

UNIVERSITY OF CALIFORNIA, SAN DIEGO

**Microscopic, Genetic, and Biochemical Characterization of
Non-Flagellar Swimming Motility in Marine Cyanobacteria**

A dissertation submitted in partial satisfaction of the requirements for the degree

Doctor of Philosophy

in

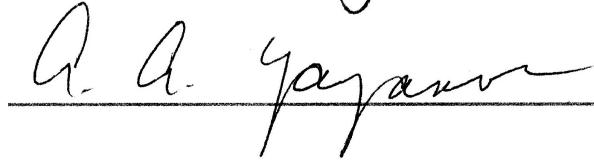
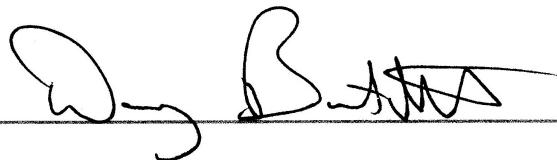
Marine Biology

by

Jay William McCarren

Committee in charge:

Bianca Brahamsha, Chair
Douglas Bartlett
Brian Palenik
Kit Pogliano
Aristides Yayanos



2005

Copyright

Jay William McCarren, 2005

All rights reserved.

The dissertation of Jay William McCarren is approved, and is
acceptable in quality and form for publication on microfilm:

Chair

University of California, San Diego

2005

DEDICATION

To Alex

TABLE OF CONTENTS

Signature page	iii
Dedication page	iv
Table of contents	v
List of abbreviations	vii
List of figures	ix
List of tables	xi
Acknowledgements	xii
Vita, publications and fields of study	xv
Abstract.....	xvi

I. Introduction

Introduction	1
References	11

II. Ultrastructural analysis of SwmA, a protein required for non-flagellar swimming motility

Introduction	17
Material and Methods.....	18
Results	20
Discussion.....	22
References	23

III. Inactivation of *swmA* results in the loss of an outer cell layer in a swimming *Synechococcus* strain

Introduction	29
Material and Methods.....	29
Results	31
Discussion.....	32

Acknowledgements	34
References	34
IV. Transposon mutagenesis in a marine <i>Synechococcus</i> strain: Isolation of swimming motility mutants	
Introduction	37
Material and Methods	37
Results	38
Discussion.....	40
Acknowledgements	42
References	42
V. SwmB: a highly repetitive 1.12 MDa protein that is required for non-flagellar swimming motility in <i>Synechococcus</i>	
Introduction	45
Material and Methods	47
Results	53
Discussion.....	60
Acknowledgements	66
References	66
VI. Characterization of <i>Synechococcus</i> swimming motility mutants	
Introduction	81
Material and Methods.....	83
Results	87
Discussion.....	89
References	93

ABBREVIATIONS

ABC transporter	ATP binding cassette transporter
ATP	Adenosine triphosphate
BLOTTO	Bovine lacto-transfer technique optimizer
CM	Cytoplasmic membrane
CMi	Cytoplasmic membrane inner face
EDTA	Ethylenediaminetetraacetic acid
EL	External layer
FITC	Fluorescein isothiocyanate
FL	Fibrillar layer
HSP	High-speed pellet containing insoluble OM proteins
HSS	High-speed supernatant containing soluble OM proteins
IgG	Immunoglobulin G
MFP	Membrane fusion protein
MSCRAMMS	Microbial surface components recognizing adhesive matrix molecules
MWCO	Molecular weight cut-off
OM	Outer membrane
OMP	Outer membrane protein
ORF	Open reading frame
PAGE	Polyacrylamide gel electrophoresis
PAS stain	Periodic acid-Schiff stain

PBS	Phosphate buffered saline
PCR	Polymerase chain reaction
PPIase	Peptidyl-prolyl isomerase
Prot1E family	Protein-1 exporter family
RSCU	Relative synonymous codon usage
RTX	Repeats in toxin
S-layer	Surface layer
SAPS	Statistical analysis of protein sequences
SN	Natural seawater based medium
SOW	Synthetic ocean water
TOF	Time of flight
TEM	Transmission electron microscopy
WH8102	<i>Synechococcus</i> sp. strain WH8102

LIST OF FIGURES

	CHAPTER II	Page
1.	Thick section TEM and tomographic reconstruction of immunologically labeled <i>Synechococcus</i> sp. strain WH8102 cell	25
2.	Virtual ultra-thin section of immunologically labeled <i>Synechococcus</i> sp. strain WH8102 cell.....	26
3.	Ultrastructural comparison of chemically fixed motile and non-motile cells ..	27
	CHAPTER III	
1.	Ultrastructural comparison of cryo-fixed and freeze-substituted motile and non-motile cells	30
2.	Comparison of cryo-fixation TEM techniques.....	31
3.	Cell envelope profiles of freeze-fractured and etched cells	32
4.	Model of <i>Synechococcus</i> sp. strain WH8102 cell envelope structure.....	33
	CHAPTER IV	
1.	Phase-contrast micrograph of WH8102 and <i>minD</i> ⁻ mutant.....	39
2.	Pour plates used for screening transposon mutant transconjugants	39
3.	Chromosomal regions containing genes involved in motility identified by transposon mutagenesis	40

CHAPTER V

1. Diagram of SwmB primary sequence structure.....	70
2. Amino acid alignments of SwmB repeat domains	71
3. Alignment of chromosomal region containing <i>swmB</i> with homologous regions of two non-motile <i>Synechococcus</i> strains.....	72
4. SDS-PAGE analysis of motility proteins SwmA and SwmB	73
5. SDS-PAGE of SwmB purification	74
6. Negative staining TEM of purified SwmB and immuno-labeled SwmB.....	75
7. Immunofluorescent labeling of cell surface motility proteins.....	76

CHAPTER VI

1. Summary of mutations in motility gene clusters.....	96
2. SDS-PAGE and western analysis of proteins in strain SYNW0079 ⁻	97
3. SDS-PAGE and western analysis of proteins in strain S1A.....	98
4. SDS-PAGE and western analysis of proteins in strain SYNW0087 ⁻	99
5. SDS-PAGE and western analysis of proteins in strain SYNW0088 ⁻	100
6. SDS-PAGE and western analysis of proteins in strain SYNW0192 ⁻	101
7. SDS-PAGE and western analysis of proteins in strain SYNW0193 ⁻	102
8. SDS-PAGE and western analysis of proteins in strain SYNW0194 ⁻	103
9. SDS-PAGE and western analysis of proteins in strain SYNW0195 ⁻	104
10. SDS-PAGE and western analysis of proteins in strain Swm-2	105

LIST OF TABLES

	CHAPTER IV	Page
1.	Bacterial strains and plasmids used	38
2.	Transposon insertions yielding non-motile mutants.....	39
CHAPTER V		
1.	Amino acid usage for SwmB and other large repetitive proteins.....	76
2.	Comparison of SwmB vs. genome average RSCU	77
CHAPTER VI		
1.	Bacterial strains and plasmids used.....	96
2.	Protein content of cellular fractions for all motility mutants	98

ACKNOWLEDGEMENTS

This thesis would not have been possible without the guidance I have received from my advisor Bianca Brahamsha. Bianca has been invaluable to my development as a scientist. She exemplifies what every graduate student wants in an advisor. She has provided advice, criticism, and encouragement, while allowing me the freedom to grow and develop independently. Her advice on everything, down to the tiniest detail of a protocol, has been impeccable. Many thanks to my thesis committee members: Brian Palenik, Doug Bartlett, Art Yayanos, and Kit Pogliano who have helped to guide this research. Thanks also to Maryann Martone, Naoko Yamada, John Heuser, Robyn Roth, and Kit Pogliano. They have all helped me immensely, provided expert advice on different microscopic techniques, and given me a chance to work in their laboratories.

In addition to the formal guidance I have received, there are innumerable people who have helped me to get to this point, especially labgroup members past and present: Sonya Dyhrman, Gerardo Toledo, Aubrey Davis, Dori Landrey, Eric Allen, Chris Dupont, and Vera Tai. They have all been a great source of advice and suggestions. Thanks also to the entire Hubbs Hall community, which always came through in a pinch whether I needed an enzyme, some test tubes, or a helping hand.

Friends and family have been an essential part of this endeavor, having made the time here so enjoyable. I am grateful for their encouragement and inspiration. Special thanks to my parents for fostering my love for all things aquatic. Foremost I

want to acknowledge my wife, Alexandra, for encouraging me to follow my goal and her seemingly endless faith in me.

Funding for this research was generously provided by the Scripps Institution of Oceanography Graduate Department, as well as by the National Science Foundation (NSF grant MCB 97-27759) and the Department of Energy (DOE grant DE-FG03-03ER63148).

The text of Chapter III, in full, is a reprint of the material as it appears in McCaren, J., J. Heuser, R. Roth, N. Yamada, M. Martone, and B. Brahamsha. 2005. Inactivation of *swmA* results in the loss of an outer cell layer in a swimming *Synechococcus* strain. *J. Bacteriol.* 187: 224-230. The dissertation author was the primary author, and co-author B. Brahamsha directed and supervised the research, which forms the basis for this chapter. Cryofixation, freeze-substitution, and TEM work was performed at the National Center for Microscopy and Imaging Research, University of California, San Diego, by the dissertation author and N. Yamada under the direction of M. Martone. Freeze-fracturing and etching EM work was performed at Washington University, St. Louis, by R. Roth under the direction of J. Heuser.

The text of Chapter IV, in full, is a reprint of the material as it appears in McCaren, J., and B. Brahamsha. 2005. Transposon mutagenesis in a marine *Synechococcus*: isolation of swimming motility mutants. *J. Bacteriol.* 187:4457-4462. The dissertation author was the primary author, and co-author B. Brahamsha directed and supervised the research, which forms the basis for this chapter.

The text of Chapter V, in full, is being prepared for publication. The dissertation author was the primary author, and co-author B. Brahamsha directed and supervised the research, which forms the basis for this chapter.

The text of Chapter VI, in full, is being prepared for publication. The dissertation author was the primary author, and co-author B. Brahamsha directed and supervised the research, which forms the basis for this chapter.

VITA

1997	B.A., Biochemistry, Colorado College, Colorado Springs, CO
1997-1999	Research Associate, AMC Cancer Research Center, Denver CO
1999-2005	Research Assistant, Scripps Institution of Oceanography, University of California, San Diego, CA
2003, 2005	Teaching Assistant, Department of Biology, University of California, San Diego, CA
2005	Ph.D. University of California, San Diego, CA

Publications

McCarren, J., and B. Brahamsha. 2005. Transposon mutagenesis in a marine *Synechococcus*: isolation of swimming motility mutants. *J. Bacteriol.* 187:4457-4462.

McCarren, J., J. Heuser, R. Roth, N. Yamada, M. Martone, and B. Brahamsha. 2005. Inactivation of *swmA* results in the loss of an outer cell layer in a swimming *Synechococcus* strain. *J. Bacteriol.* 187: 224-230.

Palenik, B. B. Brahamsha, F. W. Larimer, M. Land, L. Hauser, P. Chain, J. Lamerdin, W. Regala, E. E. Allen, J. McCarren, I. Paulsen, A. Dufresne, F. Partensky, E. A. Webb, and J. Waterbury. 2003. The genome of a motile marine *Synechococcus*. *Nature* 424:1037-1042.

Conference Participation and Awards

Wenner-Gren Foundations International Symposium “Marine cyanobacteria: evolution, function and genomes”. Poster titled: Identification and characterization of SwmB, an unusual protein that is required for non-flagellar swimming in marine *Synechococcus* (2005)

ASM 104th General Meeting. Poster titled: Identification and characterization of SwmB, a 1.1 MDa protein that is required for non-flagellar swimming in marine *Synechococcus* (2004)

ASLO Aquatic Sciences Meeting. Poster titled: Gene clusters required for swimming motility in marine *Synechococcus* (2003) *Winner of Student Poster Award*

ASM 102nd General Meeting. Poster titled: Identifying components involved in marine *Synechococcus* swimming motility by transposon mutagenesis (2002)

San Diego Microbiology Group Annual Symposia. Talk titled: Ultrastructural and genetic investigation of swimming motility in marine *Synechococcus* (2002)

VIIth Cyanobacterial Workshop. Poster titled: SwmA forms an additional envelope layer in motile marine *Synechococcus* (2001)

ABSTRACT OF THE DISSERTATION

Microscopic, Genetic, and Biochemical Characterization of Non-Flagellar Swimming Motility in Marine Cyanobacteria

by

Jay William McCarren

Doctor of Philosophy in Marine Biology

University of California, San Diego, 2005

Bianca Brahamsha, Chair

The mechanism of motility in marine *Synechococcus*, which swim without any apparent extracellular appendages, remains a mystery 20 years after its discovery. A multifaceted investigation including direct microscopic visualization, genetic analyses, and biochemical approaches was carried out in order to better understand the physiology of this globally important primary producer. Ultrastructural analyses provided a detailed view of the cell envelope layers and aided in the identification of a structure important for motility. Electron microscope tomographic reconstructions

revealed the even distribution of SwmA, a protein required for motility, across the cell surface. Various cryo-fixation techniques were required for the preservation and visualization of a para-crystalline S-layer formed by this protein.

As complete genomic sequence information failed to identify genes involved in motility, a transposon mutagenesis technique was developed to identify components of the motility apparatus. Utilizing this genetic tool, 17 independent transposon insertions that abolish motility were localized to clusters in three separate chromosomal regions. Included within these clusters are several multicomponent transport systems, as well as a number of glycosyltransferases. One cluster is characterized by DNA with an exceptionally low % G+C content relative to the genome average. Additionally, inter-genome comparisons reveal the absence of this stretch of DNA in two non-motile strains of *Synechococcus*, suggesting acquisition of this genetic information by horizontal gene transfer. Contained within this region of low % G+C content is an extremely large gene called *swmB*, which is required for motility in these cells. The sequence of SwmB is highly repetitive, with 4 domains of tandem repeats comprising over 60% of the protein. Analyses confirm that this gene is indeed translated into a megadalton-size protein, which is localized on the cell surface. Cellular localization of the two motility proteins SwmA and SwmB revealed that all motility mutants in culture have a defect in the localization of either SwmA or SwmB and in some instances both of these proteins. Additionally, two outer membrane polypeptides of 70 kDa and 80 kDa are absent in some of these mutants, suggestive of a role in motility.