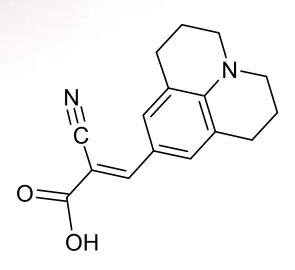


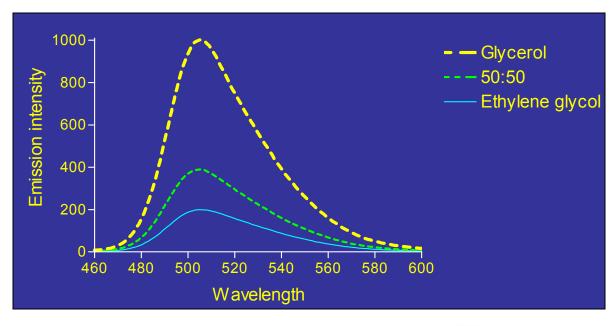
Darcy Lichlyter and Dr. Mark Haidekker University of Georgia – Athens

March 7, 2008 Chapel Hill, NC

Introduction: Molecular Rotors

- Special class of molecules which form twisted intramolecular charge-transfer complexes (TICT)
- Dual competing processes of de-excitation intramolecular rotation or fluorescence emission
- With increasing solution viscosity (or decreasing free volume), probability of fluorescence emission increases





Introduction: Molecular Rotors

- Relationship determined from Förster-Hoffman Equation: log(Φ) = C + x log(η)
- Φ is the quantum yield
- C is a temperature dependent constant
- X is dependent on the structure of the molecular rotor
- η is the viscosity of the solution

Objectives

- 1. Is CCVJ still viscosity sensitive after immobilization to glass substrates?
- 2. Is there a difference in emission signal between silane coatings?
- 3. If so, one has the highest emission signal resulting in the greatest viscosity sensitivity with CCVJ?

Materials and Methods

Cleaning glass slides

- 1:1 HCl and Methanol for 15 minutes
- 100% Sulfuric acid for 15 minutes
- Boil for 15 minutes in d.d. H₂O
- Treat with Corona pen for 1 to 2 minutes before silane incubation

Acetic acid/Ethanol Silanization method

- 76% Ethanol, 20% Acetic acid, 4 % water
- Mix silane into the solvents, allow a few minutes to hydrolyze and then add the slides for 5 to 10 minutes
- Rinse in ethanol, air dry

Silane Structures

3-AMINOPROPYLTRIMETHOXYSILANE SIA0611.0 13822-56-5 C₆H₁₇NO₃Si

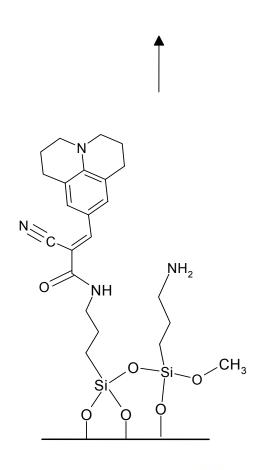
UREIDOPROPYLTRIMETHOXYSILANE SIU9058.0 23843-64-3 $C_7H_{18}N_2O_4Si$

N-(6-AMINOHEXYL)AMINOPROPYLTRIMETHOXYSILANE SIA0594.0 51895-58-0 $C_{12}H_{30}N_2O_3Si$

Materials and Methods

- Covalent attachment of fluorescent dyes to silane surface
 - 9-(2-carboxy-2-cyanovinyl)julolidine, N-hydroxysuccinimidyl ester (CCVJ)
 - 5-carboxyfluorescein, succinimidyl ester (5-FAM)

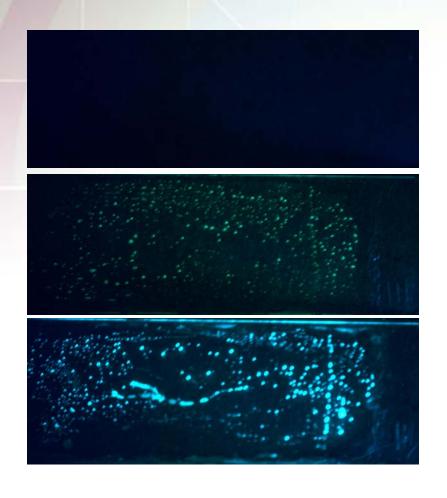
- –1. Make 25mM stock solutions in DMSO
- −2. Prepare 0.1 M sodium bicarbonate solution, pH 8.5
- −3. Dilute stock dye into the bicarbonate solution to 0.1mM
- –4. Applied immediately to the silanized surface
- –5. Incubate for 1 hour at room temperature
- −6. Rinse with distilled H₂O followed by ethanol and air dried



Bonding

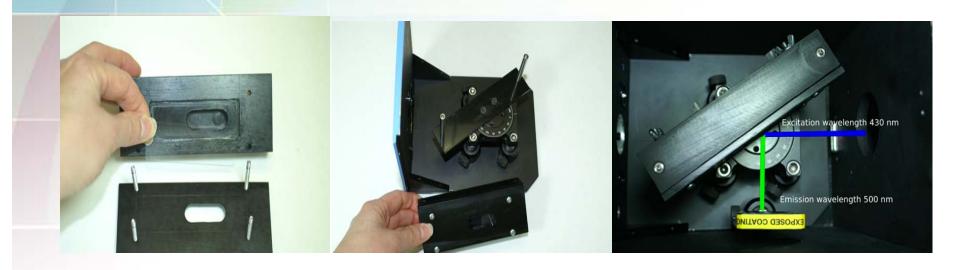
release of N-hydroxysuccinimide

NHS reaction, amine to amide linkage


Hydrolysis-Condensation

Qualitative examination

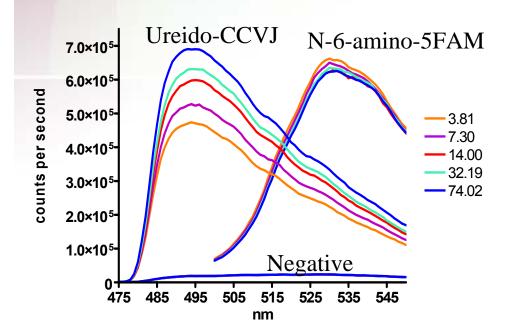
Blank slide

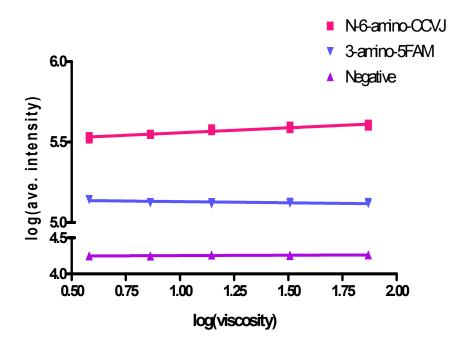

5-FAM bound to Ureido silane

CCVJ bound to Ureido silane

Fluorescent measurements

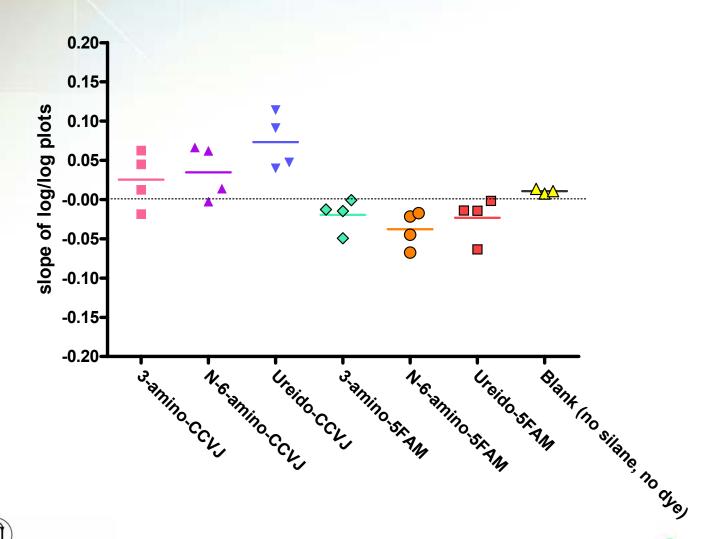
- Slides are inserted into a custom designed stage for the Fluoromax 3 SPEX
- Solvents consisted of glycerol, ethylene glycol and methanol mixtures


Solvent #	% Mixture	Solvent	mPa sec	log(viscosity)
1	40/60	Glycerol/Ethylene Glycol	74.02	1.869
2	20/80	Glycerol/Ethylene Glycol	32.19	1.508
3	100	Ethylene Glycol	14.00	1.146
4	80/20	Ethylene Glycol/Methanol	7.30	0.863
5	60/40	Ethylene Glycol/Methanol	3.81	0.581

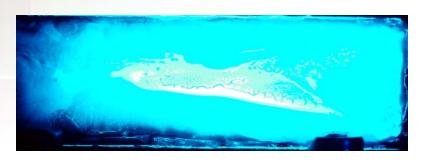


Measurements-Calculations

- Emission Peak is averaged
- N = 3 for each solvent



Results



Current work

CCVJ bound to Ureido silane

Toluene solvent, 4 day incubation time Heated after rinsing

Methanol solvent, 20 minute incubation time Heated after rinsing

Conclusions

- CCVJ is viscosity sensitive after immobilization
 - Reduction in sensitivity is observed
- The highest viscosity sensitivity is found with the Ureidopropyltrimethoxysilane
 - Median slope of 0.07
- Optimization of the silane coating results improves immobilization density
 - Sensitivity only marginally improved

National Science Foundation award no. NSF/CMMI 0652476

