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What Is Synthetic Biology?

a new area of biological research that combines science and engineering in
order to design and build ("synthesize") novel biological functions and systems

source: wikipedia

Constructing novel gene networks

Investigating biology by building
and modeling equivalent systems

Synthesizing entirely new biomolecules
Rewriting genomes

Building new life

Andrianantoandro E et al, 2006
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The challenge of building gene
networks

a + Arabinose
Andrianantoandro et al, 2006 l I 1
Mz [ e
“...design of synthetic biological systems has become an iterative T T
process of modeling, construction, and experimental testing that —— I
continues until a system achieves the desired behavior. —‘r'
' e
el

The process begins with the abstract design of devices, modules, or
organisms, and is often guided by mathematical models. The
synthetic biologist then tests the newly constructed systems
experimentally. However, such initial attempts rarely yield fully
functional implementations because of incomplete biological
information.

Rational redesign based on mathematical models improves system
behavior in such situations. Directed evolution is a complimentary
approach, which can yield novel and unexpected beneficial changes
to the system. These retooled systems are once again tested
experimentally and the process is repeated as needed.”

Idea — x hours
model — x weeks
network — x years Weiss R, 2006
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The gene network engineering cycle

|dea!

+

Design Your Network

+

Find Suitable Parts

+ % I Tweak

v

Build Computer Model characterize Re-desian
and test out network parts thoroughly . 9
T Retrofit
Assemble Network DNA more testing

Test out Network in Cells Why?

:( doesn’t work
It worked! )

|

put it to use debugging
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Shortening the gene network engineering cycle

Better parts = Better Models
on-going concern in Syn Bio
standardisation
Impact on host cell
compatibility

Directed Evolution
use diversity to cheat the cycle
requires selective pressures
not always straightforward
not rational design

More parts, more versions of each part
square peg/round hole
to optimize networks, need optimum parts
tweak before failure
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We’re playing with bricks we’ve found - ‘MacGyver’

’

A < (o
eee
X =
X ¥ 2
0 0 0
Petri Dish = 10 1
0 1 0
Bacterial Computed Edge 1 ! .
Lawn
o , ==
Dark Sensor X AND (NOTY) Black Pigmentf

lambda V.fischeri E.coli

phage

cyanobacter E.coli

ttatagtegastacelenpotgotyata | 1

Lux ¢assaba righl promoler

BBa_I1051

I BBa_11200n Promater (PRM<] galttaacgiaicagcacasaasagosacc
BBa_12008 Modinad oBa Prm pi P by 434 o) atlacaaactictgtatagatttascgt | 1
BBa_112036 mymu BRmakd Proy pramobst (CO0DPBFAINVE regnsssion oy stettgtatagatitac aaigtay gt | 1
o0 iites: | HOBuinmbs N proniomes 10 repida am ) and steaptagasnacaamattit | 1

l BBEa_Nanzg TR - TetR-4C heterodimer prosnoter (negative) Eal SR SEIET EL L DR EEEE
BBa_N4015 P{Lag) Tead IGtsc ack CLtattagigatagsga | 1
BBy 114018 PiLag) C0 ittpgtacactaceictpocgotoata | 1
BEa_l14032 promoter Pillac) 10 Faacccgcogiatgpatgatagooec
BBa_i714689 OR74 of PR and PRM tattacciggcagigatastyotige
BBa_1714924 Rech_Diend_DLseOt FCRIGHAGHAPAPLH FIQNFS

E 7 | BBa_I714003 rreond plae with Uve mutabon Holgagcppatascaatalghgageacs
BBa_I718018 dapip promoser CatagacacnINYCacagageacg

l BBa_iT31004 FaCA promotar fetegregack atageigascacaaca | 2

l BBa_7 32700 NOT Gate Promobae Famaly Member (DOCI01wat) paatiglpagegoatasc astiggaticgn

l BBa_173220 NOT Gate Prometes Famety Member (D001011) poasdiglgagegeicacaatiggateogg

l BBa_ 1733207 NOT Garte Frameter Family Member (0001022 gpastigtaagegctacaatipgatceoy
BBs_I732703 NOT Gata Fromobse Family Member (DOO1033) QIAAtNRAcMacastingatorey

Tom Ellis Sept 09




Toy models - Real world

Tom Ellis Sept 09



More parts, more versions of each part

INTERNATIONAL STANDARD THREADS 21

TABLE OF INTERNATIONAL STANDARD SCREW THREADS
DIMENSIONS IN MILLIMETERS

= €=
= of Pitch of Plck ol Plech ol Pitch
= Screw Screw Screw Screw
3 6 1.00 18 2.50 39 4.00 68 6.00
4x 4x 7 t.00 20 2.50 42 4.50 72 | 630
8 1.25 22 2.50 :g 450 g 6.50
9 1.35 24 3-00 5.00 7.00
10 1.50 a7 3.00 53 5.00 88 .50
" 1.50 30 3.50 56 5.50 96 00
12 1.7§ 3% 3-30 6o .50 116 0.00
" 2.00 3 4.00 64 00 136 |10.00
16 200

The “International Standard” is the same, with modifications
noted, as that now in general use in France.
INTERNATIONAL STANDARD THREADS

At the ““Congress International pour L'Unification des Fi .
held in Zurich, October 24, 1 the following resolu

:
i

3. The table for Standard Diameters accepted is the one which

given above.) It is to be noticed especially that r.25 mm. pitch
adopted for 8 mm. diameter, and 1.75 mm. pitch for 12 ‘:‘nm_.
diameter. The pitches of sizes between standard diameters \odv
cated in the table are to be the same as for the next smallet sandaxd

.
”~
-
=
-
Ie
S
>
—

1
-

Screws — standard threading but different length, width, input
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More parts, more versions of each part
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Rational use of diversity — Make libraries of new parts

4710 =1.048576 || directed
| evolution
A
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o 3 8000
c 10000 - 4
S
©
c 1000 - 400
2
5
3 100 - 20
10 -
1 . . . . .
0 5 10 15 20 25
Library Size
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A new gene network engineering cycle

|deal!

+

Design Your Network

1. Identify parts required \ +

2. ldentify diversity required

3. Synthesize libraries to
have defined diversity

4. Characterise in parallel

We desire:

Quick synthesis
Defined Diversity
Parallel Characterisation

Tom Ellis Sept 09

Build Library of Parts

+

Build Computer Model
and test many networks

l

Assemble Network DNA

!

Test out a Network in Cells

l

It worked! )

l

put it to use

Improve model

:

Take Test Data



The idea... to bypass debugging

1. Make libraries of parts using diversity *
2. Make models of intended networks
3. Input library data into models

Models act as a guide - selecting the best library parts
for the output function needed

* should be characterizing parts anyway, so no big deal

Tom Ellis Sept 09



Library Synthesis Techniques - Promoters

BN Wild-Type Promoter

Error-Prone PCR l
==
e B
i |

Generation of Promoter

@bo ©

Selection of the Functional
Promoter Library

Characterization of the
Functional Promoter Library l

) . oy
SO S8 88 S8 gsS
Fluorescance Flucrescence Fluorescence

3 )
$888.8
Fluorescencs

By Mutation:
Alper & Stephanopolous
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Building Blocks []l D 6
8] .Dl
ll B 'u o
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By DNA shuffling:
Elowitz/Cohen

EcoRl CT-box RPG-box RPG-box
IATCAGAATTCTCGAGNNNNNCTTCCNNNNNACCCATACANNNNNNNNACCCA

CT-box TATA-box

[TACANNNNNCTTCCONNNNNNNNNNNNNNNNNNNNNNNNNNNNNNTATAANN

INNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNC TTCTTTCTTGTA

IAWCATCTCTCTTGTAATTCCTTATTCCTTCTAGCTATTTTTCATAAAAAACCAAG

BamH!

ICAACTGCTTATCAACACACAAACACTAAATCAAAATGGATCCCGAT

By Synthesis:
Jensen & Hammer




Promoter Library Construction

Order 120mer oligos (~ $75 each)

p. —_——p
R — I
- : : — -
Made US”’]g OI|gOS Enhancer region Reporter gene
Include regulation sites .
Uses de novo design i Klenow
5!_PstI___(N)SS___TATA___(N)11___tetoz_(N)2 -tetOZ- 3’ - - — ?» NS e W __|:>_
Clone in promoter
and recover library of
~105 plasmids
Characterise in parallel e
~105-106 different 104 different Screen ~200 for GFP
plasmids Plasmids [ e T T T T T e Ta T T o)

TEF1 -pr / \
o P
Yeast
TATA TF-Box Start
Gall-pr
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Requlated Promoter Libraries

]
o
[S]

(2]
8
™

GFP signal
N a
o o
o o

~|

1000

750

500

250

T13
Ti4
T15
T16
T17
Ti8
T19
T20

w

(=3

o
~_|

Unrepressed (max) and repressed (min)
expression from regulated promoters 7
100

N

o

o
~_|

0 T T T T T
0 50 100 150 200 250 300
ATc ng/ml

700

TetR-regulated

600

a1
(=]
o

N
(=]
o

GFP signal
w
=]
o

TX T01 T02 T03 To4 T05 TOo6 TO7 TO8 T09 T10 T11 T12 T13 T14 T15 T16 T17 T18 T19 T20

N
(=)
o

100

0 S T T T T T T T
0 50 100 150 200 250 300 350 400 450
Time (mins)

TATA tetO, tetO, Start

L gE AN LALLM ALRANALANOARL AL SAAnEINnAnEAINAnt SOt Al CAGE DAL HpRgEnn S EC LAt Cagl gat agegannnn INHANNBLNNRLNNHLNNHTASARIT ATOAA0AARRAAT HLNNHANNHBNNNBANNBANNBANNBANNBANNBRNNDLNNNBNEENE O 0
gtguagcagegaagegatgattiiigatctat tascagat at At At grannaactgleCct At cagl AL AGOUML CLOCCLAL CAYLURLAGHgAL AL L ACE LT AT TCAMACGTAACAARAJTACCARTAAARMATL COLTAALATACCEOLATACT L CAACGECARIJAGAMARMMCO COCGURTEaE
CEYCAgAAt JAYUIC YAt JaRaalUt JaYIUURIUUT ALAL AAAUPIUURITAYL LECELALCAYT AR AGNIAT GTOCELAL CAYTURLAGHIAUCY AT ACACEACPUCTADTALE EARRATL ALCARCARARAAL AT T JACARAC L CEAT ACCCARE AT CECACTAT ECARCGACCECHUREEE
CTQONPIJAcAA(atAAnNAAATAAT AACCTATAHAACTALTALAAACATAAMMITTALOOCTALCAQT AT AGAJANATOOCTAT CAQT AT AGAJACQa Coon ges at CACCOCCCEgCCQracgragrpccoocccocccocccocccogggntos

AttACCtatCatt CARARIE AECARCARARBAL tCLgtCtECotAgt gt ooct tat ARCgUCaACt CoCAt ACACpogEnt e

OCGONYTIUOIT AT OIIORAUT OIANIIIPIAANRITURITAEAAAANIIT PAJACYTOCO LA CAJT AT AGNMIAJITOONTAT CAJT JATAGRIAACTA COUEY
CEQUARIAT AT TEOOQGUT ANNNTAGNAAG NN gratac ALCODTATUAGT AT AGAIAT ACOCTTATCAJT UREAgRaAT g0 tocce cocgttagoectanasgtatcastaaasigt gocctoctgoocooococooccooccoggtittggpeee uggeatce
CEGURGATAGACTEAAJGUEAGUARMJGALJUARMAREACAE ALALMAT CACARMCARMECOCTATCAGT AT ADAIAARAAACTARARRAARRATL C RGO C M-~ Laaasgratcascaaasaatclccc gaccratacegee raatagpatoc

CCAAQUALAERMIAAL AACE LAt LCCCtAT CAgEPAL ADAINOCEOCCE AT Cagt — - coooee s - SRt AJTALCAACAAANAATL CCAC gocgygatoe
Agantatas A * tatcagtgat EagtoRtagegetoga ATPAA0CTOOCTJACAOCCTAANAIT ATCANIAAARAAT CCTACCYIOYTOCCOT YN A0CK
atasgagcangt gaancang L =1 tocctatougtgatagaget t tEcetatcagt gat agegucac JONMAARMMAT ACAAATAT AL BLOBND Lrrac CTAAMATCAT DCQUAgacAAQEATCO
LLguaaguat Lguaccguuuuutgtagt tgpatat saacaagypat angtoost CAGLOAtAgAgAt atOCCtAtEAgIlgatagagat gtc CARTTARS O QJCUAMAT CASAMI T ALOANCAAARMAATL CEOAAT LOAGEJUATCAL LAAT CAT COAARNTAARAT CAQIAQEAT O
CUYCAPL YUYt YUt LAat agltOUtUat gt goudt GUUt LA SAAT AgUUUL LYUE OO LAl Cagt QAL AGAYAT CLOCC LA CAUT AL AUMIAAAAA ATRARGCARCALCARECALARNRITACCAREAAARMAAL CACCOACACC L COCCCEOCCO@AJEOgCCOgAT ACCCOOCCOCCgUNtaE
CTQOAAQT ALYt OULYUUTt AT QT JUMITYUEATARAT JOJAYMIJUUTCOOLATCATUALAJAMAC T ECOOLALOAYTOALAJANNAT gac EOCE ocgo= “t LCALAICCLCALACIALCQOCCOCOCAQECCQgrcgroctcQot t aggetos
CTQONGAT AN NN, HAACAHAAANIAT AXAAANMAAT AT T.ATHAAN YrULAGAATOOOTAT AT AL AGMJAQUTOCUCAT AT UNT AL g0 CemCCmCCCCctcocgragt tuasagi atCastasaaRat cCogacaccraccoaacacggcoccgoctacgaccoccoacgooggntes
CTOONEIT APOIUPPTIIPTAGNI AGUAT T IPTAGRIIAGITALAANGOAAJRITANITOORTAT CAJT GATAGMINGT TOCOCAT CAIT UATAGNIMC CAD ACECcoCaacCasat acctghanasgtatcancanaRsat cooccocogoogooact cagtacgacacct coccanggoocccocoggates
OEGURPIARRIIAT AMACAAC T AJAGEJCAGE CACKAIACCATAEAMAGAMAAGE LCAAECOET AT CAGT GATAGSIAAALOLCEAT CAIT AT ARRIAT Con COCgat acatccaaactasasgt atcantaaanmal tcaanaccocact gooccaccagacct gt Leacaccacc quatce
EEgERPIURCE L COCACCEECEECCIPogRECCCEMEAZEALARMTLCAJICEGIUE EECCEATCATE IACAGRIAAJECOCCAL CAGEIRLAGAGRAT ana LT ACAgaCAanatACCgUTAsAaLALCaAACAMAARAL At ACgOgaacagCogaganglgaccgataggattgigagaat coggatad
ct tCQotgng Pt CAgtgUtt Lt oGt AT ARAT OUCI Ot IOt EECCEATCAgIgaAt ApaAgRAt COCCEAL CAgtgatugagacege JUAT LT AgAANCTAC garaaasgratcascaasnatt g ATQOOPJOCTYYUAr T LT IMMATCTACCT LANQTOCYYAtOo
ctgomgatgpaagoaags tocagaat goag: 3 ctak tCgrCteoCt At Cugtoat agagRCAtoCCt Nt Cagt Rt agegacana 2 0O0ACAAAATT ACOAACAAARAAT OTO 000 AT MDD CPAJUNIOCOFARNCOO T ROACOPAT COO OO0 JURAT 00
ctgemglyutragygractggatatggaggccatgyggsattgytataaagtgtaggyuagtcoctatocagtgat agagagectorctatcagtgatagagaat AQIATAFIJAAIAGTASAMTATSAATAAARMAT AJJCAMACAJACRITCOOJURIACAMMOQITITQITCYrOAATJURATt OO
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Regulated Promoter Library Characterisation
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Giving itago - What can we try that is interesting?

Negative feed-forward loop motif:  robust, non-linear

Modeling type: prediction ahead of assembly

ATc
1
I 1 1
——> TetR Lacl
PTEFl PLibT . T P
IPTG— OR-LT
1000
% 500
1 library = 21 networks =
10°
10"
107
IPTG (mM)
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Feed-Forward Loop Network

Assemble example networks

single-copy
genome-integrated

1000

500
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0'.
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More complex case — Toggle ‘Timers’

Monostable toggles that act as programmable ‘timers’

unbalanced mutual repression

Modeling type: predictions based on single example

® -

yEGFP

ATc |

TetR__ | < Jmm— T 1=)>

Lacl

2 libraries = 441 networks
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Toggle ‘Timers’

Toggle reset times can be extrapolated from [

promoter properties
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FIIJhT |
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Predicted relationship from
computational model + one experimental test
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o
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Tom Ellis Sept 09

50 100 150 0 50 100 150

Time (hours) Time (hours)



Applying the network — a phenotype more interesting than GFP

Yeast flocculation: high expression of Flol = cell sedimentation

Why would this be of use?
Beer, wine, waste... and now biofuels

Advantages of the system — controlled, predictable

“-I PLOT
Flol can be direct replacement for GFP Flo1 <'-"f'='
1 PLiI:UT
Sedimentation is a threshold event Lotk ‘:-—mpm = Lacl
-

Tom Ellis Sept 09



Yeast Flocculation Control

® . >16000 networks possible

IEMEI4—T-
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= PLibL T 0 48 60 72 84
ATe TX-LX B s & | LA
' | ‘ ‘ k “.
10° — v v Kv o - N
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~T7-L18 e 0 48 60 72 84 :

focciiator To7-L18 N BN |BW O |

--------------------- ] 'va'V V@

normal growth |
0 144 156 168 180
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TX-L14 ‘. !
10° : : ' ‘
0 50 100 150
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Diversity-based, model-guided constru'ction of synthetic
gene networks with predicted function‘s
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Advantages

. Fast

. Predictive / Rational

. Desired output levels

. Fine-tuning of response

. Parallel characterisation

. Exponential

. Provides parts for community

~NOoO Ok WP

If every iGEM team made 1 new biobrick by this method...

>2000 neW partS? RNA Polymerase
Prokansotic Bacteriophage Eukaryotic
Regulation E. coli B. subtilis I\mscellanegus T7 SP6 Yeast hmscellane.uus
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Beyond Yeast Regulatory Promoters...

Bacterial, mammalian regulatory promoters
Libraries of other parts:

... RBS, Terminators, RNA UTRs, Codon usage, Peptide tags, Modular Proteins
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Working on now...

Mammalian promoter library

Single site integration
Flow cytometric sorting

Figure 1 - Integration of the Fp-In" T-REx" vector
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Peptide tags in mammalian systems

Nuclear Localization Sequence

Splicing regulation
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/Where could this Iead?\ Components of a BioFAB

Parts Parts Cell envelope
characterization registry synthesis

Scaled-up libraries

Degenerate DNA synthesis e R

High-throughput screening
Parts Robotic DNA Evolution &
repository assembly screening/selection

Mmplementable na BIOFAEJ g, Distributed FAB concept
J
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/ Synthesis of new parts \

Hybrid / de novo part design

Modular motifs
Stepwise changes

\ Start from chassis part J

- Composite parts .
RBS
. ogdi <> BBS e O O
RBS-based device
RBS ® RBS

5Smome
...................... " lab
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Tom Ellis Techniques, Construction and Implementation
of Gene Networks

now at University of Cambridge, Dept of Biotechnology and Chemical Eng.

Mammalian cell synthetic biology
Engineer dry-life tolerance into cells

genetic, metabolic and protein engineering
And other ideas...

Bdelloid rotifers at SEM
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Boston University i i -

vibrating Xiao Wang — Matlab CSd)
Insoles Henry Lee — Ideas

Peter R Jensen, Biocentrum DTU _ ]
Kevin Verstrepen, KU Leuven synthetic biology
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