

Subject Area	Project	Description	Maximum # of Scholars
DNA Melting	Lock-in amplifier, TEC	<ul style="list-style-type: none"> • Design and build a lock-in amplifier for the DNA melting apparatus • Use a thermoelectric cooler (TEC) to heat/cool sample 	3 groups of 2
	Bump investigation	<ul style="list-style-type: none"> • Design and execute experiments to definitively explain the DNA melting bump 	2 groups of 2
Atomic Force Microscopy	Teaching AFM characterization	<ul style="list-style-type: none"> • Image several samples • Estimate elastic modulus of materials by microindentation • Measure instrument performance 	4 groups of 2
	Teaching AFM algorithm development	<ul style="list-style-type: none"> • Image several samples • Estimated elastic modulus of materials by microindentation • Develop image processing algorithms to reduce artifacts 	
Optical Trapping	Molecular motor characterization	<ul style="list-style-type: none"> • Calibrate trap stiffness • Culture KAF95 <i>E. Coli</i> bacteria • Prepare samples • Characterize torque/speed curve of <i>E. Coli</i> flagellar motor 	6 groups of 2
	Tethered assay	<ul style="list-style-type: none"> • Calibrate trap stiffness • Prepare samples • Estimate force vs. displacement curve 	
Optical Microscopy	Confocal Microscope	<ul style="list-style-type: none"> • Modify microscope for confocal microscopy • Use motorized X-Y-Z stage • Develop control and image reconstruction software • Image several samples 	2 groups of 2-3
	Microrheology of Cells	<ul style="list-style-type: none"> • Culture 3T3 cells • Add nanoparticles to cells • Estimate microrheological parameters by tracking endocytosed particles • Use a drug to disrupt actin polymerization • Compare microrheological properties before and after actin disruption 	4 groups of 2
Other	Fluorescence Correlation Spectroscopy	<ul style="list-style-type: none"> • Incorporate a microfluidic device and PMT detector into optical microscope to perform FCS on fluorescent microspheres 	1 group of 2-3
	Diamagnetic density sensor	<ul style="list-style-type: none"> • Implement density sensor based on Whitesides Lab 	1 group
	Epigenetic Analysis of DNA	<ul style="list-style-type: none"> • Implement DNA methylation detector 	1 group
	Student Proposal	<ul style="list-style-type: none"> • Relevant, quantitative, achievable project 	1-2 groups

