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Accurate prediction of gene feedback circuit behavior
from component properties
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A basic assumption underlying synthetic biology is that analysis of genetic circuit elements, such as
regulatory proteins and promoters, can be used to understand and predict the behavior of circuits
containing those elements. To test this assumption, we used time-lapse fluorescence microscopy to
quantitatively analyze two autoregulatory negative feedback circuits. By measuring the gene
regulation functions of the corresponding repressor–promoter interactions, we accurately predicted
the expression level of the autoregulatory feedback loops, in molecular units. This demonstration
that quantitative characterization of regulatory elements can predict the behavior of genetic circuits
supports a fundamental requirement of synthetic biology.
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Introduction

A major challenge in systems biology is to create quantitative,
predictive models of gene-circuit dynamics (Alon, 2007). It has
recently become possible to construct and analyze synthetic
gene regulatory circuits (Becskei and Serrano, 2000; Elowitz and
Leibler, 2000; Gardner et al, 2000; Sprinzak and Elowitz, 2005;
Andrianantoandro et al, 2006; Guido et al, 2006). A basic
assumption underlying such ‘synthetic’ biology is that the
properties of individual genetic components can be used to
understand and quantitatively predict circuit-level behaviors.
Nevertheless, even seemingly simple genetic circuits have
produced unexpected results (Becskei and Serrano, 2000; Guet
et al, 2002; Paulsson, 2004; Hooshangi and Weiss, 2006). Most
characterizations of genetic circuit elements involve uncali-
brated, relative units (Becskei and Serrano, 2000; Guet et al,
2002; Rosenfeld et al, 2002; Austin et al, 2006; Guido et al, 2006),
which makes comparisons between experiments difficult and
limits the design of larger circuits. Models are often restricted to
qualitative phase space analysis or require numerous free
parameters to fit observed behavior (Paulsson, 2004; Sprinzak
and Elowitz, 2005; Andrianantoandro et al, 2006; Hooshangi

and Weiss, 2006). Finally, stochastic noise in the operation of
genetic circuit elements can further complicate analysis. There-
fore, it is critical to test the assumption that genetic circuit
elements can be reconnected in a predictable fashion.

Previously, we described quantitative measurement of gene
regulation functions (GRFs), defined as the rate of protein
production as a function of transcription factor concentration
in single cells (Rosenfeld et al, 2005). The simplest circuit
whose behavior depends on this GRF is the negative
autoregulatory circuit in which a repressor regulates its own
expression (Figure 1A). The behavior of this circuit can be
predicted from the GRF with no fitting parameters. Here, we
show that in vivo biochemical characterization of a promoter–
repressor interaction enables accurate prediction of the output
of a negative feedback circuit built from these elements.

To measure the GRF, we constructed a chimeric gene, cI-yfp,
consisting of the phage lambda repressor gene (cI) fused to the
yellow fluorescent protein gene (yfp). We inserted a cyan
fluorescent protein gene (cfp) in the chromosome under the
control of each of two variants of the lambda PR promoter
(Rosenfeld et al, 2005). Because the promoter is inserted at single-
copy on the Escherichia coli chromosome, effects of plasmid copy
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number fluctuations are avoided. We expressed cI-yfp from a
tetracycline-inducible promoter and monitored the rate of
expression of cfp as a function of the level of CI-YFP in individual
cells. These experiments used dilution of CI-YFP during growth
to systematically vary the levels of repressor in individual cell
lineages. We characterized two variants of the lambda PR

promoter which differ in affinity for repressor because of a single
point mutation in one operator region (Rosenfeld et al, 2005).
This study produced a quantitative GRF, including measurements
of effective affinity, cooperativity, and promoter strength, and
determined the levels and timescales of fluctuations in gene
expression controlled by the target promoter.

These GRFs contain sufficient information to predict the
behavior of corresponding autoregulatory circuits, in which
CI-YFP represses its own expression. To test this prediction, we
inserted the cI-yfp gene under each of the two characterized PR

promoters, so that CI-YFP represses its own production
(Supplementary Figure S1). We then acquired time-lapse
fluorescence microscopy movies of growing microcolonies of
E. coli carrying these synthetic genetic circuits (Figure 1B and
Supplementary movies SM1 and SM2). We used quantitative
image analysis (Rosenfeld et al, 2005) and a fluorescence
calibration method based on fluctuations in protein partition-
ing (Rosenfeld et al, 2006) to determine the protein levels and
production rates in individual cells over time in absolute
numbers of repressor molecules (Figure 1C). We compared the
steady-state protein levels in the autoregulatory circuits with
predictions based on the GRFs.

Results and discussion

We repeated our measurement of the GRFs using the strains
and procedures described previously (Supplementary Figure
S2; Rosenfeld et al, 2005). We converted fluorescence units to
protein numbers and quantified fluorescent protein expression
in units of proteins per cell (Rosenfeld et al, 2006). This
calibration has an approximately twofold systematic uncer-
tainty in concentration values (Rosenfeld et al, 2005). The
mean GRF is well described by a Hill function: the rate of
protein production is b/(1þ (R/k)n), where b is the maximal
production rate, n indicates the degree of effective coopera-
tivity in repression, and k is the concentration of repressor
yielding half-maximal expression. The values we obtained for
b, k, and n from the present data (Supplementary Figure S2) lie
within the confidence limits of our previous measurement
(Rosenfeld et al, 2005). The effective binding affinities of CI-
YFP to the lambda PR promoters are in the range of affinities
estimated for the native lambda cI repressor (Meyer et al, 1980;
Ptashne, 2004; Darling et al, 2000; Dodd et al, 2004).

We used these GRFs (Supplementary Figure S2) to derive
quantitative predictions for the corresponding autoregulatory
circuits. At steady state, the protein production rate equals the
protein dilution rate, as there is no detectable protein
degradation in these conditions (Rosenfeld et al, 2005). In
the continuous limit, both rates are functions of the total
cellular repressor level, RT: to compare dilution and production
rates in the same units, we converted the GRF from f(R), a
function of the repressor concentration (Supplementary Figure
S2) to fT (RT), a function of total repressor levels (Figure 2). We
set R¼RT/V, where V is the volume of the cell, estimated from
its size in phase contrast images (see Materials and methods).

We plotted the repressor production rate fT (RT) (Figure 2,
green and black for the two variants of PR) and the repressor
dilution rate D(RT)¼a �RT (Figure 2, magenta), where a
denotes the bacterial growth rate (Rosenfeld et al, 2002). Its
average value of a¼0.019 min�1 was obtained directly from the
image data, by measuring the mean cell-cycle period,
t¼36 min (Figure 1C). We predict that the repressor expression
level in the autoregulatory circuit should be centered on the
intersection of the two functions: fT (RT)¼D(RT).

To test this prediction, we acquired and quantified time-
lapse fluorescence microscopy movies of growing colonies of
E. coli strains containing the autoregulatory feedback circuits
(Supplementary movies SM1 and SM2). In these circuits, the
CI-YFP repressor–reporter fusion protein represses its own
production by binding to the PR promoter. The negative
autoregulatory synthetic circuits were inserted at the same
chromosomal locus (galK) that we used for the PR measure-
ment constructs (see Materials and methods). We found that
repressor levels increased steadily over each cell cycle and
dropped by approximately half at each cell division, main-
taining concentrations at an approximately constant value
(Figure 1C). The wild-type PR promoter is more tightly
repressed than the OR2* variant (Meyer et al, 1980; Rosenfeld
et al, 2005), and the repressor levels are therefore lower in the
wild-type negative autoregulatory circuit (Figure 1C).

As predicted, repressor levels and production rates for the
negative autoregulatory circuits were centered at the intersec-
tion of the dilution rate and the GRF curves (Figure 2). The
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Figure 1 Measurements of synthetic negative autoregulation circuits. (A)
Schematic diagram of a negative autoregulatory circuit. cI-yfp encodes a fusion
protein of the lambda repressor and yfp genes. This chimeric gene is placed
under the control of one of the two variants of the lamba PR promoter (see
Supplementary Figure S1). (B) Snapshot of a growing bacterial colony carrying
the negative autoregulatory circuit (OR2* variant). Localization of CI-YFP to cell
nucleoids can be observed (Bakk and Metzler, 2004). (C) CI-YFP fluorescence
plotted over time for cell lineages containing the two negative autoregulatory
PR-cI-yfp circuit variants. Circuit with wild-type PR promoter is shown in red,
while its OR2* variant, which has weaker repressor binding is shown in blue. One
cell lineage is highlighted for each bacterial strain.
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steady-state level and production rate of CI-YFP (mean±s.d.)
were, respectively, 210±70 molecules per cell and 4±2
molecules per cell per min for the wild-type negative feedback
circuit, and 720±190 molecules per cell and 14±5 molecules
per cell per min, respectively, for the OR2* variant. The single
nucleotide change from the wild-type PR promoter to OR2*
thus increased the steady-state level of the negative auto-
regulatory circuit approximately fourfold.

Previously, we found that intracellular noise causes the GRF
to fluctuate significantly about its mean value. Thus, the GRF
cannot be described by a deterministic function alone
(Rosenfeld et al, 2005). Although negative autoregulatory
circuits have been shown to produce faster response times
(Savageau, 1974; Rosenfeld et al, 2002), they are often
considered to act to reduce gene-expression noise (Becskei
and Serrano, 2000; Thattai and van Oudenaarden, 2001).
Theoretical (Paulsson, 2004; Swain, 2004; Austin et al, 2006)
and simulation (Hooshangi and Weiss, 2006) studies show
that this reduction does not always occur but depends strongly
on parameter values and external effects. Using the circuits
described here, we could not detect a measurable decrease in
gene expression variability. In the OR2* circuit, protein
concentration variation was equal to that observed in the
corresponding GRF (coefficient of variation of 15% in the
mean cell fluorescence and 37% in the protein production rate,
for both strains). The more strongly repressed autoregulation
circuit, however, exhibited approximately fourfold lower
protein levels and approximately 1.5-fold greater variability
(Supplementary Figure S3). Theoretically, intrinsic noise
would be expected to increase at most by the square root of
the change in expression level, or approximately twofold in
this case. The effects of feedback can reduce the magnitude of
this noise increase (Swain, 2004). Thus, the observed noise

increase is consistent with the theoretical expectations
(Becskei and Serrano, 2000; Thattai and van Oudenaarden,
2002; Elowitz et al, 2002; Ozbudak et al, 2002; Swain et al,
2002; Paulsson, 2004; Rosenfeld et al, 2005; Hooshangi and
Weiss, 2006).

These results show that accurate quantitative measure-
ments of GRFs and other component properties can allow
prediction of the behaviors of autoregulatory genetic feedback
circuits. It will now be important to investigate the degree of
complexity and the range of cellular environments over which
such quantitative descriptions can be extended. An advantage
of the lambda phage system is that it has very specific
interactions with its target promoters in E. coli. It can thus be
treated as a relatively independent circuit module. It will be
interesting to see how many other similarly modular systems
can be constructed. As the complexity of components
increases, GRFs must be more complex than Hill functions to
effectively describe combinatorial interactions (Bintu et al,
2005; Mayo et al, 2006; Guido et al, 2006; Libby et al, 2007).
For sufficiently complex systems, completely characterizing
the GRF may become impractical and other simplifications
may be required. Nevertheless, these results support the view
that quantitatively predictive system models are feasible, and
that such models can be used for bottom-up design of synthetic
circuits (Guido et al, 2006).

Materials and methods

Bacterial strains and constructs

l-cascade strains were described previously (Rosenfeld et al, 2005).
E. coli strains encoding chromosomally integrated negative autoregu-
latory circuits (Figure 1A; Supplementary Figure S1) were constructed
as follows. First, complementary oligonucleotides encoding the lambda
PR promoter were designed with appropriate cohesive ends to replace
the PLlacO1 promoter driving cI-yfp expression in previously described
plasmid pZE21-cIyfp (Rosenfeld et al, 2005). The PR promoter contains
OR2 and OR1 repressor-binding sites (Meyer et al, 1980), conserves the
spacing between them (Liu and Little, 1998), and also contains the
following sequence: yataaatatc[taacaccgtgcGtgttg]actattt[tacctctggcg
gtgata]atggttgcatgtactagaattcattaaagaggagaaaggtaccATGy (capital ATG
marks translation start; brackets indicate OR2 and OR1; capital G marks
the base that is changed in the OR2* variant). Site-directed mutagenesis
of this promoter (G is changed to T; see Supplementary Figure S1)
yielded the OR2* promoter variant, previously designated as ‘vN’
(Meyer et al, 1980). These steps resulted in the plasmid-based negative
autoregulatory circuits. Homologous recombination of the construct
into the chromosome of strain MC4100Z1 was performed using a
‘recombineering’ technique. Briefly, PCR products of both of the
complete transcriptional units, along with an adjacent ampR marker,
were generated with ends homologous to the galK locus, as described
previously (Elowitz et al, 2002). Electroporation of these products into
heat-shocked MC4100Z1 containing pSIM5 (Yu et al, 2000) and
subsequent recovery at 371C on Amp plates resulted in the desired
strains. Plasmid pSIM5, a generous gift of DL Court, contains the genes
necessary for recombination under heat-shock control on a plasmid
with a tsSC101 origin that is lost at 371C.

Bacterial growth and medium

Cultures were grown overnight in LBþ 15 mg/ml kanamycin at 371C
from single colonies, and diluted 1:100 in MSC medium (M9 minimal
mediumþ 0.6% succinateþ 0.01% casamino acidsþ 0.15 mg/ml bio-
tinþ 1.5mM thiamine). Cultures were grown to OD600 B0.1 at 321C,
and then diluted to giveB1 cell per visual field when placed between a
coverslip and 1.5% low-melt MSC agarose.
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Figure 2 Predicted and actual behavior of the synthetic negative auto-
regulatory circuits. GRFs are plotted as a function of repressor level RT for wild-
type PR promoter (green) and the OR2* variant (black). GRF is the protein
production rate fT (RT), as a function of repressor level and was measured using
the ‘l-cascade’ strains (Supplementary Figure S2) (Rosenfeld et al, 2005). The
average repressor dilution rate D(RT) is linear in RT, and is plotted in magenta.
Its slope, a, was obtained from direct measurements of cell growth rates in these
movies. Data obtained from the negative autoregulatory circuits are super-
imposed. Red and blue dots represent wild-type and OR2* circuit variants,
respectively. Yellow diamonds indicate the mean protein concentration and
production rates of the two autoregulatory circuits. As predicted, these mean
values occur where the production rate, given by the GRFs (green and black),
intersects the repressor dilution rate (magenta line).
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Quantitative fluorescence microscopy

Growth of bacterial microcolonies was observed by fluorescence
microscopy at 321C using an automated Leica DMIRB/E microscope
with � 100 phase contrast objective, an Orca ERG-cooled CCD camera
(Hamamatsu), and custom acquisition software. Typical intervals
between subsequent exposures were 8–9 min. Custom software was
developed using MATLAB (The Mathworks Inc) to analyze time-lapse
movie data (Rosenfeld et al, 2005). The cell length (l, typical values are
3–4mm) and width (w, narrowly distributed around 0.75 mm) were
recorded, and cell volume was calculated by modeling the cell as a
cigar-shape cylinder of length (l�w) and radius (w/2), capped by two
hemispheres of radius (w/2). Cell volumes typically varied from 1–2 to
2–3mm3. Fluorescence levels were translated into units of fluorescent
proteins using a fluctuation method, which compares the distribution
of sister-cell fluorescence values after cell-division to a hypothesis of
binomial protein segregation (Rosenfeld et al, 2005, 2006). Protein
production rate was averaged between subsequent movie frames.
Segmentation errors can contribute a relative error of a few percent,
and calibration errors can contribute a systematic additive error in the
order of 10 molecules per cell.

Supplementary information

Supplementary information is available at the Molecular Systems
Biology website (www.nature.com/msb).
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