting in variability in the measured
stimulus disparity (Fig. la). Across many trials, the distri-
bution of measured strengths will be Gaussian in shape,
centered at the true stimulus disparity, D; (i indexes the
stimuli), with standard deviation equal to the individual
sensory noise, o; (j indexes the participants). For any
participant, the amount of sensory noise is assumed to be
constant across stimuli.

The third parameter, the disparity threshold (7)), describes
each participant’s prior probability for fusing the auditory and
visual components of the syllable by a fixed threshold placed
along the stimulus disparity axis (Fig. 1b). If the measured
disparity is below this threshold, the auditory and visual
speech cues are fused, and the individual reports a fusion
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Fig. 1 The noisy encoding of disparity (NED) model explains McGurk
perception with three parameters, shown for two hypothetical participants
(P, top row, green color; Pg, bottom row, red color). All variables are
defined in arbitrary units of disparity. a. The first parameter is the
disparity of each stimulus. The tick mark on the x-axis shows the disparity
of hypothetical stimulus S (identical across participants). The second
parameter is the sensory noise (o, standard deviation of the curve) of

percept. To predict proportions of fusion perception, we cal-
culate the probability that the measured disparity for a given
stimulus is below a participant’s threshold (7}; Fig. 1c):

T
p<x< Tj‘D,«) = J N(x;D,«,aj)dx

where N is the Normal (Gaussian) distribution with mean D;
and standard deviation o;. The invariance of the disparity
threshold and sensory noise across stimuli allows the model
to predict a participant’s fusion proportion for any stimulus
with known strength, even if the participant has not seen the
stimulus. Because the stimulus disparities are fixed across
participants, they cannot fit participant variability; stimulus
disparities and participant disparity thresholds are independent.

Model fitting All model fitting was done in R (R Core Team,
2012); source code for the NED model is freely available at
http://openwetware.org/wiki/Beauchamp:NED. Fits were
obtained by minimizing the squared error between the model
predictions and the behavioral data (proportion of fusion
responses for each stimulus across all trials). This is similar
to fitting by maximizing the log likelihood of the model,
except in the cases in which the model predicts a fusion
proportion of 0.0 or 1.0, in which case the log likelihood
may go to negative infinity, but the squared error remains
finite. We restrict the range of the parameters so that the
participant parameters do not go to infinity when
participants have 0.0 or 1.0 mean fusion proportion
(stimulus disparities and individual thresholds: 0 to 2;

each participant. The measured stimulus disparity is a noisy approxima-
tion of the true stimulus disparity. b. The third parameter is the disparity
threshold for each participant (T; vertical dashed lines). Participants report
a fused percept whenever the measured stimulus disparity is below this
threshold. ¢. Predicted McGurk fusion proportion (FP, shaded region)
calculated by combining a and b

sensory noise: 0.001 to 1). If parameters were allowed to go
to infinity, it would not change the overall model fit but would
make it impossible to calculate the mean or standard deviation
of parameters, a necessity for inter-participant or inter-group
comparisons.

The values for all three parameter types have the same units
(disparity), but the scale of these units is arbitrary. The scale
was fixed during the fitting process by setting initial values for
the stimulus disparities. For each stimulus we exponentiated
(base e) 1 minus the mean fusion proportion for each stimulus,
and then subtracted 1. This transform ensures non-negative
disparity values, mapping 1.0 fusion proportions to 0 disparity
and 0.0 fusion proportions to 1.72. Next, the participant pa-
rameters were estimated, followed by fitting each of the stim-
ulus disparities. This was followed by nine cycles of fitting the
participant parameters and then the stimulus parameters to
converge on the best-fitting parameters. To guard against
fitting to local optima, we created 48 initial guesses for the
initial vector of stimulus disparities using a sample from a
Gaussian distribution with standard deviation of 0.05 and
mean equal to the transformed stimulus fusion proportions.

Parameter testing and generalization In order to estimate the
importance of the three types of parameters (D, 7, and o) we
calculated the fit error between the full NED model and three
different model variants, each of which held one of the pa-
rameter types fixed. Additionally, a cross-validation approach
was used to test the generalization of the individual-level
parameters to untrained stimuli. During cross validation, each
model was fit to a subset of the full dataset (the training set)
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and the fitted models were used to predict the fusion propor-
tion on the remaining data (the testing set). The training set
excluded a single randomly selected stimulus from each par-
ticipant in the full dataset and the testing set was the fusion
proportion for this held-out stimulus. We calculated the error
between the model’s prediction for the held-out fusion pro-
portion and the overall mean fusion proportion for each par-
ticipant. To estimate average performance, we completed 25
cross-validation runs.

Data description We used data from a large-scale laborato-
ry study of college-aged adults that measured McGurk
illusion perception (Basu Mallick, Magnotti, &
Beauchamp, submitted). Participants completed ten trials
with each McGurk stimulus, randomly intermixed with
trials containing congruent auditory-visual speech and in-
congruent (but non-McGurk eliciting) auditory-visual
speech. N = 66 participants were tested with 14 McGurk
stimuli, N = 77 were tested with 9 McGurk stimuli, and
N = 22 were tested with 10 McGurk stimuli. To fit the
model, we treated the untested stimuli for each participant
as missing data.

Results

There was a great deal of variability in the behavioral data,
providing a challenge to a model that must use identical
stimulus parameters for all individuals and identical individual
parameters for all stimuli. As shown in Fig. 2a, there was a
large range of fusion proportions for different stimuli, from
0.17 to 0.81. Within each single stimulus, there was a high
degree of variability across individuals, with McGurk percep-
tion varying 40 % from the mean on average (mean SD =
0.39). This variability across participants is illustrated in
Fig. 2b, showing that participants’ mean fusion proportions
across stimuli ranged from the lowest possible value (0.0, no
fusions) to the highest possible value (1.0, 100 % fusion).
Despite these challenges, the model provided an overall good
fit to the behavioral data [average root mean square error
across stimuli (RMSE) = 0.026; across participants, RMSE
=0.032].

The NED model makes two related but distinct claims: that
individual participant effects are consistent across stimuli, and
that stimulus effects are consistent across participants. We first
examined if participant parameters are consistent across stim-
uli, i.e., if participant 1 has more fusion than participant 2 for
stimulus A, then participant 1 should also have more fusion
than participant 2 for stimulus B. We calculated each partici-
pant’s rank (out of 165) for each stimulus and then compared it
to that participant’s overall rank (averaged across stimuli).
There was a significant positive correlation between the par-
ticipant ranks at each stimulus and across all stimuli (mean
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Spearman correlation 0.65 + 0.04 SEM; bootstrap mean =
0.26; bootstrap p-value = 107"*7). Next, we examined the
assumption that stimulus effects are consistent across partici-
pants i.e. if stimulus A is weaker than stimulus B in participant
1, it should also be weaker in participant 2. We calculated each
stimulus’s rank (out of 14) for each participant and then
compared it to that stimulus’s overall rank (averaged across
participants). There was a significant positive correlation be-
tween the stimulus ranks for each participant and across all
participants (mean Spearman correlation 0.64 £+ 0.02; boot-
strap mean = 0.07; bootstrap p-value = 10™%).

Parameter assessment To assess the importance of the three
parameters to the observed fit, we created three model vari-
ants, each holding a single parameter type fixed at single value
(akin to testing full and reduced regression models). We
calculated the percent reduction in fit error between the full
NED model and the model variant with the variable held fixed
to measure the importance of that variable (Fig. 2¢). Individual
stimulus disparities were the most important (47 % reduction),
then individual disparity thresholds (46 % error reduction),
and finally individual sensory noise (25 % reduction). Al-
though sensory noise was less important than the other pa-
rameters for reducing prediction error, it was critical for real-
istic model predictions. Without the sensory noise parameter,
the model would predict all-or-none fusion perception (0.0 or
1.0) for a given individual viewing a particular stimulus, but
only 12 out of 165 participants (7 %) demonstrated all-or-none
responding across stimuli. Paired #-tests confirmed that fixing
any of the parameter types resulted in a significantly more fit
error [all 15(164) > 13.6, ps < 107"°] across participants.

The sensory noise parameter of the model does not corre-
spond directly to the noise along a single physical dimension,
but rather represents the combination of noise sources from
multiple independent sources (e.g., auditory encoding, visual
encoding, varying attention). Figure 3 shows that the sensory
noise parameter is related to the variability (mean binomial
standard deviation across stimuli) in fusion perception
(Spearman’s = 0.59, p = 10™'%), but not to the average fusion
proportion (Spearman’s » = 0.11, p = 0.15). This dissociation
suggests that individuals may differ not only on disparity
threshold (related to mean fusion proportion) but also in the
variability of their fusion proportion.

Predicting novel stimuli One important advantage of the NED
model is that it allows prediction of unseen stimuli; this can be
important in behavioral training paradigms in which general-
ization is tested with new stimuli. The model was fit to the
behavioral data with a random stimulus left out for each
participant. Then, these fitted parameters were used to predict
the fusion proportion of the left-out stimulus. Across partici-
pants the model explained 53 % of the variability in fusion
scores on the held-out stimuli (mean R? = 0.53 + 0.01) and
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Fig. 2 The noisy encoding of disparity (NED) model fit to real behav-
ioral data. a. Mean fusion proportion (black lines) and mean model
predictions (gray bars) across participants for each stimulus and the mean
across all participants and stimuli (x). Red lines show prediction error
[across stimuli, mean root mean square error (RMSE) = 0.03; overall

individual predictions for novel stimuli were within 20 % on
average (mean absolute error = 0.19 + 0.01).

Fitted parameter values Next, we examined the three types of
parameters used by the NED model. Although the absolute
value of the parameters is not important because the units are
arbitrary, their relative values across stimuli and participants
are of interest for comparing individuals or groups. Stimulus
disparity ranged from 0.26 for the strongest stimulus to 1.25
for the weakest stimulus with mean of 0.81. The disparity
threshold parameter ranged from 0.0 for participants who
never perceived the illusion to 2.0 for participants who always
perceived the illusion, with a mean disparity threshold across
participants of 0.72, below the mean stimulus disparity. The
sensory noise parameter values ranged from 0.001 for

mean RMSE = 0.001]. b. Mean fusion proportion across stimuli, with
model prediction and prediction error plotted for every participant (across
participants, mean RMSE = 0.03). Participants ordered by mean fusion
proportion. ¢. The percentage reduction of total RMSE when a parameter
was allowed to vary versus when it was held fixed (across all participants)

participants with the lowest sensory noise to 1.0 for partici-
pants with the highest sensory noise. The distribution of
sensory noise across participants was positively skewed (me-
dian = 0.12; mean = 0.23).

Model application to group data There are a number of
conflicting results in the McGurk effect literature. For in-
stance, several groups have reported less McGurk perception
in individuals with autism spectrum disorder (ASD) compared
to matched controls (Bebko, Schroeder, & Weiss, 2014; Irwin
etal., 2011; Mongillo et al., 2008; Stevenson et al. 2014a, b),
while others have reported similar or more McGurk percep-
tion in individuals with ASD (Saalasti et al., 2012; Taylor,
Isaac, & Milne, 2010; Woynaroski et al., 2013). Differences in
experimental methods or statistical power might change the

Fig. 3 Relationship between a b
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reported strength of an effect, but different directions of an
effect are much more difficult to explain.

The NED model can explain group differences using the
disparity threshold or sensory noise parameters with different
results. A group difference in disparity threshold will result in
changes in the proportion of McGurk perception that are in the
same direction for any stimulus. A group difference in sensory
noise will cause different effects for different stimuli. For
stimuli with low disparity, higher noise will cause less
McGurk perception (as noise drives the perceived disparity
above threshold on some trials) while for stimuli with high
disparity, higher noise will cause more McGurk perception (as
noise drives the perceived disparity below threshold on some
trials).

To apply the model, we selected two studies with seeming-
ly contradictory results. Irwin et al. (2011) reported lower
fusion proportions for ASD than TD (0.56 vs. 0.88, p =
0.01) while Woynaroski et al. (2013) reported higher fusion
proportions for ASD and TD participants (0.38 vs. 0.28, p =
0.37). We assumed that both studies were representative of the
larger ASD and typically developing (TD) populations and
created two hypothetical participants (one ASD and one TD),
assigning them each fusion proportions equal to the mean of
their group.

Fit to these data (Fig. 4), the model estimated similar
disparity thresholds for the ASD and TD participants (differ-
ence of 0.1) but much larger sensory noise for the ASD
participant (fourfold greater). For the stimulus parameter, the
model estimated a higher disparity value for the Woynaroski
et al. stimulus (Fig. 4a) than for the Irwin et al. stimulus
(Fig. 4b). The Woynaroski et al. stimulus is above threshold
for both TD and ASD, but because the ASD participant has
high sensory noise, many of the perceived disparities fall
below threshold, resulting in a higher fusion proportion for
ASD. The Irwin et al. stimulus is below threshold for both
participants, but because of the ASD participant’s high senso-
ry noise, many of the perceived disparities fall above thresh-
old, resulting in a lower fusion proportion.

Discussion

We describe the noisy encoding of disparity (NED) model of
McGurk fusion perception. The NED model captures both
within-individual and between-individual variability using
three types of parameters: two for each participant (disparity
threshold and sensory noise) and one for each stimulus (dis-
parity). The model was able to predict fusion perception on
novel stimuli (not fit by the model for that individual) within
20 % of their actual value.

The two key assumptions of the model are that individuals
have characteristics (captured by the disparity threshold and
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sensory noise model parameters) that are independent of the
particular stimulus they are viewing, and that McGurk stimuli
have intrinsic properties that are independent of the individual
viewing them (captured by the disparity model parameter).
These assumptions allow NED to predict fusion perception for
stimuli that an individual has never seen. For example, it
predicts that a participant with a high threshold will be likely
to perceive the McGurk effect when shown a stimulus with
low disparity.

Explanation of model parameters

The parameters used by the NED model are not response
probabilities. Instead, they are the product of an analysis of
different factors that may contribute to McGurk perception.
The first participant parameter, amount of sensory noise,
explains a notable aspect of the McGurk illusion: individuals
do not always report the same percept when presented with the
same stimulus. We account for this phenomenon using senso-
ry noise because it is well recognized that the brain encodes
external stimuli in a noisy fashion (Angelaki et al., 2009; Knill
& Pouget, 2004; Seilheimer, Rosenberg, & Angelaki, 2014).
For a stimulus that evokes average illusion perception, large
values of sensory noise correspond to highly variable McGurk
perception across trials. The second participant parameter, the
disparity threshold, explains another notable aspect of the
illusion: that some individuals rarely perceive the illusion
while others often perceive it. The stimulus disparity param-
eter is necessary to explain the observation that some stimuli
rarely evoke the illusion while others often evoke it.

By separately modeling inter-participant differences and
inter-stimulus differences, NED can explain seemingly con-
tradictory results in the literature on McGurk perception in
individuals with ASD. The model fits suggest that ASD
individuals have greater sensory noise, resulting in less
McGurk perception when tested with stimuli with low dispar-
ity and more McGurk perception when tested with stimuli
with high disparity. This suggestion is supported by evidence
from recent functional imaging and anatomical studies
(Dinstein et al., 2012; Geschwind & Levitt, 2007).

Utility of a simplified model of the McGurk effect

One motivation for developing a simplified model of the
McGurk effect is that existing models do not allow generali-
zation (i.e., predicting what an individual will perceive before
they have ever seen a given stimulus). To allow this, we
collapse all stimulus differences into a single parameter, dis-
parity. This contrasts with physical, bottom-up approaches
(Jiang & Bernstein, 2011; Omata & Mogi, 2008) that attempt
to characterize the many different physical dimensions across
which stimuli differ. In principle, it should be possible to relate
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Fig. 4 The noisy encoding of disparity (NED) model can explain seem-
ingly contradictory results in studies using different stimuli. a. In the
study of Woynaroski et al. (2013), typically developing (TD) participants
had a lower mean McGurk fusion proportion than participants with
autism spectrum disorder (ASD). Two representative participants (one
TD, blue; one with ASD, orange) were assigned the published mean
fusion proportion and fit with the model. The model estimated the true
stimulus disparity (black tick mark and vertical line) the threshold for
each participant (dashed lines) and each participant’s sensory noise (width
of curves, see Fig. 1). The stimulus disparity is above threshold for both
participants, but the greater sensory noise for ASD leads to a higher

our single disparity parameter to the audiovisual properties of
each stimulus.

The simplification of the McGurk illusion to a single
dimension allows us to relate illusion perception across stim-
uli with diverse properties (e.g., syllables used, number of
syllables in each stimulus, different talkers). Parameter values
will reflect individual differences along this new dimension,
rather than being tied to a physical measurement of the audi-
tory or visual stimulus. In this way, the procedure is akin to
other dimension-reduction techniques (e.g., principal compo-
nents analysis) that project high-dimensional data onto a
lower-dimensional space.

It is interesting to consider how common stimulus manip-
ulations, like adding stimulus noise, would be handled by the
NED model. Intuitively, it might seem that adding sensory
noise to a multisensory stimulus should not change the per-
ceived disparity, and thus the model parameters would remain
unchanged. However, Bayes-optimal integration models pre-
dict that increasing noise actually increases individuals’ per-
ception of a common cause (Magnotti, Ma, & Beauchamp,
2013; Shams & Beierholm, 2010), as well as changing the
weight assigned to each cue. The model would therefore
assign a different disparity rating to clear and noisy versions
of a given stimulus. Because the model does not consider the
cue weighting that occurs during optimal integration directly,
it does not address the differential effect of adding visual
versus auditory noise: adding auditory noise increases
McGurk illusion (by lowering the relative weight to the audi-
tory cue), adding visual noise decreases McGurk illusion (by
increasing the relative weight to the auditory cue). A two-step
model that incorporates both causal inference and optimal

proportion of trials with measured disparities below threshold (orange
shaded region larger than blue shaded region). b. In the study of Irwin
etal. (2011), TD participants had a higher mean McGurk fusion rate than
participants with ASD. The model is fit simultaneously to the data in (a)
and (b), incorporating the assumption that participant thresholds and
sensory noise are equal across studies. The fitted stimulus disparity of
Sirwin 18 lower than Swoynaroski (red arrows). The disparity of Syyin is
below the disparity threshold for both participants, but the greater sensory
noise for the ASD participant leads to a lower proportion of trials with
measured disparities below threshold (orange shaded region smaller than
blue shaded region)

integration is necessary to capture these effects (Kording
et al., 2007; Nahorna, Berthommier, & Schwartz, 2012). For
typical McGurk studies that neither collect unisensory recog-
nition data nor manipulate sensory reliability, however, such a
model could not be fit.

Comparison with other models

The most popular existing models of multisensory speech
perception, the fuzzy logical model of perception (FLMP;
Massaro, 1998) and its variants (Schwartz, 2010), fit each
individual’s response to each stimulus independently. In ad-
dition to eliminating the ability to predict responses to new
stimuli, the matrix of generated parameters lacks a straight-
forward interpretation. For example, with the current dataset, a
comparable FLMP-type model would require at least 28 pa-
rameters per participant (one for the auditory and visual
weights for each stimulus) resulting in a total of 4,620 param-
eters. NED requires 13-fold fewer parameters (344). To fit this
large number of parameters, FLMP-type models require
collecting unisensory data for each participant/stimulus pair.
For the current dataset with 14 McGurk stimuli, FLMP-type
models would require collecting data from an additional 28
conditions, tripling data acquisition time, a potentially insur-
mountable problem for certain populations (e.g., young chil-
dren, clinical populations).

The two subject parameters in the NED model are imme-
diately relatable to studies of the neural underpinnings of the
McGurk effect. For instance, Nath and Beauchamp (2012)
showed that individuals with lower McGurk fusion propor-
tions had correspondingly lower activity in the left STS, an
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area critical for multisensory integration during speech per-
ception. The response amplitude from this region could pro-
vide a neural correlate of the disparity threshold parameter in
our model. Using neuroimaging, it is also possible to measure
trial-to-trial variability in the response to identical stimuli
(Dinstein et al., 2012; Keil et al., 2012). This could provide
aneural correlate of the sensory noise parameter in our model.

Relationship to item response theory

The NED model bears some resemblance to one-dimensional
item-response theory models (IRT; Gelman & Hill, 2007) that
characterize individual ability and item difficulty. Applied to
the McGurk illusion, an IRT model would characterize each
individual with a susceptibility level and each stimulus with
an efficacy (how strongly it elicits the illusion). This IRT
model would predict that two participants with the same
susceptibility level would have exactly the same amount of
McGurk perception for a given stimulus. Our data suggests
that this is not the case, and that including a sensory noise
parameter (which allows perception to vary between individ-
uals with the same disparity threshold) accounts for a signif-
icant amount of variance (Fig. 2c).

Conclusion

The common practice of comparing raw rates of McGurk
perception across participants tested with different stimuli
confounds individual and stimulus differences. By providing
a way to extract independent parameters for participants
(threshold and sensory noise) and stimuli (stimulus disparity),
the NED model allows for principled comparisons of individ-
uals and groups.
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