

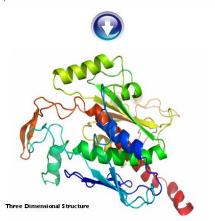
Molecular Modeling Prediction of Protein 3D Structure from Sequence

Vimalkumar Velayudhan

Jain Institute of Vocational and Advanced Studies

May 21, 2007

- 1 Introduction
 - What is Molecular Modeling?
 - Methods in Molecular Modeling
- 2 Homology Modeling
 - Steps
 - Guidelines
 - Modeling Programs
- 3 Further Reading


What is Molecular Modeling?

- The Prediction of a protein's three dimensional structure from its sequence
- A computational method based on our understanding of protein structures

Principle

The Sequence of a protein ie., the order of amino acids determine the 3D structure of the protein and hence, its function

Methods in Molecular Modeling

Methods in Molecular Modeling

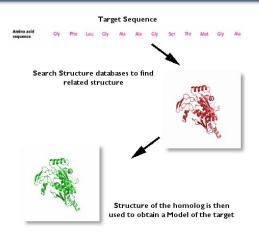
- Homology Modeling¹
- 2 Threading of Fold Recognition
- 3 ab initio Prediction

Accuracy

The accuracy of the methods are in the following order Homology Modeling > Threading > ab initio Prediction

¹Also known as Comparative Modeling

- Predicting the structure of a protein using the structure of its homolog²
- The protein whose structure is not known is referred to as the target and the structure of the homolog is referred to as the template


Basic Principle

Similar Sequences tend to adopt Similar Structures

²Proteins which share a common ancestor in evolution ⟨♂⟩ ⟨≥⟩ ⟨≥⟩ ⟨≥⟩ ⟨≥⟩

Given the sequence of a protein, its structure can be predicted in the following steps

- Template detection
- 2 Target —Template Alignment
- Backbone generation
- Modeling of Side-chains and Loops
- 5 Model Validation and Optimization

- A template is a protein whose structure is already known³
- Target refers to the protein we would like to model whose structure is unknown

Template Detection refers to the identification of a suitable template corresponding to the target by database similarity searches

■ Can be performed by doing a BLAST⁴ search⁵ against the PDB⁶ database

³by X-ray Crystallography, NMR or other techniques

⁴A program to search a database with a sequence to identify related sequences

⁵blastp - Protein-Protein BLAST

Target Protein Sequence (Obtained from database like Swiss-Prot)

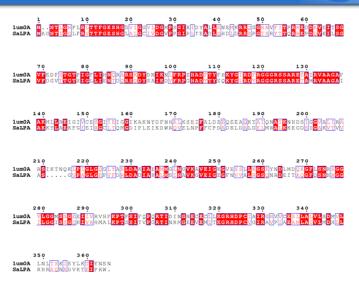
CYB HUMAN P00156 Cytochrome b.

MTPMRKINPLMKLINHSFIDLPTPSNISAWWNFGSLLGACLILOITTGLFLAMHYSPDAS TAFSSIAHITRDVNYGWIIRYLHANGASMFFICLFLHIGRGLYYGSFLYSETWNIGIILL LATMATAFMGYVLPWGQMSFWGATVITNLLSAIPYIGTDLVQWIWGGYSVDSPTLTRFFT FHFILPFIIAALATLHLLFLHETGSNNPLGITSHSDKITFHPYYTIKDALGLLLFLLSLM TLTLFSPDLLGDPDNYTLANPLNTPPHIKPEWYFLFAYTILRSVPNKLGGVLALLLSILI LAMIPILHMSKQQSMMFRPLSQSLYWLLAADLLILTWIGGQPVSYPFTIIGQVASVLYFT TILILMPTISLIENKMLKWA

Search PDB to find related Structures (potential templates)

- Atleast 25% sequence identity is required between the query and the subjects from PDB
- A number of other parameters are also involved in the selecting the right template
 - Resolution the higher⁷ the better
 - The template should cover the entire length of the target
 - Gaps should be minimal

⁷Higher resolution will correspond to a low numeric value - Ex., 1.0 is better than 20


Target-Template Alignment

- An alignment is necessary to state which residues in the target correspond to which residue in the template
- The model-building program uses this information to build the backbone of the target
- Can be performed using programs like ClustalX, T-Coffee or the Modeling program itself

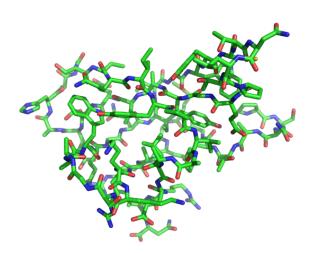
Target-Template Alignment

- Based on the information in the alignment, the model-building program generates the backbone of the target
- \blacksquare Backbone refers to the repeating N C $_{\alpha}$ C atoms of the polypeptide chain

Target - Template Alignment

Using the Alignment, A backbone of the target is generated

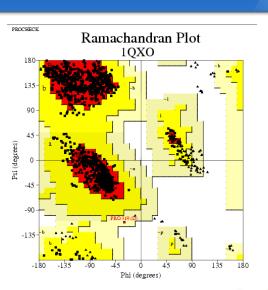
Modeling of Side-Chains and Loops


- Once the backbone is built, the side-chains of the residues are then modeled by
 - Using the information from the alignment if the alignment is conserved
 - If residues are different, an inbuilt library of side-chain conformations⁸ is consulted
- The same principle is applied to model loop regions too

⁸Referred to as Side-chain rotamer library

Modeling of Side-Chains and Loops

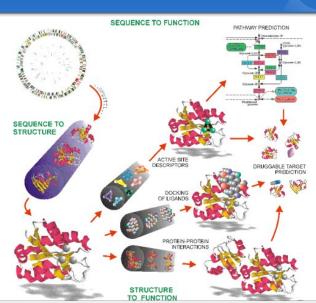
Model Validation and Optimization



- After the backbone, sidechains and loop regions have been modelled
- The model is checked for its quality
 - Done by assessing parameters like bond-lengths, bond-angles etc.,
- If there are problems at particular regions, the alignment can be verified and adjusted if required
- The steps are performed once again until a satisfactory model is obtained

Model Validation and Optimization

Alignment The most important step! - incorrect alignment will result in a model with errors


Quality of the template - good resolution and stereochemical quality

Percentage Identity between the target and template - the higher the better 9

^{925%} is the minimum

- Academic
 - MODELLER http://www.salilab.org
 - Deepview and SWISS-MODEL http://www.expasy.org/spdbv
 - CPH-Models http://www.cbs.dtu.dk/services
- Commercial
 - Accelrys Insight II http://www.accelrys.com

- Structural Bioinformatics Philip E Bourne, John Wiley & Sons Publications
- Bioinformatics From Genomes to Drugs, Thomas Lengauer, Wiley publications