Human ACE2 Receptors Most Resemble those of Orangutans and Monkeys when Comparing Possible SARS-CoV-2 Intermediate Hosts

Anna Horvath and Aiden Burnett
Department of Biology
Loyola Marymount University
October 15, 2020

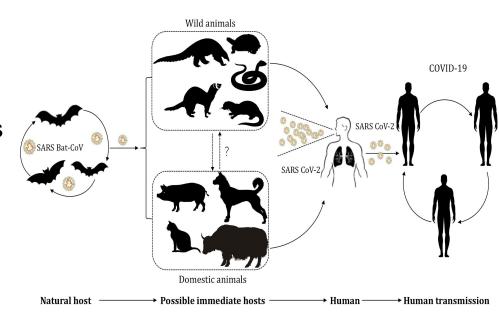
Outline

- Several potential host species of SARS-CoV-2 exhibit changes in amino acid residues of ACE2 receptor
- ACE2 shows large percent sequence similarities across species, indicating their structural importance
- Of the five critical amino acids on the ACE2 receptor, those of orangutans and grivet monkeys most resembled humans

Outline

- Several potential host species of SARS-CoV-2 exhibit changes in amino acid residues of ACE2 receptor
- ACE2 shows large percent sequence similarities across species, indicating their structural importance
- Of the five critical amino acids on the ACE2 receptor, those of orangutans and grivet monkeys most resembled humans

Host Species Exhibit Changes in Critical Residues of ACE2 Receptor


- Wan et al. 2020 explores differences between orthologous ACE2 sequences
 - Nine species compared to humans exhibit changes in critical amino acid residues
 - SARS-CoV-2 RBD observed binding to humans and bats, shows compatibility with civet ACE2

ACE2	31	35	38	82	353
Human	K	E	D	М	K
Civet	Т	E	E	Т	K
Bat	K	K	D	N	K
Mouse	N	E	D	s	Н
Rat	K	E	D	N	Н
Pig	K	E	D	Т	K
Ferret	K	E	E	Т	K
Cat	K	E	E	Т	K
Orangutan	K	E	D	М	K
Monkey	K	E	D	М	K

(Wan et al., 2020)

Large Diversity of Species Sold in Wuhan Market

- SARS-CoV-2 traced back to Wuhan markets in 2019
- Besides bats, markets sell a large assortment of species to consumers
 - Includes mice, rats, pigs, ferrets, cats, orangutans, dromedary camels, squirrels, minks, turtles, snakes, chickens, foxes, and monkeys (Zhao et al., 2020)
- Potential intermediary hosts include
 - o pangolins (Deng et al., 2020)
 - civets (Yuan et al., 2020)

(Zhao et al., 2020)

Research Question

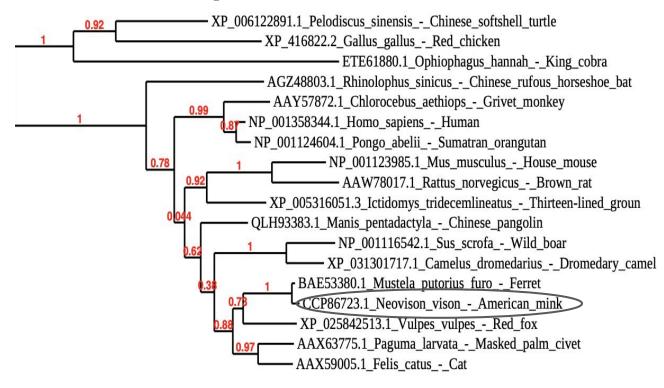
Does comparing sequences of possible animal reservoirs noted by Wan et al. point towards one or more animal reservoirs as being closely related to humans, and therefore make them a good starting point for looking at SARS-CoV-2 lineage?

ACE2 Sequences of Potential Hosts Acquired

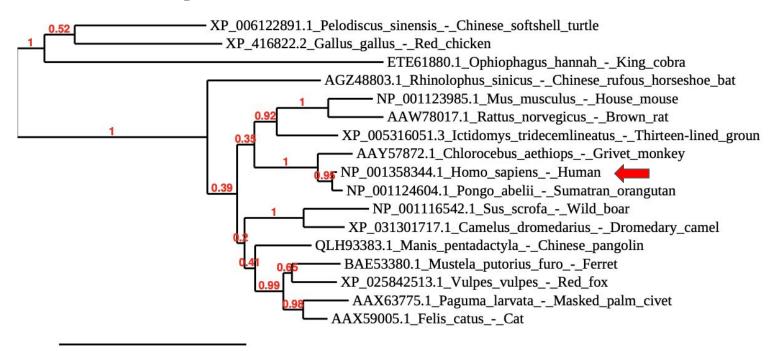
ACE2 Sequences

Based on potential hosts determined previously, eighteen species ACE2 sequences were located on NCBI database

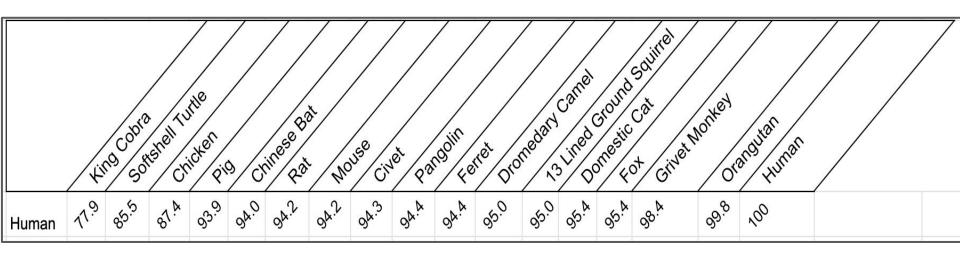
Phylogenetic Tree



Generated using
Phylogeny.fr to compare
relationships of nineteen
sequences and create a
sequence alignment


Outline

- Several potential host species of SARS-CoV-2 exhibit changes in amino acid residues of ACE2 receptor
- ACE2 shows large percent sequence similarities across species, indicating their structural importance
- Of the five critical amino acids on the ACE2 receptor, those of orangutans and grivet monkeys most resembled humans


American Mink (*Neovison vison*) Only Available as Partial ACE2 Sequence

ACE2 Orthologues Show Closest Phylogenetic Relationship to Humans

ACE2 Percent Sequence Similarities Show Wide Range of Similarity to Humans

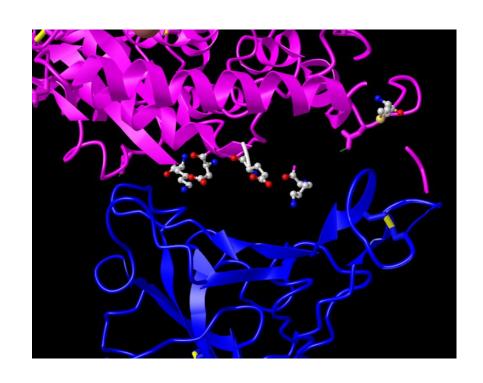
- Animals commonly found in Wuhan market and orthologues show between 77.9% - 99.8% similarity to humans
 - Orangutans and monkeys most similar to humans
 - King cobras and softshell turtles show the least similarity

Outline

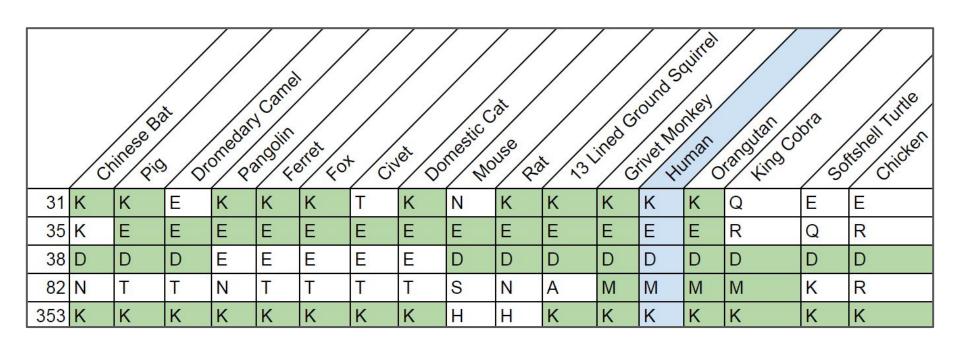
- Several potential host species of SARS-CoV-2 exhibit changes in amino acid residues of ACE2 receptor
- ACE2 shows large percent sequence similarities across species, indicating their structural importance
- Of the five critical amino acids on the ACE2 receptor, those of orangutans and grivet monkeys most resembled humans

Critical Residues of ACE2 Sequences were Identified by Wan et al. (2020)

Wan et al. (2020) identified the following residues of the civet ACE2 sequences for their comparison


- T31
- E35
- E38
- T82
- K353

Visualization of Human Critical Residues was Made Using iCn3D Viewer


Here the human ACE2 is in pink and the SARS-CoV-2 spike protein in blue.

This was done by selecting the following residues & displaying them in the ball and stick style with atom colouring.

- K31
- E35
- o D38
- M82
- K353

Comparison of Critical Residues Reveals Monkey & Orangutan ACE2 RBD most Similar to Human

Inability to Find Desired Sequences was a Possible Source of Error

- Chinese cobra ACE2 sequence unavailable
 - King cobra ACE2 used in substitute
- American mink (Neovison vison) only available as partial ACE2 sequence
 - Presented challenges in sequence alignment. Removed for clarity
- 13 lined ground squirrel was only available squirrel ACE2
 - Not found in China

Summary

- Orangutans and grivet monkeys are have the most similar ACE2 receptors to humans of the possible intermediate hosts
 - Known orthologues to humans
- Of the five critical amino acids that correspond to the RBD of SARS-CoV-2 on the ACE2 receptor, many were relatively conserved
 - Most organisms having between 2-3 of the 5 amino acids altered.
 - Two amino acid residues (35 and 353) show the greatest conservation
 - Residue 82 shows the least conservation of these residues

Future Research

- Understanding these potential intermediary hosts could inform a study looking to identify the lineage of SARS-CoV-2
- This would involve comparing the sequences of coronaviruses from these, and other, species to SARS-CoV-2
- Potential studies could identify which animals are able to act as intermediary hosts for future strains of SARS viruses that may evolve.

Acknowledgments

LMU Biology Department
Dr. Dahlquist
TA Annika Dinulos
BIOL 368 class

References

- Andersen, K., Rambaut, A., Lipkin, W., Holmes, E., & Garry, R. (2020). The proximal origin of SARS-CoV-2. Nature Medicine, 26(4), 450-452. doi: 10.1038/s41591-020-0820-9
- Angiotensin-converting enzyme 2 isoform 1 precursor [Homo sapiens] Protein NCBI. (2020). Retrieved 8 October 2020, from https://www.ncbi.nlm.nih.gov/protein/NP 001358344.1?report=fasta
- Angiotensin-converting enzyme 2 [Paguma larvata] Protein NCBI. (2020). Retrieved 8 October 2020, from https://www.ncbi.nlm.nih.gov/protein/AAX63775.1?report=fasta
- Angiotensin-converting enzyme 2 [Rhinolophus sinicus] Protein NCBI. (2020). Retrieved 8 October 2020, from https://www.ncbi.nlm.nih.gov/protein/AGZ48803.1?report=fasta
- Angiotensin-converting enzyme 2 precursor [Mus musculus] Protein NCBI. (2020). Retrieved 8 October 2020, from https://www.ncbi.nlm.nih.gov/protein/NP 001123985.1?report=fasta
- Angiotensin converting enzyme 2 [Rattus norvegicus] Protein NCBI. (2020). Retrieved 8 October 2020, from https://www.ncbi.nlm.nih.gov/protein/AAW78017.1?report=fasta
- Angiotensin-converting enzyme 2 precursor [Sus scrofa] Protein NCBI. (2020). Retrieved 8 October 2020, from https://www.ncbi.nlm.nih.gov/protein/NP 001116542.1?report=fasta
- Angiotensin I converting enzyme 2 [Mustela putorius furo] Protein NCBI. (2020). Retrieved 8 October 2020, from https://www.ncbi.nlm.nih.gov/protein/BAE53380.1?report=fasta

References

- Angiotensin I converting enzyme 2 [Felis catus] Protein NCBI. (2020). Retrieved 8 October 2020, from https://www.ncbi.nlm.nih.gov/protein/AAX59005.1?report=fasta
- Angiotensin-converting enzyme 2 precursor [Pongo abelii] Protein NCBI. (2020). Retrieved 8 October 2020, from https://www.ncbi.nlm.nih.gov/protein/NP_001124604.1?report=fasta
- Angiotensin converting enzyme 2 [Chlorocebus aethiops] Protein NCBI. (2020). Retrieved 8 October 2020, from https://www.ncbi.nlm.nih.gov/protein/AAY57872.1?report=fasta
- Angiotensin-converting enzyme 2 [Vulpes vulpes] Protein NCBI. (2020). Retrieved 8 October 2020, from https://www.ncbi.nlm.nih.gov/protein/XP 025842513.1?report=fasta
- Angiotensin-converting enzyme 2 [Gallus gallus] Protein NCBI. (2020). Retrieved 8 October 2020, from https://www.ncbi.nlm.nih.gov/protein/XP 416822.2?report=fasta
- Angiotensin-converting enzyme 2 [Ophiophagus hannah] Protein NCBI. (2020). Retrieved 8 October 2020, from https://www.ncbi.nlm.nih.gov/protein/ETE61880.1?report=fasta
- Angiotensin I converting enzyme 2 [Manis pentadactyla] Protein NCBI. (n.d.). Retrieved October 08, 2020, from https://www.ncbi.nlm.nih.gov/protein/QLH93383.1?report=fasta

References

- Angiotensin-converting enzyme 2 [Camelus dromedarius] Protein NCBI. (n.d.). Retrieved October 08, 2020, from https://www.ncbi.nlm.nih.gov/protein/XP 031301717.1
- Angiotensin-converting enzyme 2, partial [Neovison vison] Protein NCBI. (2020). Retrieved 8 October 2020, from https://www.ncbi.nlm.nih.gov/protein/CCP86723.1?report=fasta
- Angiotensin-converting enzyme 2 [Ictidomys tridecemlineatus] Protein NCBI. (2020). Retrieved 8 October 2020, from https://www.ncbi.nlm.nih.gov/protein/XP 005316051.3?report=fasta
- Angiotensin-converting enzyme 2 [Pelodiscus sinensis] Protein NCBI. (2020). Retrieved 8 October 2020, from https://www.ncbi.nlm.nih.gov/protein/XP 006122891.1?report=fasta
- Deng, J., Jin, Y., Liu, Y., Sun, J., Hao, L., & Bai, J. et al. (2020). Serological survey of SARS-CoV-2 for experimental, domestic, companion and wild animals excludes intermediate hosts of 35 different species of animals. *Transboundary And Emerging Diseases*, *67*(4), 1745-1749. doi: 10.1111/tbed.13577
- Wan, Y., Shang, J., Graham, R., Baric, R., & Li, F. (2020). Receptor Recognition by the Novel Coronavirus from Wuhan: an Analysis Based on Decade-Long Structural Studies of SARS Coronavirus. Journal Of Virology, 94(7). doi: 10.1128/jvi.00127-20 Yuan, S., Jiang, S., & Li, Z. (2020). Analysis of Possible Intermediate Hosts of the New Coronavirus SARS-CoV-2. Frontiers In Veterinary Science, 7. doi: 10.3389/fvets.2020.00379
- Zhao, J., Cui, W., & Tian, B. (2020). The Potential Intermediate Hosts for SARS-CoV-2. Frontiers In Microbiology, 11. doi: 10.3389/fmicb.2020.580137