
Building Living Machines with Biobricks The Promise of Synthetic Biology

Professor Richard Kitney, Professor Paul Freemont

Support by Matthieu Bultelle, Dr Robert Dickinson, Dr Suhail Islam, Kirsten Jensen, Paul Kitney, Dr Duo Lu, Dr Chueh Loo Poh, Vincent Rouilly, Baojun Wang.

Complementary Material on

Biological Engineering

Imperial College London

Department of Bioengineering

Division of Molecular Biosciences

Engineering Concepts

What is Engineering?

Definition

Engineering is the application of science in the design, planning, construction, and maintenance of buildings, machines, and other manufactured things

• Key Notions:

Three key engineering notions have triggered innovation and accelerated development: **Abstraction**, **Standardisation** and **Characterisation**

Parallel with other industrial revolutions			
Engineering Concepts	Mechanical Industrial Revolution	Digital Industrial Revolution	Synthetic Biology Revolution
Abstraction	Iron, Steel> Nuts & Bolts> Jet Engine > Plane	Silicon> Microprocessors> Computers> Computer Networks	DNA> BioBricks Parts> Devices> Systems
Standardisation	Nuts, Bolts, Screws sizes, Material properties, ISO norms	Electronic interfaces (USB, Serial port, PCI), Communication protocols (HTTP, GSM), Programming languages (Java, C++, ANSI)	Biochemical interfaces, standardised host, standard genetic assembly
Characterisation	Mechanical component tolerance, stress and fatigue resistance	CPU Speed, Bandwidth, Quality of Service and Error Management	Performances in different conditions (hosts, media cultures, temperatures)

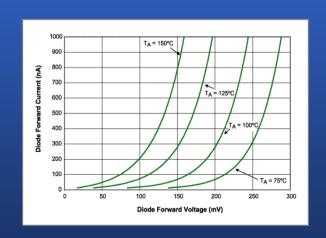
Engineering Concepts

Abstraction:

Definition: The process of generalization by reducing the information content of a concept or an observable phenomenon, typically in order to retain only information which is relevant for a particular purpose

Economic advantages: Different companies can specialise in specific issues

The humble screw: Without standards, we could not fix things together...


Standardisation:

Definition: The process of establishing a standard (i.e a basis for comparison) among competing entities in a market **Economic Advantages:** Standards promote innovation and competition. Their application is voluntary and does not block or restrict technological progress

Characterisation:

Definition: Quantification of behaviour and performances of a system with regards to specifications

Economic Advantages: It is easier to build up trust in the market

Characterisation of a Diode

DNA Sequencing

Frederick Sanger developed the DNA sequencing technique in the late 1970s. It was used to determine the order of bases within genes. Now it is used routinely to confirm DNA sequences (fidelity) in molecular biology research.

primer

- 5'-TAATACGG-3'
- 3 '-ATTATGCCTGAACGTATTGCTATTATGCCTGAACGTATTGCTATTATGCCTGAACGTATTGCT-5' DNA template

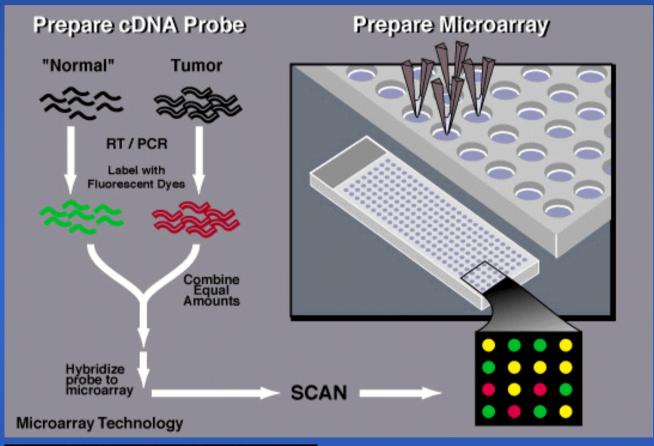
normal deoxyribonucleoside triphosphate (dATP, dTTP, dCTP, dGTP)

Elongation

- 5 '-TAATACGGACTTGCATA-3'
- ${\tt 3`-ATTATGCCTGAACGTATTGCTATTATGCCTGAACGTATTGCTATTATGCCTGAACGTATTGCT-5'}$

dideoxyribonucleoside triphosphate (ddATP, ddTTP, ddCTP, ddGTP)

Termination

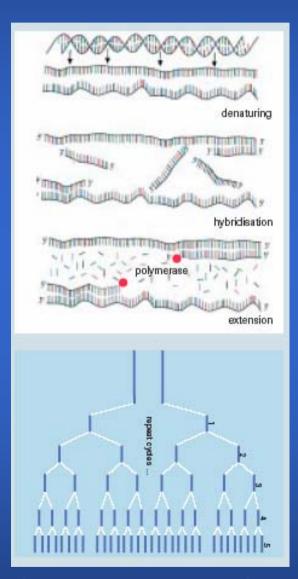

- 5'-TAATACGGACTTGCATAA-3'
- ${\tt 3'-ATTATGCCTGAACGTATTGCTATTATGCCTGAACGTATTGCTATTATGCCTGAACGTATTGCT-5'}$
- 5'-TAATACGGACTTGCATAAC-3'
- ${\tt 3`-ATTATGCCTGAACGTATTGCTATTATGCCTGAACGTATTGCTATTATGCCTGAACGTATTGCT-5'}$
- 5'-TAATACGGACTTGCATAACG-3'
- 3 '-ATTATGCCTGAACGTATTGCTATTATGCCTGAACGTATTGCTATTATGCCTGAACGTATTGCT-5'
- 5'-TAATACGGACTTGCATAACGAT-3'
- 3'-ATTATGCCTGAACGTATTGCTATTATGCCTGAACGTATTGCTATTATGCCTGAACGTATTGCT-5'

By using different florescent labeled ddNTPs: ddaTP, ddGTP, and ddCTP, 4 termination reactions can be combined into one reaction.

10 20 30 40 50 60 70 80 90 CGATIG A TRAGCGGCGGG ANT CGCCGTT TC TC TACG ACG ATG ATT TACAC GC ATG TG CTG ANAGTTG GC GG TG CCG G AG TG CG C

Oligonucleotide Microarray

The technique was developed to allow quick detection of a large number of expressed or activated genes (mRNA). Such transcriptional profiles are used to study which genes are turned on or off in abnormal disease states like cancer.

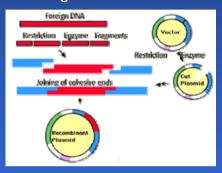

Down-regulated
Normal

Polymerase Chain Reaction (PCR)

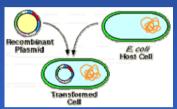
The purpose of PCR is to make a large number of copies of a gene of interest. This allows researchers the ability to amplify any DNA sequence from any source.

There are 3 steps in a PCR repeated for 30-40 cycles.

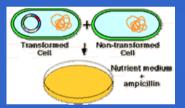
- Denaturation at 95°C: the double stranded DNA melts open to single stranded DNA.
- Annealing/hybridisation:
 The primers anneal to the DNA.
- Extension 68°C or 72°C: The polymerase copies the template adding the dNTPs from 5' to 3'.

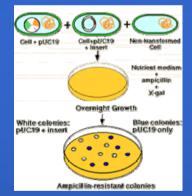


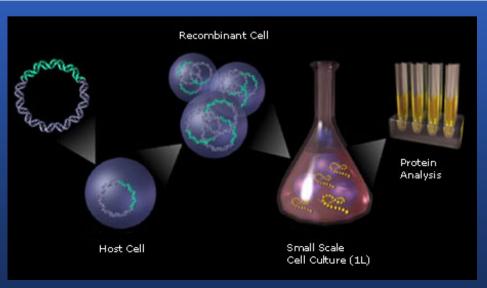
(Workflow from Roche)


Recombinant DNA

Recombinant DNA is a form of artificial DNA which is engineered through the combination or insertion of one or more DNA strands, thereby combining DNA sequences which would not normally occur together.


1. Creating recombinant DNA


2. Transformation/incorporating the recombinant plasmid into bacteria


3. Selecting bacteria resistant to antibiotic

4. Insertional mutagenesis identifies plasmids with DNA inserts

Taken from http://www.biology.arizona.edu

Taken from http://www.gene.com

DNA Synthesis

DNA synthesis is the process of synthesizing any DNA sequence in a test tube. This allows biologists to create DNA of different lengths, from individual genes to whole genomes.

Taken from www.geneart.com

An Open Source Approach to Biology

Why Open source?

- To Foster Innovation
 - Simple things given away for free
 - Complex systems built more easily
 - Complex systems (where a profit can be made) can then be patented

Linux: the most famous open source project.

- To Improve the Quality of the Parts
 - Everyone can check the parts and the experimental data
 - More eyes, fewer errors go unnoticed

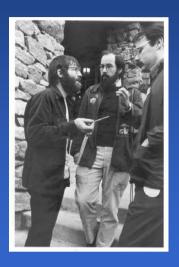
Collaboration in Synthetic Biology

- Biobricks Foundation
 - Repository of Biobricks at MIT
 - Website at parts.mit.edu

Parts.mit.edu: The Biobrick Registry

- OpenWetWare
 - Online Community
 - Research Material, Information...
 - Educational Material
 - Use of Wiki Software

OpenWetWare: the Synthetic Biology Online Community



Open Discussions on Biology

Ethics and BioSafety

- Recombinant DNA (1973): the powerful technique led scientists to
 - Have a Moratorium until 1975
 - Develop Protocols of Self-Governance (Asilomar Conference)
- A Generation Later: New questions raised by DNA Synthesis

The Asilomar Conference (February 1975)
The conference was organized by Paul Berg to discuss the potential biohazards and regulation of biotechnology.

Intellectual Property

- Goal: Creation of a legal framework where innovation thrives
- How: Striking a trade off between protection for the inventor and openness so experimentation can take place

The fluorescent protein GFP originates in jellyfish. Its use was patented in the early 90s. However, the GFP Biobrick is in the Registry allowing researchers to use it for their projects.

