Welcome to 20.109

Laboratory Fundamentals of Biological Engineering

Orientation Lecture Fall 2008

20.109

Laboratory Fundamentals of Biol Eng

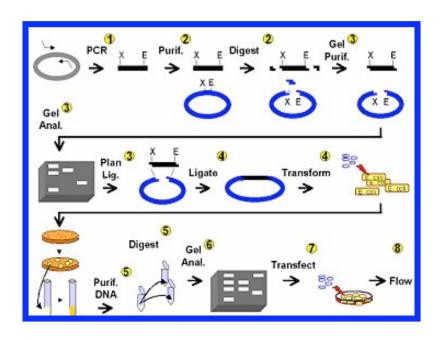
- > Reality is complex
- > Teaching is not the same as learning
- Studying is not the same as learning
- > We see you as men and women, not boys and girls
 - Risk taking is OK
 - Mistakes are OK

20.109

Laboratory Fundamentals of Biol Eng

Course Mission

- ➤ To prepare students to be the future of Biological Engineering
- To teach cutting edge research skill and technology through an authentic research experience
- ➤ To inspire rigorous data analysis and its thoughtful communication

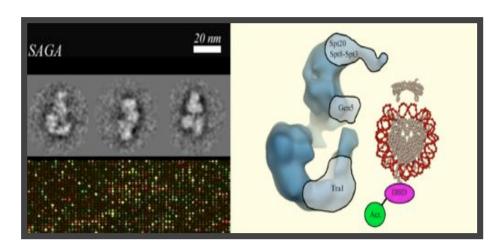

Module 1 DNA Engineering

Module 2 Protein Engineering

Module 3 Biomaterials Engineering

openwetware.org/wiki/20.109(F08)

DNA Engineering: GFP recombination vector

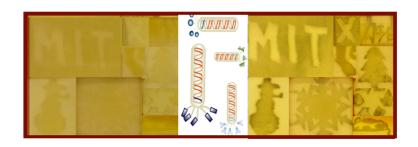

Experiments

- Design and create vectors for expressing fluorescent protein in mouse embryonic stem cells
- Use fluorescence to analyze recombination of variously damaged DNA substrates

Lab Skills

- Retrieve and manipulate sequences from databases
- Clone PCR-amplified DNA fragments
- Transfect mammalian cells
- Flow Cytometry

Protein Engineering: SAGA TAP-tag


Experiments

- Affinity tag protein of choice in yeast genome
- Verify modification
- Compare modified and parental genome for unexpected consequences

Lab Skills

- Transform and select yeast cells
- PCR verification of genomic changes
- Western analysis
- Phenotyping
- Microarray expression analysis

Biomaterial Engineering: Phage-based ECD

Experiments

- Grow iridium nanowires on phage surface
- Pattern indium tin oxide slide
- Electrodeposit phage nanowires
- Overlay solid polymer electrolytes

Lab skills

- Phage material production
- Fabrication of bio-based device
- Design and variation of experimental conditions

Expectations

Some of your expectations of us

- that we will come to class and lab prepared
- that our assignments are clear and reasonable
- that we will treat every 109er with respect
- that we will give everyone equal chance at success

Some of our expectations of you

- that you will come to class and lab prepared
- that you will not interfere with each other's learning
 - that you will invest the very best of yourself
 - that you will offer honest and frequent feedback

Course Details

Lecture Tuesdays and Thursdays 11-12, 66-168

Lab Tuesdays and Thursdays 1-5, 56-322

Wednesdays and Fridays 1-5, 56-322

There are no "make-up" labs

Work must be turned in on time

reports, homework: at beginning of lab

lab notebook pages: at end of lab

You will perform experiments in pairs

Assignments can be worked on together but submitted individually

"Celebrations of learning"

50% Written Work Modules 1 and 2

30% Oral Presentations Modules (2 or 3) and 3

10% Homework Assignments

5% Daily Lab Quizzes

5% Lab Notebooks

Module	Topic	Assignment	% of Final Grade
1	DNA Engineering	lab report	20
		<u>"P3"</u>	5
2	Protein Engineering	research article	25
3	Biomaterial engineering	oral presentation of research idea + written text	20
Journal Club	Module 2 or 3	oral presentation	10

Foundations/Skills

Basic Laboratory Skills

following and designing protocols first-hand experience with equipment and procedures how to keep a lab notebook

Robust Quantitative Analysis of Data

statistical analysis when appropriate repetition of protocols to assess quality of findings effect of experimental perturbations on outcome

Verbal and Written Communication

two oral presentations two written reports

Critical Thinking

analysis and discussion of primary scientific literature

"what we learn to do we learn by doing..."