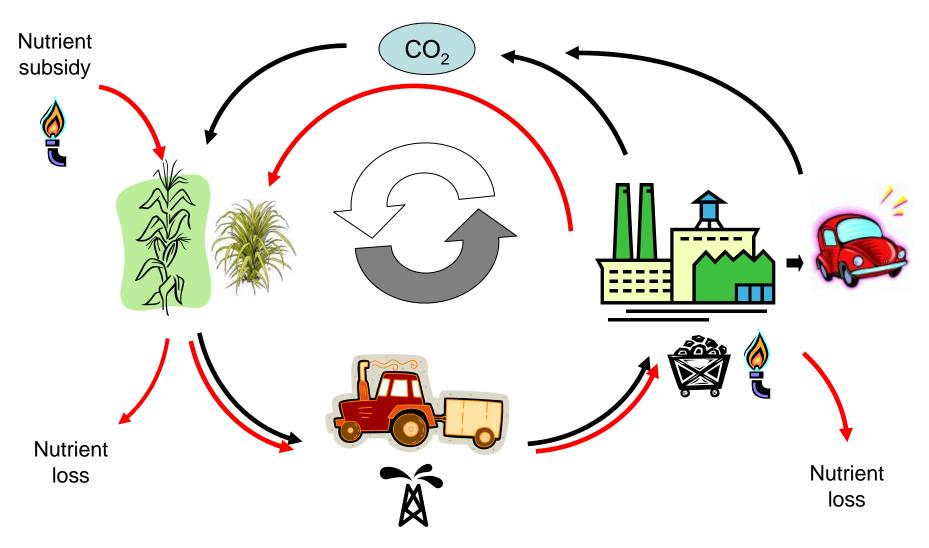
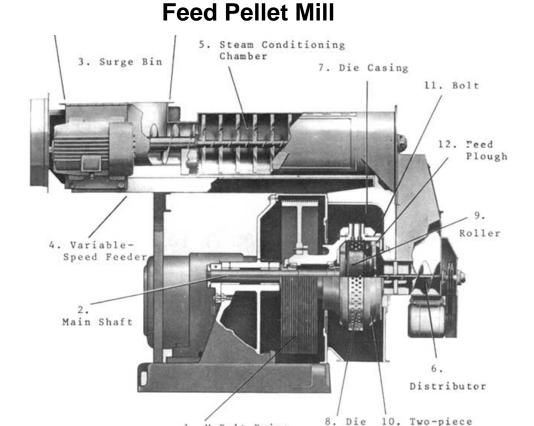
Pelletizing Biomass Ash for Fertilizer


Katherine Edwards

Graduate Research Assistant

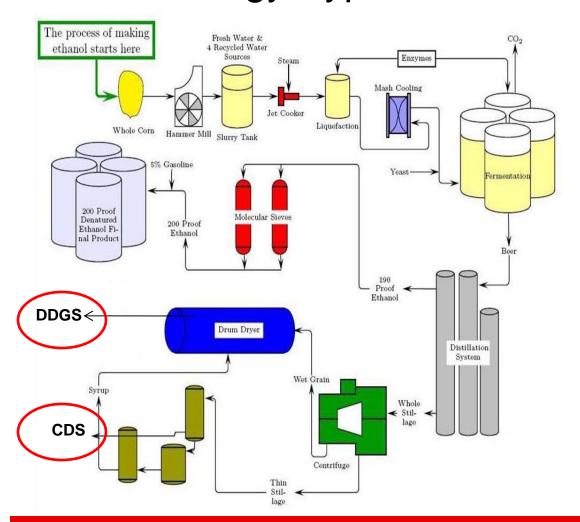
Dr. Robert Anex


Associate Professor lowa State University

Closed Carbon Cycle but Open Nutrient (N,P,K) Cycles

Ash Pelletization

8,000 dry tons of ash would be produced from a 50 MMG/yr Ethanol Plant powered by gasifying corn stover.



1. V-Belt Drive

Die Cover

Binders

Biotechnology Byproducts

Ash Origin: Combusted CDS

IOWA STATE UNIVERSITY

Experimental Design

Feed Pellet Mill

Binder Type: CDS, Bonemeal, DDGS

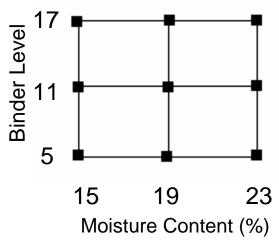
Binder Level (%): 3 levels

Moisture Content (%): 3 levels

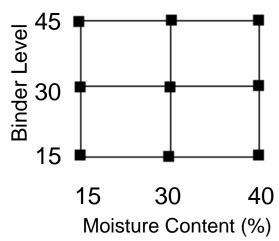
Predictive

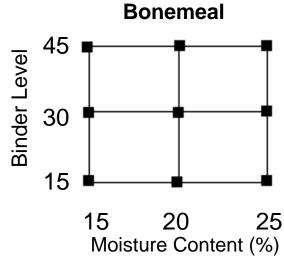
Face Centered Response Surface Design

Explanatory


2 Way factorial ANOVA blocked by binder type Test for effects binder level, binder, and moisture content

Response variables (Physical and Chemical Properties):


- Durability, degradability
- Total (N,P,K, C) and water soluble (N,P,K), pH, liming capacity


Face Centered Response Surface Design

Condensed Distillers Solubles

Dried Distillers Grains with Solubles

Pelletization

Ash

Binder

California Pellet Mill: Model CL5

Response Variable Testing

Total nutrients:

N and C - Lieko combustion analysis

P and K - Acid Digestion and ICP

Water soluble nutrients: Aqueous solution analyzed with ICP

Durability Test: ASABE standard

Liming Equivalence: Effective Calcium Carbonate Equivalent (ECCE)

AOAC 924.01

Degradability: Water sieve analysis, component of ECCE test

Results: 2-Way ANOVA p-values

	Response	Binder	Binder Level	Moisture Content	BL*MC
	Durability	<.0001	0.0169	0.0997	0.4993
	рН	0.0013	0.0952	0.0606	0.7659
Water Degradability	ECCE- Lime equivalence	<.0001	0.0120	0.1442	0.5228
	4-Mesh	<.0001	0.0011	0.0481	0.0958
	8-Mesh	<.0001	0.0008	0.1246	0.3529
	50-Mesh	<.0001	0.0051	0.3659	0.5838
	Total C	<.0001	<.0001	0.9849	0.9624
	Total N	<.0001	<.0001	0.9763	0.9888

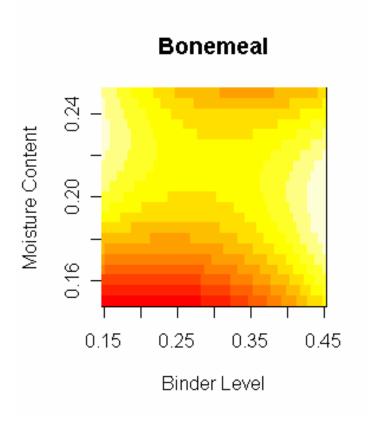
^{*} Significance p<0.10

Mean binder response: 2way ANOVA

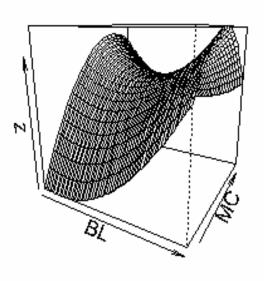
Test Durability (%)		Tests		Bonemeal	Condensed Distillers Solubles	Dried Distillers Grains with Solubles
		Durability (%)		80.52 (a)	18.24 (C)	51.66 (b)
hi D		рН		10.79 (b)	11.78 (a)	11.13 (b)
		ECCE- Lime equivalence		115.01 (b)	441.84 (a)	321.17 (a)
	-	4-Mesh (% pass through)		31.10 (b)	85.14 (a)	86.10 (a)
	8-Mesh (% pass thro		gh)	20.75 (b)	82.62 (a)	80.66 (a)
		Bonemeal – higher durability DDGS –	ugh)	18.62 (b)	63 16 (2)	10 01 (2)
				8.17 (b)	CDS did not create a viable pellet because	
	_			0.88 (b)		
	higher degradability			durability is below commercial pellet values		

Predictive Models

Response Surface Designs


Fit of 2nd order response surface predictive model

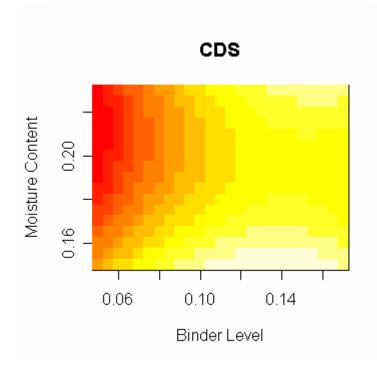
	Response	Bonemeal	CDS	DDGS
	Durability			
	рН			
	Liming equivalency (ECCE)			
\\/ata#	Fourmesh			
Water Degradability	Eightmesh			
Dogradasy	Fiftymesh			
	Total Carbon			
	Total N			


pvalue<0.1

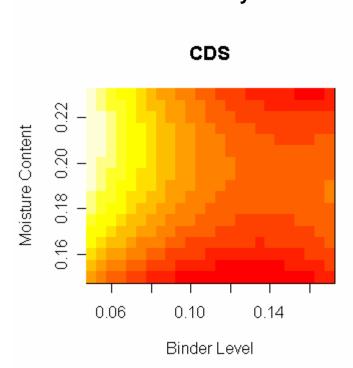
pvalue > 0.1

Bonemeal Durability

Bonemeal

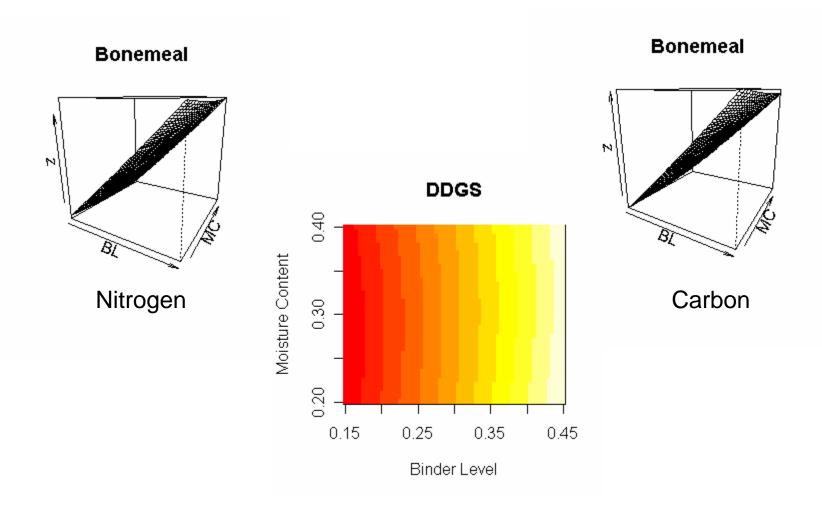

p-value: 0.008934 R-squared: 0.9203

Opposing Trends


Liming Capacity and Durability

ECCE
dependent
on water
degradability

Liming Capacity (ECCE)



Durability

Nutrients

Increase with binder level

Conclusions

- Biomass ash can be pelletized using multiple binders
- Binder type and binder level significantly effect pellets physical and chemical properties
- Increasing durability tends to decrease the water degradability of the pellets
- CDS is not recommended for use as a binder due to extremely low durability

Acknowledgements

Anex/Raman lab group

Tate and Lyle Ingredients Americas, Inc.

Dr. Carl Bern, ISU Biomaterials Research Lab

This material is based upon work supported by the National Science Foundation under Grant No. 0424700

Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the National Science Foundation

ISU Center for Crop
Utilization Research