### dS/dN Ratios Do Not Provide A More Consistent Means of Comparison Between HIV-1 Progressor Groups

Zach Goldstein and Shivum Desai October 11, 2016

Department of Biology Loyola Marymount University

- 1. Analysis of Markham article and figures indicated there may be a better way to classify HIV-1 progressor groups.
- 2. Data was reorganized and reanalyzed using s values, theta values, and the formation of comparative trees.
- 3. Statistical analysis of data showed no significant difference between subjects.
- 4. Questioning utility of dS/dN ratio modeling may explain insignificant results.
- 5. Further research involves reanalysis of Markham data using slope of nucleotide difference and slope of divergence.

### Patterns of HIV-1 evolution in individuals with differing rates of CD4 T cell decline.

Markham, R. B., Wang, W., Weisstein, A. E., Wang, Z., Munoz, A., Templeton, A., . . . Yu, X. (1998). Patterns of HIV-1 evolution in individuals with differing rates of CD4 T cell decline. *Proceedings of the National Academy of Sciences*, 95(21), 12568-12573. doi:10.1073/pnas.95.21.12568

 Progression of the disease HIV was analyzed and correlated with CD4 (T-cell) counts.

• dS/dN values were computed for each subject's consensus strain.

• Subjects were categorized into three groups: Rapid progressor, moderate progressor, and nonprogressor. (Markham et. al, 1998)

### What is dS/dN value?

- Non synonymous mutations (dN) are nucleotide changes that lead to the coding of a different amino acid.
- Synonymous mutations (dS) are nucleotide changes that do not lead to the coding of a different amino acid.
- These ratios were formed for each consensus strain for all subjects.
  - A single averaged ratio was taken from all consensus strains.
  - Each strain was compared to a subsequent strain to observe differences.
- The smaller the ratio, the larger amount of non synonymous mutations.

- 1. Analysis of Markham article and figures indicated there may be a better way to classify HIV-1 progressor groups.
- 2. Data was reorganized and reanalyzed using sequence analysis and the formation of comparative trees.
- 3. Statistical analysis of data showed no significant difference between subjects.
- 4. Questioning utility of dS/dN ratio modeling may explain insignificant results.
- 5. Further research involves reanalysis of Markham data using slope of nucleotide difference and slope of divergence.

# Markham's data was used to create a purpose for this experiment.

- A study was designed to analyze the dS/dN ratios of each subject.
  - The study involved the usage of Markham's dS/dN values, subjects, and classifications (Rapid progressor and nonprogressor).
- The purpose of this study was to analyze the dS/dN ratios of each subject and use this to show significant difference between the rapid progressors and nonprogressors.

#### Preparing to reanalyze Markham's data cont.

- Hypothesis #1: It was hypothesized that smaller dS/dN ratios would correlate with the newly classified rapid progressor subjects.
  - Null Hypothesis #1: It was hypothesized that larger dS/dN ratios would correlate with rapid progressor subjects.
- Hypothesis #2: It was hypothesized that newly classified rapid progressor subjects would have higher theta values due to a higher level of genetic diversity.
  - Null Hypothesis #2: It was hypothesized that the rapid progressors would have lower theta values due to their lower level of genetic values.

### Reorganizing subjects and dS/dN values.

- dS/dN ratios were ranked in increasing order.
- Two groups of four subjects were selected from the two ends of the spectrum: Nonprogressor and rapid progressor.
- Non-progressor group:
  - Subjects: 4, 9, 11, 14
  - The nonprogressor group was selected so that all subjects had a dS/dN value of 0.
- Rapid Progressor group:
  - Subjects: 7, 5, 2, 13
  - The rapid progressor subjects had a dS/dN value ranging from 1.3-3.5.

#### Markham's subjects were reorganized within existing classifications.

| Rapid<br>Progressor<br>(Subject #) | Moderate<br>Progressor<br>(Subject #) | Non-<br>progressor<br>(Subject #) |   | Rapid Progressor<br>(Subject #) | Nonprogressor<br>(Subject #) |
|------------------------------------|---------------------------------------|-----------------------------------|---|---------------------------------|------------------------------|
| (Subject II)                       | (Sabject II)                          | (Sabjece II)                      |   | 7                               | 4                            |
| 4                                  | 7                                     | 2                                 |   |                                 |                              |
| 10                                 | 8                                     | 12                                | - | 5                               | 9                            |
| 11                                 | 14                                    | 13                                |   |                                 |                              |
| 15                                 | 5                                     |                                   |   | 2                               | 11                           |
| 3                                  | 9                                     |                                   |   | 13                              | 14                           |
| 1                                  | 6                                     |                                   |   | 13                              | 14                           |

Table 1: Markham's classification of subjects based on CD4 cell counts.

(Markham et. al, 1998)

Table 2: Reclassification of subjects based on dS/dN value.

# Theta values and unrooted/rooted trees were calculated to compare results.

- Theta values were calculated from the number of position where there was at least one nucleotide difference across all that subject's clones (S value).
  - This value was calculated to show a significant difference between rapid progressors and nonprogressors.
  - Rapid progressors presumed to have higher theta values (more genetic diversity) due to the increased presence of nonsynonymous mutations.
- Unrooted and rooted trees were generated for the purpose of presenting visual evidence of the significant difference between rapid progressors and nonprogressors in terms of genetic similarity.

- 1. Analysis of Markham article and figures indicated there may be a better way to classify HIV-1 progressor groups.
- 2. Data was reorganized and reanalyzed using sequence analysis and the formation of comparative trees.
- 3. Statistical analysis of data showed no significant difference between subjects.
- 4. Questioning utility of dS/dN ratio modeling may explain insignificant results.
- 5. Further research involves reanalysis of Markham data using slope of nucleotide difference and slope of divergence.

# Statistical results showed no correlation between dS/dN values and subject groups.

- The theta values calculated for each subject were not the expected numbers for those subjects in the nonprogressor and rapid progressor groups.
  - Ex. Subject 4 (NP-group): 15.8
     Subject 5 (RP-group): 13.6
- The theta values calculated for each subject were averaged for both the nonprogressor and rapid progressor groups.
  - The resulting two theta values were measured for statistical significance using a t-test and no statistically significant difference was found.
  - P-value (significance= <0.05) of 0.146</li>

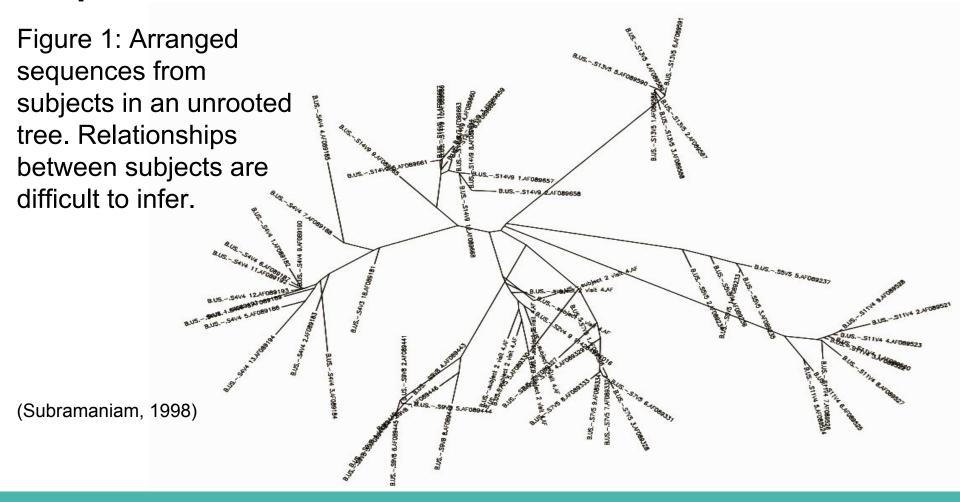
# There is no significant difference between Θ values of reclassified groups.

| Subject<br># | 2   | 5    | 7    | 13  |
|--------------|-----|------|------|-----|
| "S"<br>Value | 36  | 58   | 55   | 25  |
| "Θ"<br>Value | 9.6 | 13.6 | 12.7 | 6.6 |

| Su | ıbject<br># | 4    | 9    | 11   | 14   |
|----|-------------|------|------|------|------|
|    | "S"<br>alue | 70   | 69   | 41   | 77   |
|    | 'Θ"<br>alue | 15.8 | 14.6 | 10.2 | 15.7 |

Table 3: Calculated s-values and theta values of reclassified non progressor subjects.

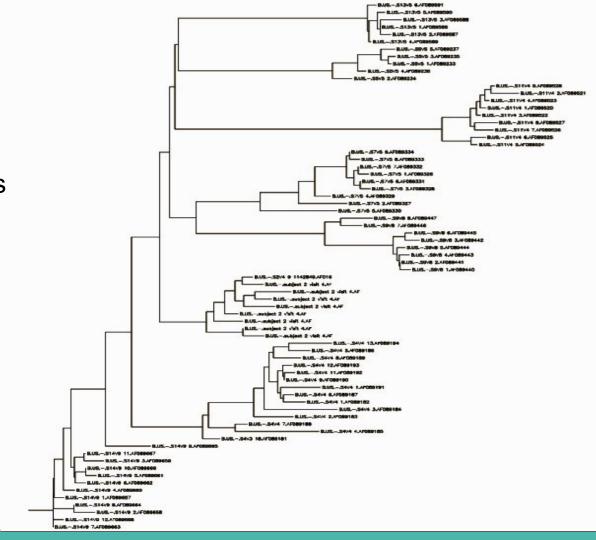
Average "Θ" Value: 10.63


Table 4: Calculated s-values and theta values of reclassified rapid progressor subjects.

Average "Θ" Value: 14.08

Statistical
Significance (<0.05):
P-Value: 0.146

<sup>\*○</sup> Values calcultaed using mathisfun.com (Subramaniam, 1998)


#### Interpretation of rooted and unrooted trees.



### Interpretation of rooted and unrooted trees.

Figure 2: Arranged sequences from subjects in rooted tree format demonstrating non-distinct relationships between subjects classified in new groups.





- 1. Analysis of Markham article and figures indicated there may be a better way to classify HIV-1 progressor groups.
- 2. Data was reorganized and reanalyzed using sequence analysis and the formation of comparative trees.
- 3. Statistical analysis of data showed no significant difference between subjects.
- 4. Questioning utility of dS/dN ratio modeling may explain insignificant results.
- 5. Further research involves reanalysis of Markham data using slope of nucleotide difference and slope of divergence.

## The Relationship between dN/dS and Scaled Selection Coefficients

Spielman, S. J., & Wilke, C. O. (2015). The Relationship between dN/dS and Scaled Selection Coefficients. Molecular Biology and Evolution, 32(4), 1097-1108. doi:10.1093/molbev/msv003

- dS/dN ratio modeling assumes constant selective pressures over time between subjects.
- Confounding variables may cause differences in mutation rates.
- dN/dS ratio threshold =1 is highly sensitive to modeling assumption violations.

#### **OUTLINE**

- 1. Analysis of Markham article and figures indicated there may be a better way to classify HIV-1 progressor groups.
- 2. Data was reorganized and reanalyzed using sequence analysis and the formation of comparative trees.
- 3. Statistical analysis of data showed no significant difference between subjects.
- 4. Questioning utility of dS/dN ratio modeling may explain insignificant results.
- 5. Further research involves reanalysis of Markham data using slope of nucleotide difference and slope of divergence.

### Reclassification based on genetic diversity or divergence may support initial hypotheses.

- Re-analyzing subjects based upon slope of change in nucleotide difference or slope of divergence may provide a more accurate method of analysis.
- Groups would still be classified as rapid progressor and nonprogressor, however dS/dN ratios would no longer be important to our investigations.
- T-test analysis of groups based off of diversity/divergence may show significant results.
  - S-values and theta values would be incorporated into this test.

- 1. Analysis of Markham article and figures indicated there may be a better way to classify HIV-1 progressor groups.
- 2. Data was reorganized and reanalyzed using sequence analysis and the formation of comparative trees.
- 3. Statistical analysis of data showed no significant difference between subjects.
- 4. Questioning utility of dS/dN ratio modeling may explain insignificant results.
- 5. Further research involves reanalysis of Markham data using slope of nucleotide difference and slope of divergence.

### Acknowledgements

**Dr. Dahlquist** 

**Department of Biology at Loyola Marymount University** 



### References

Markham, R. B., Wang, W., Weisstein, A. E., Wang, Z., Munoz, A., Templeton, A., . . . Yu, X. (1998). Patterns of HIV-1 evolution in individuals with differing rates of CD4 T cell decline. *Proceedings of the National Academy of Sciences, 95*(21), 12568-12573. doi:10.1073/pnas.95.21.12568

Spielman, S. J., & Wilke, C. O. (2015). The Relationship between dN/dS and Scaled Selection Coefficients. Molecular Biology and Evolution, 32(4), 1097-1108. doi:10.1093/ molbev/msv003

Subramaniam, S. (1998) The Biology Workbench--a seamless database and analysis environment for the biologist. Nucleic Acid Tools