DNA transformation and cell culture

General solutions

20% (wt/vol) Glucose solution

for 500 ml solution add 100 g D-Glucose

fill to 500 ml with DI $\rm H_2O$ mix thoroughly and filter sterilize

50% glycerol (vol %)

For 500 mL solution add 250 mL DI H₂O

250 mL Glycerol (Enzyme Grade) mix thoroughly and filter sterilize

Antibiotic stock solutions

50 mg/mL Ampicillin stock

for 10 ml solution add

0.5 g Ampicillin salt

 $9.5\;mL\;H_2O$

Syringe filter to sterilize

Store at -20°C

34 mg/mL Chloramphenicol stock

for 10 mL solution add

0.34g Chloramphenicol

Fill to 10 mL with 100% ethanol

Syringe filter to sterilize

Store at -20°C

10 mg/ml Kan Stock

For 10 ml solution add

100 mg Kan

Fill to 10 ml with H₂O

Filter sterilize and store at -20°C

Cell Culture media

LB (Luria-Bertani) media

for 1L solution add

 10 g tryptone
 1% wt/v

 5 g yeast extract
 0.5% wt/v

 10 g NaCl
 1% wt/v

Fill to 1 L with DI H₂O

Autoclave at 40 min sterilization - wet setting

For test tubes add 11 ml LB each

For midipreps add 100 ml in 500 ml flask

SB (Super-Broth) media

for 1L solution add

32 g tryptone 3.2 % wt/v 20 g yeast extract 2.0 % wt/v 5 g NaCl 0.5 % wt/v

Fill to 1 L with DI H₂O

pH to 7.5

Autoclave 40 min sterilization, wet cycle

LB-Agar Plate media

for 1L solution add	Final Conc.
10 g tryptone	1% wt/v
5 g yeast extract	0.5 % wt/v
10 g NaCl	1% wt/v
15 g Agar	15% wt/v
Fill to 1 L with DI H ₂ O or 900 ml	₋ if glucose
will be added	

will be added

Autoclave 40 min sterilization, wet cycle Antibiotics next column

 $\begin{array}{cccc} \text{Add (optional)} & \text{Final Conc.} \\ & 100 \text{ ml } 20\% \text{ Glucose} & 2\% \text{ wt/vol} \\ & \underline{\text{Antibiotic}} \\ & \text{Ampicillin} & 100 \text{ µg/mL} \\ & \text{Chloramphenicol} & 50 \text{ µg/mL} \\ & \text{Tetracycline} & 50 \text{ µg/ml} \\ & \text{Kan} & 50 \text{ µg/ml} \end{array}$

Transformation solutions

1 M MgCl₂

in 200 mL bottle add 20.39 g MgCl₂•6H₂O fill to 100 ml with DI H₂O Autoclave to sterilize

1 M MgSO₄

in 200 mL bottle add 24.6 g MgSO₄•7H₂O fill to 100 mL with DI H₂O mix and autoclave to sterilize

SOB solution

For 200	ml of solution add	final conc.	
	4g tryptone	2% wt/vol	
	1g yeast extract	0.5% wt/vo	οl
	0.117g NaCl	0.0585%	
	0.057g KCl	0.0285%	
mix and	autoclave to sterilize		

SOC solution

SOC Solution	
For 10 ml solution add	Final conc.
10 mL SOB solution	
180 μL 20% Glucose	0.36% w/v
100 μL 1 M MgSO ₄	1 mM
100 μL 1 M MgCl ₂	1 mM
Do not store for longer then 2 days	

DNA transformation and cell culture

Tranforming DNA

Follow companies instructions for cells

General protocol - Electroporation

- 1. Make SOC solution and chill cuvettes in ice
- 2. Make controls
 - a. Positive control 1 ng pure DNA vector compatible with cell line to determine CFU of cells
 - Negative controls For ligations usually unligated, digested vector or dephosphorylated vector that has been incubated with ligase – should not form colonies
- 3. Add DNA to be transformed to 0.5 ml microcentrifuge tube and chill on ice.
- 4. Thaw electrocompetent cells on ice
- 5. Set up Biorad Gene Pulser II or MicroPulser systems
 - a. Micropulser
 - i. set to Ec1 for 0.1 cm cuvettes (1.8kV)
 - ii. Ec2 for 0.2 cm cuvettes (2.5kV)
 - b. Genepulser system:
 - i. Capacitance 25 μF
 - ii. Resistance 200 ohms
 - iii. Voltage depends on electrocompetent cells used and cuvette
- 6. Add cells to DNA and mix gently, put back on ice (should sit on ice for 45 sec but no longer than 1 minute)
- 7. Draw 1 ml of SOC into pipette and set aside
- 8. Dry cuvettes and remove lid
- 9. Add cell/DNA mix to cuvette and tap to ensure that cell mixture is at bottom of cuvette and replace cap.
- 10. Slide into pulser until cuvette makes contact with electrodes. Press pulse buttons (both red buttons must be pressed at the same time for Gene pulser). When complete you will hear a beep. (time constant should be around 4.5-5.2)
- 11. Immediately remove cap and add 1 ml of SOC to cuvette and mix.
- 12. Remove SOC-cell mix and place in a sterile microcentrifuge tube or 15ml tube. Incubate 1-1.5 hrs at 37°C (optional can put in shaker)
- 13. Plate on LB-Agar plates with appropriate antibiotics and grow overnight at 37°C.