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Outline

Yeast is an important model organism and regulates gene expression
in response to environmental conditions.

Studies on yeast have investigated temperature shock responses,
cultures after acclimation, and glycolysis under cyclic conditions.

Hebly et al. (2014) studied yeast under a diurnal temperature cycle to
understand physiological and transcriptomal responses.

The yeast developed a circadian rhythm and showed cyclic control of
genes related to metabolism, temperature, and the cell cycle.

Future studies should allow for growth rates independent of
temperature cycles.



Outline

e Yeast is an important model organism and regulates gene expression
in response to environmental conditions.



Eukaryotic Gene Regulation Occurs at Multiple Steps
Within the Central Dogma of Biology

Transcription is the major step of gene
expression regulation.
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Transcriptional Factors are Proteins that Increase or
Decrease Gene Expression
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Saccharomyces cerevisiae is an Excellent Model
Organism for Eukaryotic Cell Biology
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Previous Research Has Studied S. cerevisiae Gene Expression
in Shock and at Various Steady-State Temperatures

e Past studies focused on 4

acute changes or glycolytic
gene expression. 271
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Outline

Hebly et al. (2014) studied yeast under a diurnal temperature cycle to
understand physiological and transcriptomal responses.

The yeast developed a circadian rhythm and showed cyclic control of
genes related to metabolism, temperature, and the cell cycle.



Stabilization of Fluctuation in Residual glucose and CO,
Levels Suggest Temperature Acclimation

e Biomass was constant at
maximum and minimum
temperatures.

e CO, release and residual
glucose levels establish
stable cycles inversely
related to each other.
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Physiological Analysis Show Related Changes
in Some Metabolic Characteristics
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Acetate (mbd]

Physiological Analysis Show Related Changes
in Some Metabolic Characteristics

Acetate mirrored
temperature
changes.
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Physiological Changes Show No Change in Some

Metabolic Characteristics

No major changes were seen in: 1
(C) Culture dry weight
(D) Ethanol concentration
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Transcriptome Analysis Showed Major Changes in
Gene Expression Dynamics During DTC

Clusters included
genes with strictly
significantly changed
expression.

Clusters 1, 2, and 3
had peak expression
at 12°C.

Clusters 4 & 5 had
had lowest
expression at 12°C.
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DTC-specific genes vs glucose-specific genes
(comparing DTC results to glucose dataset)
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Functional Gene Enrichment Showed Associations
with Six Major Functions
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Genes Associated with DTC were Targets of
Transcriptional Factors involved in the Cell Cycle
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Physiological Characteristics of DTC Yeast and
Acclimated Yeast were Mostly Similar

e DTC yeast and yeast acclimated to 12°C or 30°C (Steady State, SS)
differed only in glycogen and trehalose content.

o
Physiological characteristics of S. cerevisiae grown in glucose-limited anaerobic chemostats

Experimental Temp ¥, (g gy (mmol - g gprog (mmol gco2 (mmol - Carbon Residual Glycogen concn (mg Trehalose concn (mg Cell BI
condition (°C) glucose - g [dry weight] - g [dry weight] g [dry weight] recovery glucose glucose equivalent - ¢  glucose equivalent - g || size (%)
[dry weight] E h_]) g h_]) g2 h_l) (%) conen [dry weight] ) [dry weight}_lj (pum)
™ (m)
55 30 0.08=0.004 -21=0.15 3Z2+0.22 3.7=0.10 95+22 02+003 3802 29402 36+ 30+
011 33
12 0090001 -1.8=001 282001 34=002 10104 21004 Q1211257 28203 44+ 65+
: 014 18
DTC 30 CI_OE}L_j —2_13-_ ND 39012 ND 02001 g65x0.7 14504 40% 28
! a 004 02
12 CI.E'JEJL_j —1.96L ND 3.0=011 ND 26007 50536 17206 44+ 72+
005 64

*\alues represent the averages = standard errors of the mean of at least two independent replicates. 55, steady state: EtOH. ethyl alcohol: ND. not determimed.

®The biomass vield during DTC was calculated by using the biomass specific gluicose consumption rate listed and a specific growth rate of 0.03 L

“The profile of the biomass specific glucose consumption rate during DTC is shown in Fig. 34 The intermediate g¢ values of the time intervals of ~1.5hto 1.5 hand 10.5 to 13.5 b,

corresponding to the gg at 30°C and 12°C. respectively. are shown.
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Principle Component Analysis Shows Differences in
Overall Gene Expression Between DTC and Steady State

e Overall transcript levels
were similar at 30°C

between DTC and SS
Yeast.

e Levels differed greatly at
12°C between DTC and
SS Yeast.
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Pairwise Transcriptome Analysis Shows Differences in
Gene Expression Between DTC and Steady State

e (A) Pairwise analysis shows e (B) Pooled analysis shows some up-
twice as many genes involved in and down-regulated genes changed
DTC temperature response. the same in DTC as SS at 12°C.
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Clustering of DTC and SS Responses at 12°C Show
Differences in Gene Expression Magnitude

83 genes had more pronounced
expression in DTC than in SS.

141 genes had similar expression
maghnitudes.

20 genes in DTC cultures did not
reach SS levels.
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Physiological-Transcriptional Comparison Shows
Carbohydrate Reserve is not a Direct Result of Temperature
e Intracellular glycogen and e But intracellular UDP-glucose and

decrease and diverge. do not change, while and
G6P mirror temperature changes.
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Carbohydrate Profile of S. cerevisiae is Related to Imposed
Fluctuation in Growth Rate and the Cell Cycle

e Glycogen and trehalose

synthesis/degradation transcription

coincides in response to glucose.
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Outline

e Future studies should allow for growth rates independent of
temperature cycles.



Future Studies Should Account for Variables
that Occur in Nature

Fluctuations in temperature did not directly induce cyclic

responses in gene expression.

o Change in transcriptome were caused by alterations to
the cell cycle.

o This study maintained specific growth rates at a
relatively constant level.

o Future studies should use auxostats or fed-batch
cultures to mimic natural growth dynamic

Future studies might should also evaluate effectiveness of
Monod kinetics under these “natural” conditions.



Summary

Yeast is an important eukaryotic model organism and controls gene
expression in response to environmental conditions.

Previous studies have investigated temperature shock, acclimated
cultures, and glycolytic responses to cyclic conditions.

Hebly et al. (2014) studied yeast under a diurnal temperature cycle to
investigate changes in physiology and the transcriptome.

The budding yeast acclimated and developed stable physiological
conditions by adjusting metabolic and cell cycle gene expression.

Future studies should better replicate growth conditions found in
nature.
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