The garden of misunderstood RNA: the molecular mechanisms of Lamarckian evolution

Andrew Kuznetsov Freiburg, Germany

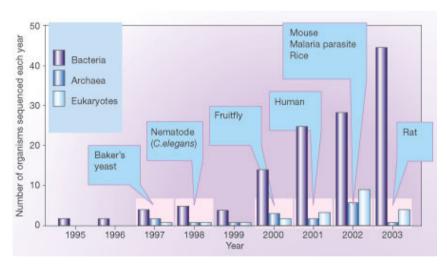
The Garden of Earthly Delights [Hieronymus Bosch, 1490-1510]

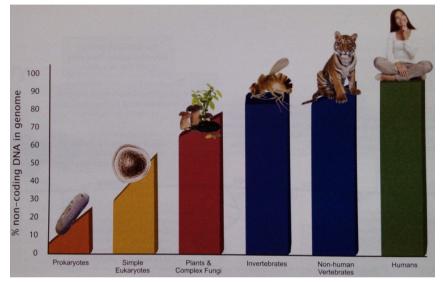
The Garden of Earthly Delights [Hieronymus Bosch, 1490-1510]

"We have fundamentally misunderstood the nature of the genetic programming of higher organisms because of the apparently reasonable but now evidently incorrect assumption that most genetic information is transacted by proteins. The vast majority of the human genome does not encode proteins, but is dynamically expressed as RNA, whose primary purpose appears to be to control the epigenetic processes ..."

Prof. John S. Mattick Executive Director of the Garvan Institute of Medical Research Sydney, Australia

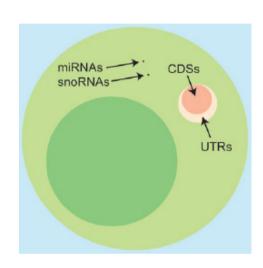
Content

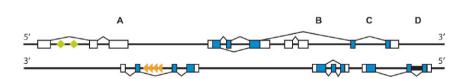

- Non-coding RNAs
 - increasing complexity, regulatory elements
 - information flow in the cell
- Classes of ncRNAs
 - siRNA (RNA interference, Dicer, RISC, Argonaute)
 - miRNA (Microprocessor complex, Drosha, Pasha)
 - piRNA (transposon silencing: ping-pong mechanism)
 - IncRNA (X-chromosome inactivation)
- Inheritance of acquired characteristics
 - chromatin remodeling (RITS)
 - CRISPR/Cas system in bacteria and archaea
 - epigenetic inheritance of viRNA in the nematoda *C.elegans*
 - RNAs as extracellular signaling and informational molecules, reverse transcription
- Crossroads between DNA and RNA, genetics and epigenetics
 - DNA-guided DNA interference
 - RNA-guided DNA modifications


Abbreviations

- mRNA messenger RNA
- ssRNA/dsRNA single/double stranded RNA
- shRNA small hairpin RNA
- ncRNA non-coding RNA
- IncRNA large non-coding RNA
- RNAi RNA interference
- siRNA small interfering RNA
- miRNA micro-RNA
- miRNP micro-RNA ribonucleoprotein complex
- pri-miRNA primary-miRNA transcript
- pre-miRNA precursor micro-RNA
- piRNA piwi-interacting RNA
- RISC RNA-Induced Silencing Complex
- RITS RNA-Induced Transcriptional Silencing
- CRISPR Clustered Regularly Interspaced Short Palindromic Repeats

Where is the information that programs human complexity?

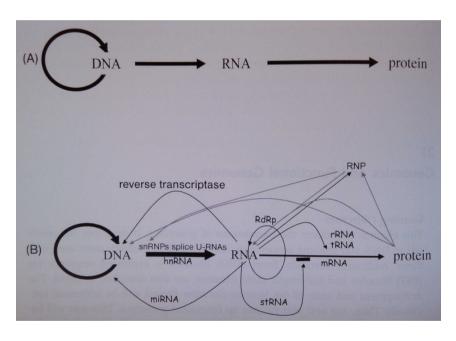

The number of sequenced genomes has increased as technology decreases the cost of sequencing



While the number of protein-coding genes expressed by organism does not scale with organism complexity (humans have approximately the same number as worm), the amount of non-protein-coding DNA does. Therefore, it is likely that RNA transcribed from these non-protein-coding regions allows for complex development and differentiation, as well as advanced cognitive potential

The new RNA world

Transcription in mammals. The area of the box represents the genome. The large green circle is equivalent to the transcriptom, with the dark green area corresponding to transcripts from both strands. CDSs are protein-coding sequences, and UTRs are untranslated regions in mRNAs. The dots indicate (and in fact overstate) the proportion of the genome occupied by known miRNAs and snoRNAs


Complexity of the transcriptional landscape.

White boxes represent non-coding exonic sequences and blue boxes protein-coding exonic sequences. Green diamonds represent snoRNAs and orange triangles represent miRNAs. Indicated are (A) antisense transcripts with overlapping exons, (B) nested transcripts on both strands, (C) antisense transcripts with interlacing exons and (D) retained introns

RNA throughout history

Year	Discovery		
1958	The central dogma of molecular biology was proposed by Francis Crick		
1960	mRNA discovered in the labs of Francois Jacob, Jacques Monod, Sydney Brenner, and Francis Crick		
1966	The complete genetic code was cracked by labs of Nirenberg, Matthaei, Leder, and Korana		
1968	Francis Crick, Carl Woese, and Leslie Orgel proposed that the primordial genetic molecule was RNA		
1970	Reverse transcriptase discovered in the labs of Howard Temin and David Baltimore		
1977	Introns and mRNA splicing discovered in labs of Phillip Sharp and Richard Roberts		
1992	Harry Noller's lab presented evidence for the catalytic involvement of rRNA in formation of peptide bonds		
1993	The lab of Victor Ambros published discovery of the first miRNA		
1998	Andrew Fire and Craig Mello described RNAi in <i>C.elegans</i>		
now	Many labs are investigating the role of ncRNAs in the gene regulation		

Information flow in the cell

- The central dogma of molecular biology assumed an information flow from DNA to protein
- Connections between DNA, RNA, and protein are improved. The arrow drawn between DNA and RNA is thicker than the one between RNA and protein, since only a small amount of RNA is actually translated to protein. The gray arrows describe the role of proteins and RNA in cellular replication, transcription, and translation
- hnRNA, heterogeneous nuclear RNA (transcription product, still includes introns); snRNP, small nuclear ribonuclear protein (in splicosomes U-RNAs are small RNA, which are involved in splicing); rRNA, ribosomal RNA, tRNA, transfer RNA; mRNA, messenger RNA (fully processed messenger between gene and protein); miRNA and stRNA, micro RNA and small temporal RNA (~22 nt long functional RNAs, which play a part in cell cycle regulation, translation and degradation of RNA); RdRp, RNA-dependent RNA polymerase; RNP, ribonucleoprotein (complex consisting of proteins and RNAs, e.g., telomerase, splicosome)

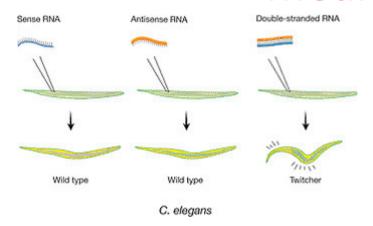
Classes of small non-coding RNAs

	siRNA	miRNA	piRNA
Matching	perfect complementarity	partial matching	perfect complementarity
Binding	AGO	AGO	PIWI
Length	~21 nt	~22 nt	28-32 nt
Origin	exogenous (viral) dsRNAs, transposons	dsRNA precursors from genes	ssRNA precursors
Target	Anti(-)-strands, (-) transposons	(-) mRNAs	transposons, regulation of development
Abundance	all tissues	all tissues	mainly germ cells

Different RNA pathways

- dsRNA molecules switches off the gene expression when dsRNAs having homology to that gene are introduced, or made, in cell
- This effect involves processing of the dsRNA to make siRNAs and miRNAs by the enzyme Dicer. Another enzyme involved only in the case of miRNAs is Drosha
- The siRNAs and miRNAs direct the RNA-induced silencing complex (RISC) to repress genes in three ways:
- 1. it attacks and digests mRNA that has homology with the siRNA;
- 2. it interferes with translation of those mRNAs; or
- 3. it directs chromatin modifying enzymes to the promoters that direct expression of those mRNAs

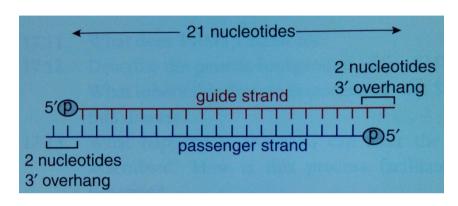
RNA interference



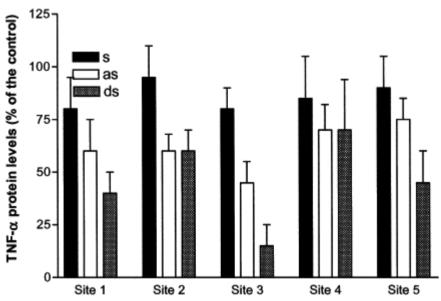
White regions in the petunia are the result of RNAi-mediated silencing of genes responsible for pigmentation

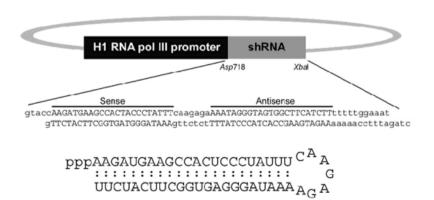
Crops have been engineered to express siRNA against viruses and insects. Other implementations of RNAi include caffeine-free beans and allergen-free fruit

The Nobel Prize in Physiology or Medicine 2006



Their Majesties Queen Silvia and King Carl XVI Gustaf of Sweden (middle) posing with Nobel Laureate Andrew Z. Fire and his wife, Rachel Krantz (left), and Nobel Laureate Craig C. Mello and his wife, Edit Mello (right), at the Nobel Banquet, 10 December 2006


RNA-based gene knock-down



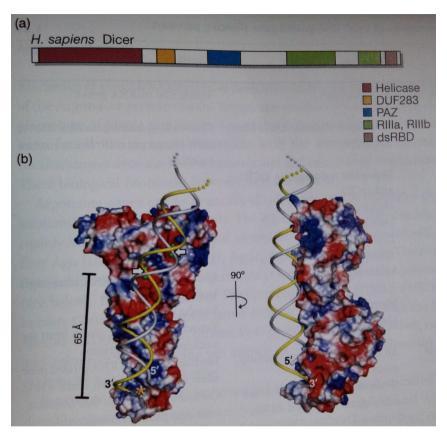
siRNA duplex. Two nucleotide 3' overhands and phosphate groups at the 5' ends characterize double stranded siRNAs. They are 21 nt long and contain a guide strand, which is incorporated into the RISC complex, and the passenger strand, which is removed from the cell after unwinding

in vitro study of anti-TNF- α siRNAs in peritoneal macrophages

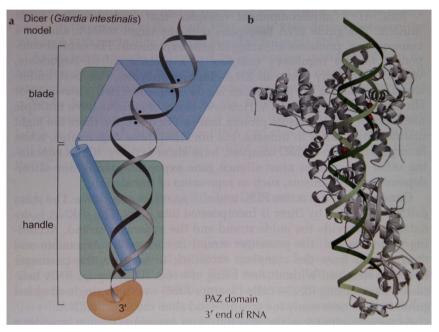
RasGAP shRNA showing the sense and antisense region that target the *Rasa1* gene

[Sorensen at al, 2003; Kunath et al, 2003]

Design of siRNA in Perl

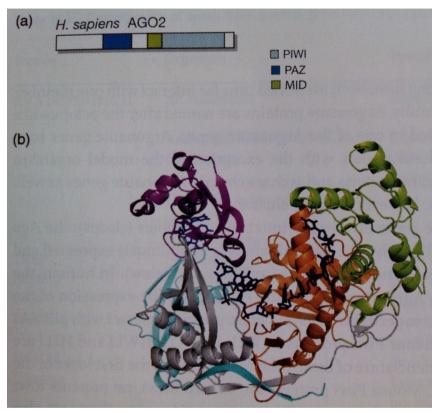

```
# First read the sequence from a file named 'mrna.fa'
open(IN, 'mrna.fa') or die "Could not open file mrna.fa\n";
while (<IN>) {
   unless (/>/) {
        chomp;
        seq .= s_{;}
close IN;
# Now analyze the sequence read from file
# Step through each position of the sequence
for (\$i = 0; \$i < length(\$seg) -22; \$i++) {
     $testseq = substr( $seq, $i, 23 );
    # check if first two positions are AA and
    # last are TT
    if ( $testseq =~ /^AA.*TT$/ ) {
         # test GC content
         # count the number of G's and C's
         qc_content = ( stestseq =   tr/GC// ) / 23;
         # is the GC content within the range 30-50%?
         if ( ($gc\_content >= 0.3 ) && ($gc\_content <= 0.5 ) }
            # does the sequence contain stretches of As, Ts, Cs or Gs?
            unless ( ( \$testseq =~ /A\{4\}/ )
                \parallel ( $testseq =~ /T{4}/ )
                | | ( \$testseq = \sim /G\{4\}/ )
                \parallel \parallel ( $testseq =~ /C\{4\}/ )
            # avoid also regions of six positions with G or C
                || ( \$testseq =~ /[GC]{6}/ ))
                print "pos $i $testseg\n";
```

Mechanism of RNA-guided RNA interference

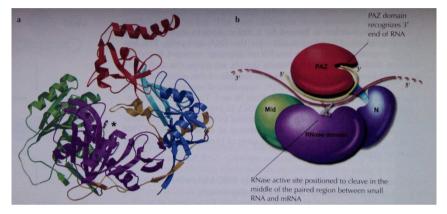


- Long dsRNA is cleaved by the RNase III enzyme **Dicer** to small double stranded siRNA. Dicer cleaves long RNA molecules preferentially from the ends
- The siRNA duplex is unwound and the guide strand is incorporated into the RNA-induced silencing complex (RISC). Within RISC, the guide strand interacts with an Argonaute protein that cleaves the target RNA
- The two cleaved products are removed from the cell

Structure of Dicer

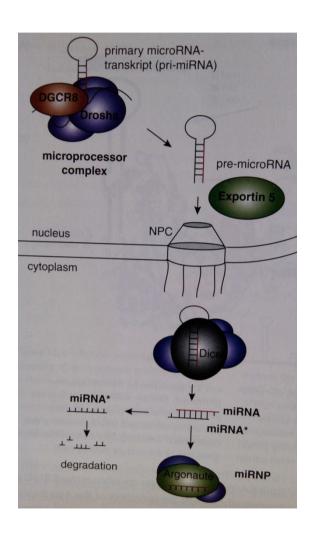


- (a) Dicer consists of **DEAD** box helicase domain, a domain of unknown function (**DUF283**), a **PAZ** domain, 2 **RNase III** domains and a **dsRNA-binding** domain
- (b) Dicer binds the end of the long dsRNA (shown in yellow) and cleaves about 21 nt upstream resulting of a 21 nt dsRNA product



The structural model of Dicer with dsRNA. The protein is shown in gray, with nuclease active site indicated by the red spheres (and as black dots in part a). The RNA is in green. The structure shown contains only the RNase III and PAZ domains

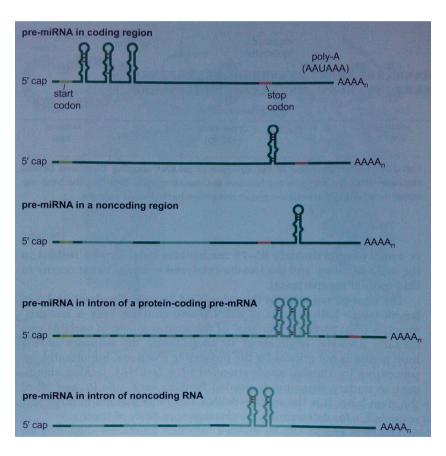
Structure of Argonaute protein

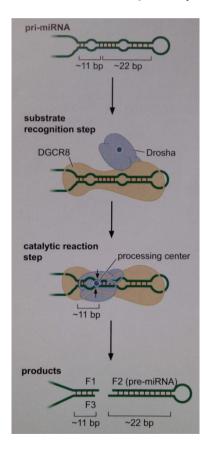


Ago proteins include PAZ, MID and PIWI domains. The **PAZ** domain (blue) binds 3' end of the siRNA, while the 5' end is anchored in the **MID** domain (green). The **PIWI** domain (orange) is structurally similar to RNase H and in some Ago proteins this domain can cleave target RNAs. Such Ago proteins are named **Slicers**

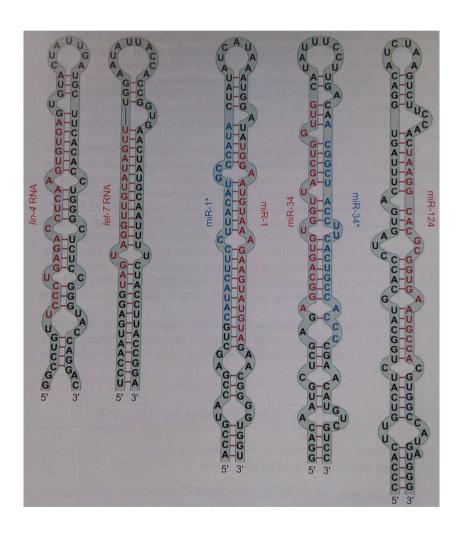
(a) Crystal structure of Argonaute. The domains are colored as in (b), with the blue domain being the amino-terminal part of the protein, and the green domain in the middle (b) The cartoon of the Argonaute domains. The arrow shows the RNase active site positioned to cleave in the middle of the paired region

miRNA pathway

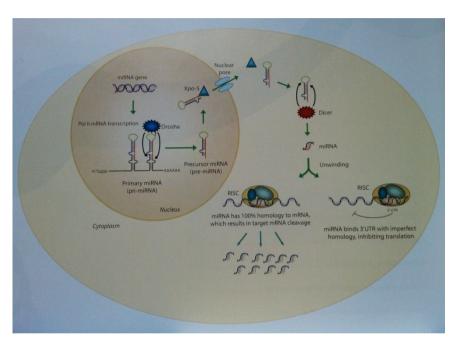

- The nuclear Microprocessor complex that contains RNase III enzyme Drosha and its interaction partner Pasha (DGCR8) process primary miRNA transcripts (pri-miRNA)
- The resulting miRNA precursors (premiRNAs) are transported into the cytoplasm by the exportin-5
- In the cytoplasm, **Dicer** further processes the pre-miRNA to a double stranded intermediate, which is further unwound
- The mature miRNA is incorporated into a miRNA-protein complex termed miRNP.


 The other strand (miRNA*) is destabilized and removed from the cell. Mature miRNAs directly interact with an Argonaute protein within the miRNP

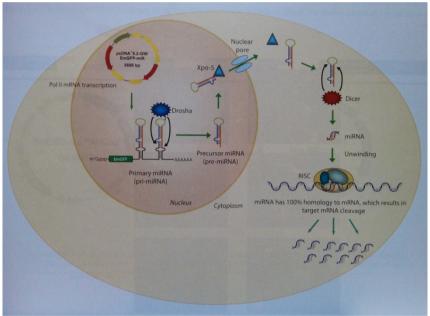
Cleavage of pri-miRNA by the Microprocessor complex


miRNAs are coded in both introns and exons within RNA

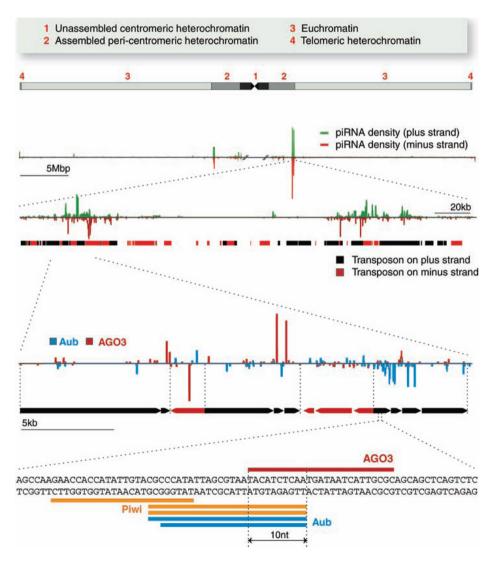
3 fragments are generated by cleavage, labeled F1, F3, and F2 (the pre-miRNA)

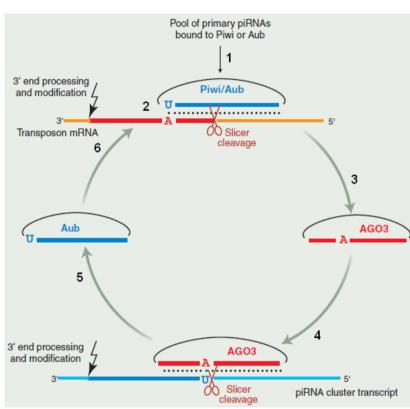


Structures of some pre-miRNAs from *C.elegans*

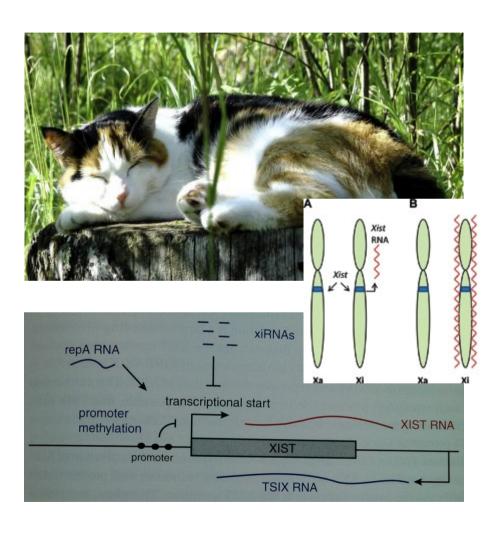

- The sequences in red are miRNAs. In some cases, both arms of a stem loop can generate a functional miRNA. In such cases, the second miRNA is shown in blue
- lin-4 and let-7 were identified genetically; those called miR are found by bioinformatics

Biogenesis of miRNA & vector-mediated RNAi

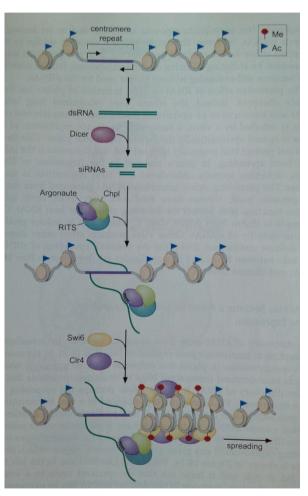



miRNA transcripts, generated by RNA polymerase II, are processed by RNase III enzyme **Drosha** (nuclear) and **Dicer** (cytoplasmic), yielding a 21-23 nt miRNA duplex. The less stable strand of the duplex is incorporated into the **RISC** complex, which regulates protein expression

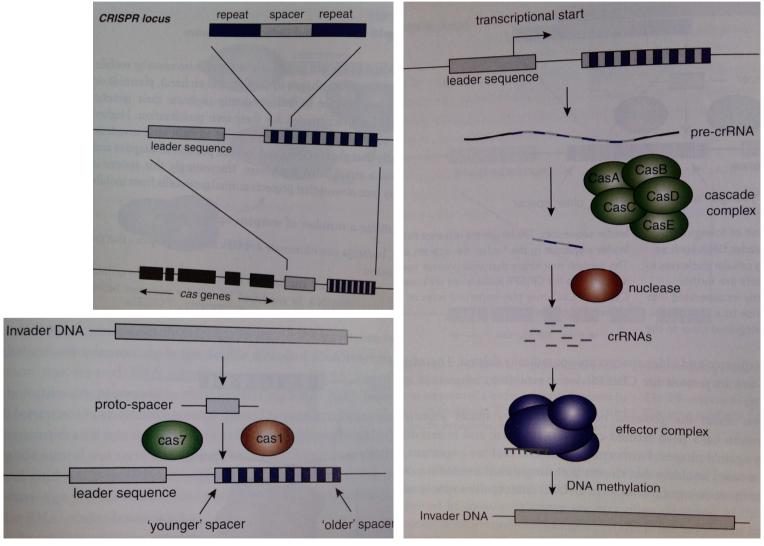
Expression of miR RNAi sequences using the BLOCK-IT Pol II miR RNAi Expression Vector, Invitrogen



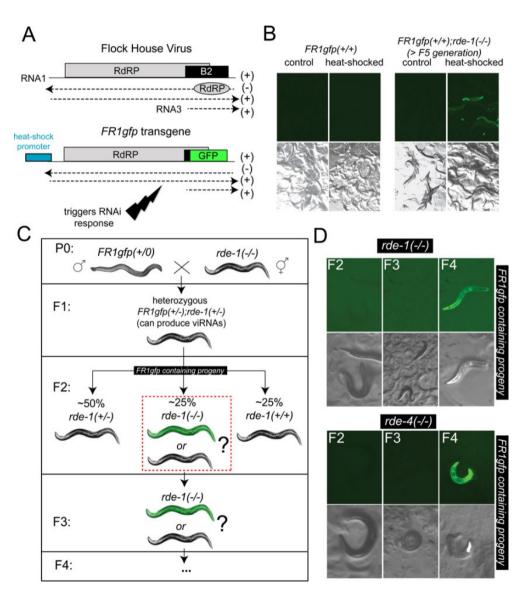
Relict innate immunity against foreign DNA/RNA, ping-pong mechanism



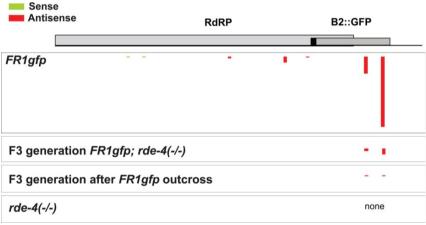
X-chromosome inactivation in mammals


- In calico cat, the patches of orange and black fur are a result of activity of different alleles on X chromosome
- During embryonic development one of the two X chromosomes is randomly chosen. From the X chromosome inactivation centre (**XIC**) the X-inactivation specific transcript (**XIST**) is expressed, which spreads over the X_i chromosome. XIST leads to the establishment of silenced heterochromatin on the inactivated chromosome X_i
- The major regulator of XIST is the IncRNA TSIX (reverse spelling of XIST), which is transcribed in antisense direction to XIST. TSIX may hybridize to XIST and inactivates it. xiRNAs are produced from the XIST/TSIX dsRNA and may influence XIST transcription negatively
- Another ncRNA that influences XIST expression is the repA ncRNA. repA has a positive effect on XIST transcription by chromatin modification in the XIST promoter region that lead to transcriptional activation
- Finally, epigenetic modification such as DNA methylation at the XIST promoter negatively regulate XIST expression

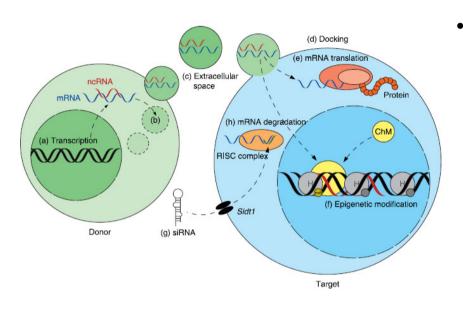
A model for RITS recruitment and the silencing of centromers in *S.pombe*



- The repeat sequences are transcribed from both strand by RNA polymerase II, generating dsRNA that is substrate for Dicer
- The produced siRNAs are loaded into the Argonautecontaining complex RITS
- The loaded RITS complex is then recruited back to the PollI-tethered transcripts through complementarity between the siRNA and the transcript
- This complex then recruits factors (Clr4 and Swi6) that locally modify nucleosomes by adding the H3K9 silencing markers
- Another subunit of RITS, Chp1, contains a chromodomain, which, by interacting with the methylated nucleosomes, stabilizes the binding of RITS
- "Slicing" of the transcripts by Argonaute (within RITS) generate substrate RNAs for the RdRP, which synthesized a complementary strand and thus generates further substrate for Dicer. This process is required for nucleosome modification to spread


CRISPR defense mechanism in bacteria and archaea

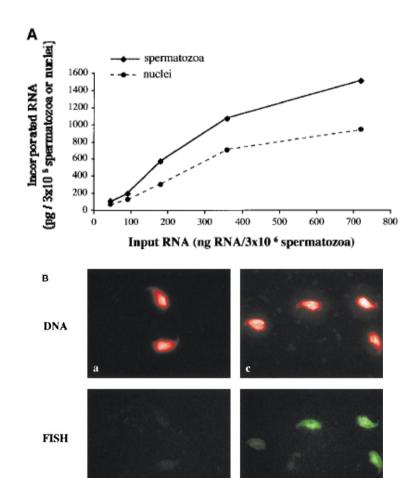
Inheritance of viRNA in *C.elegans*


virus in *C.elegans* results in the production of virus-derived, small interfering RNAs (viRNAs), which in turn silence the viral genome. The viRNA molecules are transmitted in non-Mendelian manner through 3 generations to silence viral genomes

Small **viRNAs** were extracted, sequenced and mapped to the viral genome. 20-30 nt viRNAs match to the main two epitopes of the FHV genome. These results demonstrated the inheritance of an acquired trait, induced by the exposure of animals to viral infection

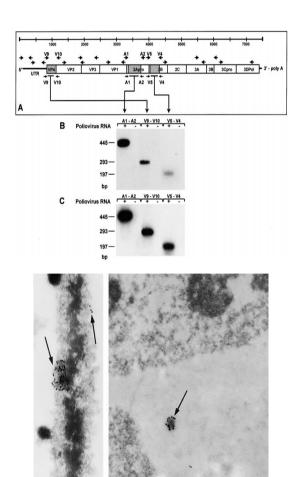
[Rechavi et al, 2011]

RNAs as extracellular signaling molecules

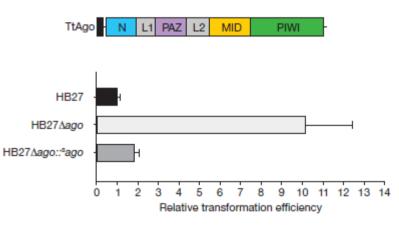


Signaling mRNA (blue) as well as ncRNA (red) are (a) transcribed in the donor cell. These RNAs are then (b) trafficked and packaged into vesicles, which are emitted into (c) the extracellular environment. (d) The vesicles then dock and fuse with the target cell, releasing their RNA content. The mRNA may then be (e) translated in the target cell and the ncRNA may guide the chromatin modifying proteins (ChM) to establish (f) the new epigenetic state

YOU ARE WHAT YOU EAT. SO I AM PIZZA.


- In addition (g), extracellular RNA
 molecules, such as siRNAs or miRNAs,
 may be transferred across the plasma
 membrane by specific receptors and
 channels, such as Sid-1. (h) These RNAs
 may regulate the inhibition of translation
 or mRNA degradation in the cell
- MIR168a -> LDLRAP1

Evidence of RNA-uptake by mouse spermatozoa


- Association of the radioactive endlabeled poliovirus RNA with mouse epididymal sperm cells. Spermatozoa were incubated with poliovirus RNA. After 30 min, spermatozoa from the mixture were washed and divided in 2 aliquots. The first one was dissolved in scintillation cocktail and counted to measure the RNA uptake; the second aliquot was used for nuclei purification, then treated and counted like whole cells to measure nuclear internalization
- FISH of poliovirus RNA in isolated nuclei from RNA-treated spermatozoa. (a and c) Sperm nuclei stained with DAPI and pseudocolored in red; (b) FISH with nuclei from spermatozoa incubated with buffer only; (d) FISH with nuclei from spermatozoa incubated with poliovirus RNA. The signal of the biotinylated probe is pseudocolored in green

Reverse transcriptase activity was found in mouse sperm cells

- Human poliovirus RNA replicates through a RNA(–) strand with no DNA intermediate. The poliovirus RNA was taken up by sperm cells, then reversetranscribed to cDNA copies, which were transferred to oocytes during IVF and further transmitted to 2-cell embryos
- PCR of cDNA copies in sperm cells and 2-cell embryos after incubation with poliovirus RNA.
 (A) Map of poliovirus RNA chromosome, (B) spermatozoa, and (C) 2-cell embryos. Amplified cDNAs were visualized by hybridization with internal oligonucleotide probes increasing specificity
- Immunoelectronmicroscopy with anti-RT antibody showed that RT molecules were associated with the sperm nuclear scaffold. (d)
 Sperm nuclear scaffolds, (e) HIV-infected T-lymphocyte

DNA-guided DNA interference

Target plasmid

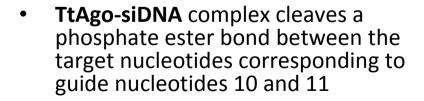
98 bp target region

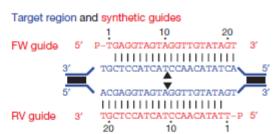
pWUR704: 17% GC pWUR705: 59% GC

pWUR705

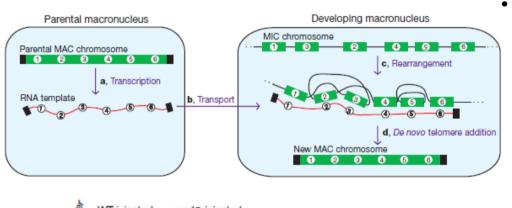
 Transformation efficiency of wild type *T.thermophilus* HB27 significantly lower than HB27∆aqo

domains, L1 and L2 are linkers)


The structure of **TtAgo** protein from the bacterium *Thermus thermophilus*


is similar to the eukaryotic analog (N,

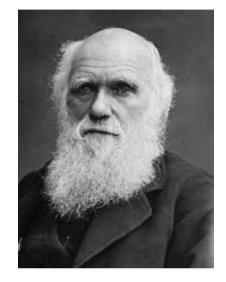
PAZ, MID, and PIWI are structural

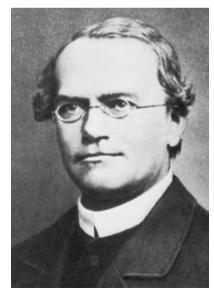

mutant strain

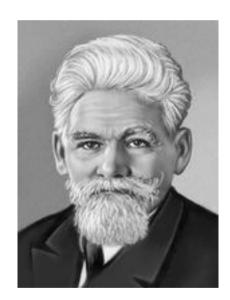
RNA-guided DNA modifications

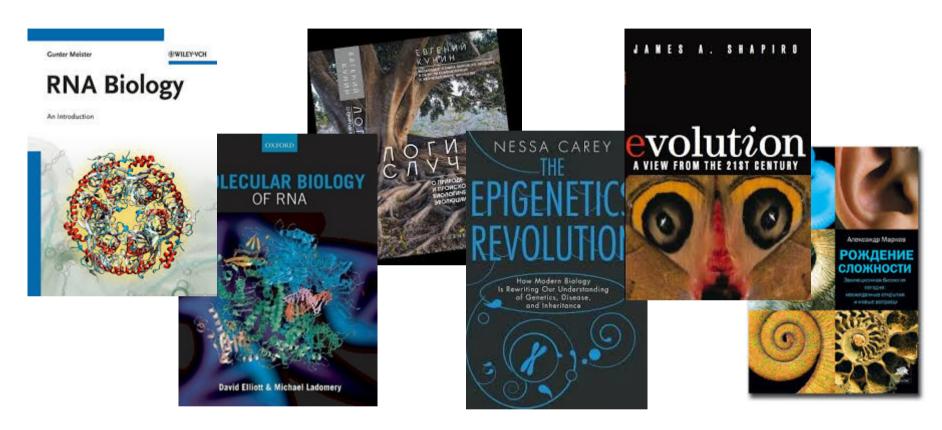
Oxytricha trifallax is a unicellular eukaryote with 2 nuclei: germline micronucleus and somatic macronucleus. Micronucleus is transcriptionally inert, but transmits the germline genome to next generation. Macronucleus provides gene expression, but degrades during fertilization process. Deletion of transposons in ciliates during the formation of new macronucleus leads to genome fragmentation into 2 Kb 'nanochromosomes' with just 1 gene, accomplishing 95% genome reduction and compressing 1 Gb germline (30,000 genes) into 50 Mb. It is an accurate mechanism of DNA rearrangements by maternal RNA cache

- | W1-injected | Sw45-injected | Sw45-injected
- RNA-guided DNA rearrangements during macronuclear development. a, RNA transcription of all DNA in the old macronucleus before its degradation. b, Transport of these RNA to the newly developing macronucleus, where they may act as scaffolds to guide DNA rearrangements (c). d, Telomere addition (black rectangles) and amplification of new macronuclear nanochromosomes
- RNA template microinjection of Telomer-End-Binding Protein subunit β. Sense (s), antisense (as), and combined (s/as) RNA were microinjected in both wild-type and switched orientations. Lanes 5–7 display the segments 4 and 5 have been switched (lower band)


[Nowacki et al, 2007]


Crossroads in biology





Conclusion

- The beauty of science to make things true. Small RNAs have gone from being "junk RNA", transcriptional noise, and degradation intermediates to being the "most important molecules"
- Drosha and Dicer recognize dsRNA and generate from that short RNAs (21-22-nt) that are used for gene silencing. Both enzymes have RNase III domains and cut the substrate RNA on the bases of size and structure, rather than specific sequence
- Once produced, siRNA and miRNA act in essentially the same way. They
 are incorporated into RISC where guide RNA strand directs the molecular
 machine to complementary target RNA
- The guide RNA can also direct RISC with associated histone-modifying proteins to promoter regions where it silences genes transcriptionally
- Many of ncRNAs (piRNAs) are derived from transposons and silence transposon activity. An ancient RNAi machinery might have protected organisms from transposons and viruses that is similar to immunity
- There is still much more to learn

Additional reading

- Aravin et al, The Piwi-piRNA pathway provides an adaptive defense in the transposon arms race // Science. 2007 Nov 2;318(5851):761-4
- Giordano *et al*, Reverse transcriptase activity in mature spermatozoa of mouse // J Cell Biol. 2000 Mar 20;148(6):1107-13
- Rechavi et al, Transgenerational inheritance of an acquired small RNA-based antiviral response in *C.elegans* // Cell. 2011 Dec 9;147(6):1248-56.7
- Swarts et al, DNA-guided DNA interference by a prokaryotic Argonaute // Nature. 2014 Mar 13;507(7491):258-61
- Nowacki *et al*, RNA-mediated epigenetic programming of a genome-rearrangement pathway // Nature. 2008 Jan 10;451(7175):153-8