
Noise in protein expression scales with natural
protein abundance
Arren Bar-Even1, Johan Paulsson2,3, Narendra Maheshri4, Miri Carmi1, Erin O’Shea4, Yitzhak Pilpel1 &
Naama Barkai1,5

Noise in gene expression is generated at multiple levels, such as transcription and translation, chromatin remodeling and
pathway-specific regulation. Studies of individual promoters have suggested different dominating noise sources, raising the
question of whether a general trend exists across a large number of genes and conditions. We examined the variation in the
expression levels of 43 Saccharomyces cerevisiae proteins, in cells grown under 11 experimental conditions. For all classes of
genes and under all conditions, the expression variance was approximately proportional to the mean; the same scaling was
observed at steady state and during the transient responses to the perturbations. Theoretical analysis suggests that this scaling
behavior reflects variability in mRNA copy number, resulting from random ‘birth and death’ of mRNA molecules or from
promoter fluctuations. Deviation of coexpressed genes from this general trend, including high noise in stress-related genes and
low noise in proteasomal genes, may indicate fluctuations in pathway-specific regulators or a differential activation pattern of the
underlying gene promoters.

Genetically identical cells growing under the same conditions can still
vary greatly in their internal protein concentrations1–14. This inherent
variability poses particular challenges for information processing in
cells, which often need to generate precise and reliable computation in
randomly changing environments. Thus, understanding the factors
that affect noise in protein abundance, and their relative contribu-
tions, is of interest.

Several methods have been used to track the origin of fluctuations
in protein levels. One strategy is to measure the variance in protein
abundance as a function of transcription and translation rates15–19.
Fluctuations that are due to random births and deaths of individual
molecules show a distinct scaling behavior in which the variance is
proportional to the mean (an effect loosely connected to the law of
large numbers). This property can be used to identify which chemical
species contribute to the fluctuations. For example, protein noise that
scales this way in response to changes in both transcription and
translation rates may result from randomness in the birth and death of
proteins. In contrast, protein noise that shows this scaling in response
to changes in the rate of transcription, but not in the rate of
translation, is likely to reflect random birth and death of individual
mRNAs7,15,16. The same principle can be used to study fluctuations
that result from noise in an upstream component and propagate
through the reaction network to increase the variance in protein levels.
Applying this method to Bacillus subtilis suggested that most noise

came from low-copy mRNA fluctuations7,15,16. Investigations in
S. cerevisiae suggested instead that the dominant noise sources are
pre-transcriptional and relate to low-abundance regulators19 or a
combination of slow promoter kinetics and pathway-specific factors20.

Another strategy is to measure the simultaneous expression of two
reporter genes17,18,21–24. The idea is that each of the two proteins has
its own set of genes and mRNAs but shares global and pathway-
specific factors with the other protein. This elegant method makes
interpretation less model dependent: as long as the two reporters are
identically regulated and do not affect each other, the noise contribu-
tion from the shared environment should equal the covariance
between the reporters. An application to Escherichia coli showed
both a noise that was specific to each reporter (termed intrinsic)
and a shared noise (termed extrinsic), which was largely explained by a
pathway-specific repressor21. Other studies in the same organism
suggested that global factors can contribute significantly to the overall
noise and emphasized the contribution of cell-cycle asynchrony to the
observed variations17,23. Finally, a similar study in S. cerevisiae
suggested that much of the noise originates from global factors rather
than from pathway- or gene-specific factors18,22.

By nature of the analysis, most studies have focused on a limited
number of genes, many of which are highly expressed. This is
appropriate when analyzing any particular mechanism in detail, but
because the results have varied from study to study and from
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condition to condition, the generalizability of the conclusions remains
to be seen. Moreover, most studies have been done under optimal
growth conditions but do not consider how environmental conditions
affect the noise. Comparing noise levels between conditions may be of
particular interest because it may explain the enhanced phenotypic
diversity often observed when cells are stressed.

In this study, we measured the cell-to-cell variation of 43
S. cerevisiae genes expressed as fusion proteins in this organism and
grown under 11 different environmental conditions. Motivated by
previous analyses, we attempted to correlate noise and mean expres-
sion levels. However, whereas previous studies have changed expres-
sion levels by explicitly tuning transcription and translation rates, we
have explored the situations in which the levels of expression have
been differently determined by the cells themselves. Differences in
protein abundance between the proteins, and across different condi-
tions, potentially could be achieved in numerous different ways, with
very different effects on the noise. Despite this potential complexity,
we found a strong correlation between cell-to-cell variability and mean
expression level. We were struck that, in all gene classes examined and
over a broad range of expression levels, the variance is roughly
proportional to the mean. We suggest how this effect can be explained
kinetically and how it points toward specific biological mechanisms

both for setting averages and for generating fluctuations. By analyzing
the deviation from this general trend, we find that genes of similar
biological functions show similar noise features, indicating a contri-
bution from pathway-specific components or mechanisms. In parti-
cular, most of the stress genes examined are significantly noisier than
other genes tested, whereas components of the proteasome are the
least noisy.

RESULTS
Noise versus mean protein abundance
We considered 43 proteins associated with four coexpressed transcrip-
tion modules (stress, proteasome, ergosterol and rRNA processing; see
Methods). We subjected cells expressing a GFP-fused version of each
protein25 to 11 different environmental conditions, and we used flow
cytometry analysis to measure the single-cell fluorescence distributions
at six subsequent time points ranging from 0–150 min after the
transfer to each of the environments (see Methods and Fig. 1).

We quantified the noise by the (squared) coefficient of variation
Z2

p ¼ s2
p=hpi

2; that is, the variance s2
p of protein abundance normal-

ized by the square mean hpi2. Fluorescence values were normalized to
actual protein numbers using known protein abundances26 (Meth-
ods). Figure 2 shows the noise as a function of mean abundance for all
genes, under all conditions and at all time points.

At low abundances, the GFP concentration is barely detectable over
the autofluorescence background. In this region, the noise seems to
decrease as 1=hpi2, as expected for a constant (autofluorescence) vari-
ance. At very high abundance, the noise is almost uncorrelated with the
mean, reaching a minimum consistent with that reported previously27

(Supplementary Methods online).
Perhaps the most notable behavior is

observed at intermediate abundances, span-
ning about an order of magnitude and includ-
ing most data points. In this region, the noise
is strongly correlated with the mean, following
Z2

p ¼ C=hpi, with C E 1,200 as a proportion-
ality constant. Protein molecules that are made
and degraded with constant probabilities per
second are expected to show a similar depen-
dency, with Z2

p ¼ 1=hpi. However, the high
proportionality factor observed in our experi-
ment rules out poissonian statistics: a protein
that is present at 100,000 copies in our data set
shows relative fluctuations of 10%, compared
with 0.1% predicted by poissonian statistics.

To better understand the origin of the
scaling behavior, we applied a theoretical
analysis of noise propagation in reaction net-
works (Fig. 3). Models of noise propagation
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Figure 1 Single-cell distributions of fluorescence levels. (a,b) Cells

expressing the high-abundance protein PGM2 were shifted from synthetic

complete medium to medium containing 3% ethanol. (c,d) Cells expressing

the low-abundance protein ARX1 were diluted from stationary phase. The

cells were subjected to flow cytometry analysis at different time points after

the transfer. Fluorescence distributions are shown on linear (a,c) and on

logarithmic (b,d) scales. Blue, green, red, turquoise, magenta and yellow

lines correspond to fluorescence distributions after 0, 30, 60, 90, 120 and

150 min from perturbation start, respectively. For low-abundance proteins,

the fluorescence values appeared to follow normal distributions. By contrast,

at high abundances, we more often observed a deviation from normality,

with overrepresentation of high fluorescence values (see Supplementary

Note and Supplementary Fig. 6 online).
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Figure 2 Scaling of noise with mean protein abundance. (a) Noise as a function of mean protein
abundance. All genes in all conditions and time points are shown. Thick curve corresponds to

logðZ2
p Þ ¼ 1175 � logðhpiÞ. Green filled circles represent initial, steady-state time points of stress

perturbations (t ¼ 0). Gray points were excluded from the fitting process (see Methods). The fit to the

autofluorescence region (thin curve) corresponds to logðZ2
pÞ ¼ 9:9 � 105 � 2 � logðhpiÞ. (b–e) Noise

versus mean protein abundance shown separately for genes belonging to a common module.
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typically assume a system that is in steady state, whereas in our case,
most of the data reflects the behavior of the system after some
perturbation. Notably, however, we obtained essentially the same
scaling when considering all points and when confining the analysis
to only the steady-state conditions (Fig. 2a; Methods). Therefore, we
focus the theoretical analysis on steady-state fluctuations. Transient
behavior is discussed below.

Is noise driven by global or pathway-specific factors?
We base our analysis on a general phenomenological model, described
in Methods, that captures the essence of noise propagation. According
to this model (see equation (3)), the protein noise that comes from the
upstream component is determined by three factors: the noise in the
upstream component itself (Z2

x), the steady-state susceptibility to
upstream noise (H parameter) and time-averaging of the upstream
noise (H and t parameters).

In our study, we measured the expression variance for different
genes under the same conditions. When x represents a global factor, its
variance Z2

x is the same for all cell cultures measured under a particular
condition (Fig. 3d). Similarly, when x is specific to a given pathway
(for example, a pathway-specific transcription factor), its variance Z2

x

will be the same for all pathway genes (Fig. 3e). By contrast, to explain
the experimentally observed scaling (Fig. 2a), the magnitude of the
upstream noise Z2

x would have to decrease in proportion to the mean
abundance of the measured genes. Moreover, as we also observed the
same Z2

p ¼ C=hpi dependency within distinct groups of coexpressed
genes (modules, Fig. 2b–e), the same argument rules out a changing
pathway-specific noise. Notably, when we also considered the con-

tribution of the susceptibility or the averaging times, this did not seem
to alter this conclusion (Methods).

Taken together, these results suggest that noise in global or pathway-
specific factors may plausibly explain the region of high abundance, in
which the noise level is practically independent of the mean abun-
dance (Fig. 2). In contrast, neither noise type accounts well for the
large region of intermediate abundance, in which noise is inversely
proportional to the mean protein abundance.

Is noise driven by mRNA fluctuations?
Early theoretical analyses of stochastic gene expression suggested that
protein fluctuations are driven by underlying mRNA fluctuations28,29.
In contrast to global factors, mRNA levels vary from gene to gene,
making them possible candidates for the observed effects. Simple
analysis (see Methods) predicts that the contribution of spontaneous
mRNA fluctuations to the protein noise will scale as

Z2
p ¼ C=hpi ð1Þ

where C � lptmRNA is the average number of proteins made per
transcript, lp is the translation rate and tmRNA is the mRNA average
lifetime. Equation (1) thus predicts a scaling behavior between noise
and mean protein abundance (Fig. 3c). To be consistent with the
experimental relationship observed in our measurements, two condi-
tions need to be satisfied: first, the average number of proteins made
per transcript (C) needs to be similar for all genes and conditions in
our data. Second, the differences in protein abundances observed
in our data needs to be primarily due to changes in transcription
levels rather than in post-transcriptional processes such as translation
or protein degradation.

To estimate whether the observed level of C (B1,200) is consistent
with biological parameters, we used genome-wide measurements of
protein and mRNA abundances and mRNA degradation rates (Meth-
ods). The experimental errors for individual genes are too large to test
whether C is well approximated as a constant. However, the average
value over the 43 genes gives C E 1,300, markedly similar to the
measured coefficient (Methods and Supplementary Methods). We
note that because protein lifetimes are not known for most genes, we
assumed that the effective protein degradation is dominated by
dilution, with an effective average lifetime of 100 min. If the protein
degradation rates instead were four times higher, with effective life-
times of about 25 min, one would obtain C E 220. This would be
significantly lower than the observed proportionality constant, but still
in the right region. Considering all these results together, it seems that
low-copy mRNA fluctuations, coupled with differential transcription
rates as a major source of protein copy number variation, could
explain the scaling behavior observed in our data.

Is noise driven by promoter fluctuations?
Random activation and inactivation of the gene promoter, resulting
from changes in chromatin structure or from the stochastic binding
and unbinding of transcription factors, may also contribute to protein
noise. To examine whether this process can account for the observed
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Table 1 Measured noise in the dual-reporter assay

ACS2 PWP1 TPS1 PRE9

Microscope Mean fluorescence

(AU/cell)

5.3 � 105 2.2 � 105 4.9 � 105 2.4 � 105

Total noise 0.065 0.070 0.061 0.095

Intrinsic noise 0.015 0.026 0.025 0.041

Extrinsic noise 0.050 0.044 0.036 0.054

Flow cytometry Mean abundance

(protein/cell)

5.7 � 105 1.4 � 105 2.6 � 105 1.9 � 105

Total noise 0.036 0.088 0.107 0.054

Flow cytometry values correspond to the data in Figure 2a for GFP fusion proteins in haploid
cells. See text for details. AU, arbitrary units.
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experimental trend, we consider the following model30: assume that
each gene switches on and off with some constant probabilities, and
that a protein is made (with constant probability) when the gene is in
the ‘on’ state. The resulting protein noise can be calculated directly
from equation (3) (Supplementary Note online). In the general case,
no clear correlation between noise and mean abundance is predicted.
However, the observed noise trend is retrieved in the special case in
which, first, genes switch on and off rapidly relative to the protein’s
lifetime, and, second, each gene spends most of its time in the inactive
state. The protein noise that comes from operator fluctuations is then
as follows:

Z2
p ¼ lE=b

hpi ð2Þ

where the ratio lE/b corresponds to the average number of proteins
made in the time window in which the gene is turned on.

Thus, if the genes are mostly off, and the average level of gene
activity is modulated by tuning the ‘on rate’, one would obtain a
dependency of the noise on the mean protein abundance as observed
in our data. To be consistent with our data, two additional conditions
need to be satisfied: first, the average number of proteins made per
instance of gene activation (lE / b) needs to be similar for all genes and
conditions in our data. Second, the differences in protein abundances
observed in our data needs to be primarily due to tuning the rate of
gene activation, rather then to downstream processes. Finally, we note
that achieving lE/b E 1,200 is biologically conceivable, but the
mechanisms of gene activation are not yet characterized in sufficient
detail to provide a quantitative estimate.

Intrinsic noise measured in two-color experiment
Our analysis above concluded that the scaling behavior between the
noise and mean abundance observed in our data (Fig. 2a) reflects
stochastic fluctuations in mRNA levels. This result suggest that gene-
specific fluctuation in mRNA or promoter activation adds a substan-
tial, if not dominant, contribution to protein variability. In contrast,
recent studies in S. cerevisiae have shown that promoter-specific
fluctuations (intrinsic noise) are negligible compared with noise that
is generated by shared factors (extrinsic noise)18,22. As most previous
experiments have considered highly abundant reporter genes, we
wished to directly examine the relative extent of intrinsic noise for
the fusion proteins analyzed in our study.

We created dual-reporter diploid strains by fusing one copy to cyan
fluorescent protein (CFP) and the other copy to yellow fluorescent
protein (YFP). Since CFP is hard to visualize, we focused on four
proteins of relatively high abundance (Table 1). Three of these
proteins (PWP1, TPS1 and PRE9) were associated with the inter-
mediate region, where scaling was observed, whereas the fourth
(ACS2) corresponded to the region of high abundance, where no
dependence between noise and mean abundance was observed (Fig. 4
and Supplementary Fig. 1 online). Following the experimental model

introduced in ref. 21, we characterized both the intrinsic and the
extrinsic contributions to protein noise. We used linear regression to
correct for cell-size effect (which were gated in our flow cytometry
experiment; see Supplementary Methods). After this correction, the
total noise observed in the microscope was comparable to that
observed by flow cytometry (Table 1). Notably, for PWP1, TPS1
and PRE9, proteins of intermediate abundance, the extent of intrinsic
noise was of the same order as the extrinsic noise, whereas the highly
abundant ACS2 was characterized by extrinsic noise that was more
than three times higher than the intrinsic noise. Taken together, these
results suggest that for proteins of intermediate abundance, internal
noise contributes substantially to the total protein noise.

Scaling behavior during transient response to perturbations
The theoretical discussion above was limited to steady-state behavior.
However, we observed essentially the same scaling relationship for the
transient time points after the start of perturbations (Fig. 2a and
Methods). Notably, most conditions that substantially changed the
doubling time also altered the observed pre-factor C, as expected if
protein degradation time was indeed controlled by dilution (Supple-
mentary Methods and Supplementary Fig. 2 online). To verify that
the scaling reflected an actual response to perturbation and was not
due to the basal differences of gene expression levels, we normalized
both the mean and the variance with respect to their pre-
stimulus values. Indeed, these normalized variables were also
proportional (Fig. 5).

The transient response to perturbation has been studied theoretically
within a single-gene model15. Similar to the steady-state discussion
above, this model predicts a scaling behavior between the variance and
the mean, provided that the protein noise is due to mRNA fluctuations
and that the change in protein abundance after the perturbation is due
to changes in mRNA levels. Our data agree qualitatively with this
expected scaling, suggesting that changes in protein abundances are
achieved primarily through modulation of mRNA levels and that
intrinsic fluctuations in mRNA levels add a substantial contribution
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to the protein noise. Quantitatively, the proportionality factor we find
is somewhat smaller then that predicted theoretically (which is 1 + d,
with 0 o d o 1, and d decreasing with time as the system approaches
steady state)15, suggesting that the protein levels might be maintained
at a quasi–steady state (Supplementary Note). Because the underlying
mechanisms of the adjustment are unknown, it is difficult to speculate
further on this potential discrepancy.

The dependence of noise residuals on module affiliation
The analysis above indicates that a large noise contribution to our data
comes from stochastic fluctuations in mRNA levels, resulting either
from random birth and death processes of individual mRNA mole-
cules or from stochastic gene activation. However, some genes also
show large deviations from this trend, reflecting either additional
noise sources specific to individual proteins, or variations in kinetic
parameters such as translation rate. These deviations are captured by
‘noise residuals’, defined as the difference between the actual noise level
and its expected value, given its mean expression level (Methods). It is
interesting to note that noise residuals are predominantly positive.
Negative residuals could, in principle, result from buffering mechan-
isms that would function to reduce the extent of intrinsic noise. The
lack of such residuals may indicate that noise buffering, if it exists,
occurs primarily at the higher level of cellular processing and not at
the level of protein expression itself.

The noise residuals show clear, module-specific characteristics
(Fig. 6a). In particular, for a given mean abundance, stress genes are
very noisy, whereas the proteasome genes show very little variation.
When projected on the first two principal components using principle
component analysis (PCA), genes belonging to different modules
clearly cluster together (Fig. 6b).

DISCUSSION
The relationship between the noise in gene expression and the mean
protein abundance has been examined in several recent studies16–20.
Expression levels were then tuned either by mutation or by varying the

amounts of activators and repressors, sometimes using genes that are
synthetically engineered. That is an appropriate and useful method for
identifying the origin of fluctuations for the particular genes under
study, but it does not indicate the general relation between noise and
mean abundance in nature. Here we tested this relationship by
examining proteins that differ naturally in their expression level and
by analyzing expression levels in a variety of environments. Our data
indicate that under most natural conditions, the variance is approxi-
mately proportional to the mean expression. Notably, we observed the
same scaling behavior for all groups of genes, conditions and time
points examined. Similar scaling behavior has been observed in the
analysis of complex networks in physics and engineering31,32.

Although this scaling mimics the noise from random birth and
death of individual protein molecules (which is substantial only at low
protein numbers), the variances are three orders of magnitude too
high to be explained by such low-copy effects. Rather, our theoretical
analysis suggests that this scaling reflects fluctuations in mRNA levels
that arise from the random birth and death of individual mRNA
molecules (in other words, low-copy mRNA noise) or from the
stochastic activation of gene promoters. Several recent studies have
suggested that noise is dominated by cell-to-cell variations in global
factors17,18,21–23, which are substantially larger than any gene-specific
effects. It seems that most results from these studies came from the
region of high abundance. Our study suggests that for intermediate
abundances, the gene-specific noise is not overshadowed, in fact, by
the contribution of global factors, but instead it is comparable, if not
dominant. Indeed, previous analysis of low-abundance genes identi-
fied the rare gene activation events as a major noise source19.

Comparing the noise residual levels of genes from different mRNA
expression modules, we have observed module-dependent noise
residuals. In particular, we find that the stress genes are highly
noisy. This noise may be due to variations in the expression level of
some common regulator. For example, the transcription factor MSN4
is present in only a few dozen copies, but it is implicated in the
regulation of hundreds of stress-related genes. Stochastic transitions of
MSN4 between promoters of different genes may increase gene
expression noise. Another source of variability may be the gene
activation pattern. For example, previous studies22 have suggested
that the presence of a TATA box enhances noise at a given mean
abundance, presumably by increasing the number of transcripts
synthesized when the gene is activated22. Indeed, the promoter of
most stress genes contains a TATA box, whereas this sequence is absent
in other genes of similar expression levels.

It has also been suggested that the level of gene expression noise is
influenced by general chromatin effects19,20,22. We have noticed,
however, that genes that are present at close proximity still show
very different noise properties. For example, although the distance
from HXK1 to the proteasome genes RPN12 and PRE4 is only 263 and
5183 bp, respectively, HXK1 is one of the highly fluctuating proteins,
whereas RPN12 and PRE4 have very small noise residuals. At least in
this particular example, potential effects of chromatin seem to either
be short-ranged or overshadowed by other factors.

It is conceivable that noise may be detrimental for some genes,
whereas in others it may be tolerated or even advantageous. For
example, it has been hypothesized that essential genes and genes that
work in a complex will be characterized by low noise levels33. In
support of that, we have observed that the essential genes coding for
the proteasome subunits have the smallest noise residuals, whereas the
stress genes, which are all dispensable, show the highest noise
residuals. Moreover, the four dispensable ergosterol genes have sig-
nificantly higher noise residuals than the five essential ergosterol genes
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represents a gene, with both parameters (residuals and means) averaged
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conditions; increasing values correspond to increased induction.
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(P o 10�100, rank sum test). However, the difference between the
residuals of the six dispensable genes and the three essential genes of
the rRNA processing module is not significant (P ¼ 0.51, rank sum
test). An intriguing possibility is that for some genes and under some
conditions, enhanced noise may even be beneficial at the population
level. It remains to be understood whether the enhanced noise
observed here in stress genes could have been selected for by evolution
or whether it is a mere result of lack of constraint on the variability in
expression of such genes34.

Note added in proof: the scaling behavior we report was observed
independently by others40.

METHODS
Strains and growth conditions. We used 43 strains from the yeast GFP clone

collection, purchased from Invitrogen (divided by module affiliation). The

fusion proteins used corresponded to the following genes: stress: TPS2,

HSP104, HSP78, SSE2, GSY2, SSA4, PGM2, HXK1, TPS1, HSP42, HSP26 and

HSP12; proteasome: RPN3, RPN7, RPN6, RPN8, PRE10, RPN12, PRE4, PRE9,

PUP2 and SCL1; ergosterol: ACS2, ERG5, ERG13, MVD1, ERG10, CYB5, ERG1,

ERG11, ERG6 and ERG3; rRNA processing: NOC2, ARX1, PWP1, URA7, DBP3,

PRS1, CIC1, AAH1, PRS4, BRX1 and APT1. Only 38 of those 43 genes had

sufficiently high fluorescence above the autofluorescence background. Those

genes were chosen for the next steps of the analysis. The discarded genes were

RPN3, PRS1, RPN7, HSP26 and CYB5.

Experimental perturbations. Inoculation and overnight growth are described

in Supplementary Methods. All experiments were conducted on cells after

overnight growth in 10 ml medium, collected at an optical density (OD) of

B0.2, unless otherwise mentioned (see Supplementary Methods). For each

experiment, flow cytometry measurements were taken every 30 min until the

last time point of 150 min. Throughout the experiment, cells remained in the

Unimax1010 Incubator-Shaker. As a control, each experiment included cells

that lacked GFP but that were subject to the same treatment as well as cells that

lacked GFP and were not subject to the perturbation. Protein localization does

not seem to affect the fluorescence reading (Supplementary Note).

We used 11 conditions. Eight of them were stress conditions: diamide

(1.5 mM), hydrogen peroxide (H2O2) (0.3 mM), methyl methane-sulfonate

(0.04% wt/vol), heat shock (30 1C-37 1C), dithiothreitol (4 mM), clotrima-

zole (10 mM), rapamycin (65 ng/ml) and ethanol (3%). The other three

conditions were stress relaxation conditions: nitrogen depletion relaxation,

stationary phase relaxation and glycerol growth relaxation by glucose addition.

See Supplementary Methods for experimental details.

Flow cytometry measurements. Flow cytometry experiments were conducted

using the Becton-Dickinson FACSAria machine and standard protocols. To

reduce cell size variability, cells were filtered based on FSC-W and FSC-A filters.

See Supplementary Methods for details.

Noise and noise residuals. For each fluorescence distribution, we measured the

mean abundance (hpi) and the variance (s2). In each experiment, hpi was

normalized by subtracting the mean fluorescence of a controlled culture not

expressing GFP, measured in parallel, under the same perturbation.

The trend lines in Figure 2 were fitted using MATLAB’s curve fitting

toolbox. First, we considered each condition and time point separately and

fitted the slope best describing the dependency of log(Z2) as a function of log

(p) for all genes measured, in the middle region of Figure 2a. In all 66 cases

(11 � 6), the slope ranged from –0.7 to –1.4, with an average of –1.09.

To obtain the best-fitted curve and define its prefactor, we combined all data

points and used an iterative procedure that discards outliers (that is, points

whose distance from the best-fitted line is 40.5). This analysis was done using

a fixed slope (–2 or –1, for the low- and intermediate-abundance regions,

respectively). The process converged in five iterations. For all the data points in

the intermediate-abundance region (18% of the points were excluded) we got

logðZ2
pÞ ¼ 1175 � logðhpiÞ. Using only the steady-state time points (t ¼ 0 for

each of the stress conditions) gives logðZ2
pÞ ¼ 1189 � logðhpiÞ. Using all data

points without discarding outliers results in logðZ2
pÞ ¼ 1416 � logðhpiÞ.

The precise position of the line separating the 1 / /pS2 versus 1 / /pS
regions was (arbitrarily) chosen so that the two fitted curves coincide. The right

border of the 1 / /pS region was chosen by eyeballing.

The noise residual was defined as the vertical distance of a given point from

the fitted line in the log-log plot.

General model of noise propagation. Consider a protein p that is synthesized

and degraded at some probabilities per time unit. Further assume that these

probabilities depend on the level of an independent upstream component x,

which also fluctuates, providing a random environment for the protein

dynamics. Mathematically, this model can be captured by a two-variable

time-continuous Markov process. Assuming that a single molecule is made

or degraded per reaction event, and that the process has a stable stationary

state, it has been shown that the noise arising from any such processes can be

approximated7,35 by

Z2
p � 1

HPP
� 1

hpi+Z2
x�

H2
xp

H2
pp

� Hpp=tp

Hpp=tp+Hxx=tx
ð3Þ

The t-parameters denote average lifetimes, whereas the H-parameters are

elasticities that measure the normalized sharpness of nonlinearities in the

reaction network connecting x with p. The elasticities are defined by,

for instance, Hpx ¼ q lnðR�
p =R+

p Þ=q ln x, where R+
p and R�

p are synthesis and

degradation rates. For example, in the case where R+
p ¼ lx and R�

p ¼ bx3p, so

that x proportionally stimulates the synthesis of p and cubically stimulates the

degradation of p, the elasticity is Hpx ¼ 3 – 1 ¼ 2. Parameter Hpp / tp is the

effective adjustment rate of the protein, and vice versa for x. For more details

and explanations, see refs. 7,35.

Equation 3 suggests that proteins p are subject to two types of randomness,

coming from the random birth and death of individual protein molecules

(spontaneous fluctuations, observed for a given value of x), and from fluctua-

tions in x. The spontaneous fluctuations, captured by the first term of equation

(3), display the same qualitative scaling behavior as observed in our experi-

ments, Z2
p ¼ C=hpi (Figs. 2a and 3b). However, a quantitative fit would require

extraordinarily low elasticities (C ¼ 1 / Hpp E 1,200). Such elasticities

correspond to processes where the steady-state fixed points are almost unstable:

for example, autocatalytic protein synthesis just at the balance point of

unlimited synthesis. To our knowledge, such an extremely delicate balance

has never been measured even for a single gene. That all genes would be

characterized by exactly the same exotic instabilities is inconceivable and is also

ruled out by the fact that a vanishingly small change in transcription or

translation rates (say 0.1%) then would have substantial effect on protein levels

(approximately 100%).

The second term of equation 3 describes fluctuations in x that indirectly

force the protein to fluctuate as well. Below and in the main text, we analyze the

potential of such noise to explain the observed scaling behavior, considering

different molecular sources of noise. Note that this noise will dominate at high

protein abundances, where spontaneous fluctuations in protein production

become insignificant.

Contribution of averaging times and susceptibility to noise generated by

global factors. Even if the upstream noise Zx
2 were constant, could differential

susceptibility to this noise explain the observations? As described above, the

steady-state susceptibility factor measures how strongly the upstream factor

affects the steady-state protein levels and is related to Hill coefficients of

activation or inhibition. We see no reason why they should systematically

correlate with mean expression levels at all, let alone follow the observed

scaling pattern.

The last factor to consider is time-averaging. The t parameters indicate

whether the level of p is defined by the instantaneous x fluctuation, or whether

it depends on a long history of x fluctuations. If the upstream fluctuations are

slower than those of the proteins (Hxx / tx oo Hpp / tp), the time-averaging

factor will be close to unity and will not significantly affect the protein variance

Zp
2. If upstream fluctuations instead are fast, the time-averaging factor will be

inversely proportional to the average protein lifetime: Hpp / Hxx � tx /tp. In this

case, the observed scaling behavior, Z2
p ¼ C=hpi, will follow if protein abun-

dance is proportional to protein lifetime. To provide a consistent explanation of
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our measurements (Fig. 2a), the observed differences in protein abundance in

our data set, both between the different proteins at steady state as well as during

the response to perturbations, would need to be explained by changes in the

lifetimes of the various proteins, rather than by changing gene expression or

translation rates. Moreover, once dilution of proteins owing to cell growth

dominates over actual degradation, differential degradation rates become

impossible, and scaling will break down. We conclude that although time-

averaging could explain the results kinetically, we find it biologically unlikely.

Contribution of spontaneous mRNA fluctuations to protein noise. Assume

that transcription occurs with probability lmRNA per time unit and that

translation occurs with rate lp per transcript. Further assume exponential

decay of both transcripts and proteins with average lifetimes tmRNA and tp. This

corresponds to the general model of equation (3), with all elasticities set to

unity, but can also be calculated exactly from the full Markov process:

Z2
p ¼ Z2

mRNA�
1=tp

1=tp+1=tmRNA
� Z2

mRNA�
tmRNA

tp
ð4Þ

where the approximation assumes that mRNAs are short-lived compared to

proteins (tmRNA oo tp). Assuming that mRNA noise is due to random birth

and death of individual transcripts, we obtain Z2
mRNA ¼ 1=hmRNAi,

with hmRNAi ¼ lmRNAtmRNA as the mean mRNA level. Note that the

mean protein levels are given by hpi ¼ hmRNAilptp, gives equation (1) in

the main text.

Fluorescence per molecule. To translate the fluorescence intensity into protein

abundance, we used the protein abundance as measured in ref. 26. For each

gene, we took, as representative fluorescence, the median of its fluorescence in

the steady-state time points. The correlation between the known abundances

and the representative fluorescence gives R2 ¼ 0.44. This R2 indicates that there

is a significant correlation; the hypothesis that the actual R2 B0 has a P value of

0.005 (Supplementary Fig. 3). For each gene, we calculated the ratio between

its representative fluorescence and its measured protein abundance. The

average fluorescence per GFP molecule was taken as the average of those ratios.

According to this analysis, each GFP has a fluorescence of 0.16 arbitrary units.

Estimating the proportionality factor for low-copy mRNA noise. In the

mRNA model (equation (1) in the main text, and equation (4)), parameter C is

given by

C ¼ hpi
hmRNAi�

1=tp

1=tp+1=tmRNA
ð5Þ

For each protein in our experiments, we extracted these parameters from large-

scale data sets. Protein abundances hpi were taken from ref. 26, whereas the

mRNA abundances hmRNAi and the average mRNA lifetime tmRNA were taken

from ref. 36. The average protein lifetime tp was estimated to be 100 min

(roughly one cell cycle period). The value reported is the average over all the

chosen genes: C ¼ 1,278 E 1,300. Using other data sets of mRNA abundance37

and mRNA half-life38 gave similar expected C values. We did not use the

mRNA abundances and half-life values from ref. 39 because those distributions

are substantially different from those of the data sets in refs. 36–38 (see

Supplementary Methods and Supplementary Fig. 4 online).

General trend in transient response. To obtain the best-fitted curve for the

transient response, we used an iterative procedure, similar to the one described

above, implemented in Figure 2a. In this case, an outlier was defined as a point

whose distance from the best-fitted line was 40.2. In this process, 15% of the

points were excluded. Both slope and intersection points were determined by

the fitting process and were not fixed beforehand.

Cartoon illustration of noise propagation. The expected dependencies

between the noise and the mean protein abundance, considering different

cellular sources, are plotted in Figure 3. In all cases, we assume that dots

represent different genes, under a (singular) given condition. All graphs should

be considered cartoons rather than full analyses and were simulated using

MATLAB. In Figure 3b–d, we show 200 genes with various protein abundances,

selected randomly on the logarithmic x axis. In Figure 3e, we show four

modules, each containing 50 genes, whose mean abundances are distributed

normally (on the logarithmic x axis) around a certain center. The noise level was

calculated using the formulas given below, where the parameter C was randomly

chosen, for each gene, from the distributions given below. Figure 3b: protein

intrinsic noise of genes with various protein abundances, obeying Z2
p ¼ 1=hpi.

Figure 3c: mRNA intrinsic noise of genes with various protein abundances,

obeying Z2
p ¼ C=hpi, where CBN(190,95). Figure 3d: global extrinsic noise of

genes with various protein abundances, obeying Z2
p ¼ C=hGi, where CBN(1,1)

and hGi ¼ 30. Figure 3e: module extrinsic noise of genes belonging to different

modules, obeying Z2
p ¼ C=hRi, where CBN(1,1/3) and hRi is equal to 5 (�),

50 (triangles), 300 (circles) and 5,000 (+).

Fluorescence microscopy. Diploid two-color yeast strains grown overnight

were diluted to OD B0.05 and grown 5 h in YPD medium. Cells were

harvested, washed with synthetic complete (SC) medium and immediately

imaged on glass slides. Microscopy was conducted using a Zeiss Axiovert 200M

with a 63� oil-immersion objective (Zeiss) and motorized XY stage (Ludl)

driven by Metamorph 6.3r5 imaging software (Molecular Devices). Separate

fluorophores were excited using a xenon arc lamp (Sutter Instruments) and an

appropriate filter set (Chroma). Data acquisition was automated, using a

custom script written in Metamorph that repeatedly took background-

corrected bright-field, CFP, YFP and RFP images; segmented cells; and output

morphology and fluorescence intensity information. Filtering on the cell size,

morphology, and RFP fluorescence eliminated small buds, debris and dead

cells. For each strain, over 1,000 cells were imaged on at least two separate days.

Independence and equivalence of reporters was verified by comparing fluor-

escence distributions of haploid strains with each color and the corresponding

diploid strain.

Comparison of GFP fusion protein and GFP driven by promoter.

See Supplementary Note and Supplementary Figure 5 online.

Note: Supplementary information is available on the Nature Genetics website.
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