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INTRODUCTION

Metagenomics' — the study of the genomes of many microbes in an environment simultaneously -
has the potential to revolutionize our understanding of the hidden yet incredibly important world of
microorganisms. This potential has been highlighted by a series of recent metagenomic-based studies [1-
8] as well as multiple government reports [9] including in particular the recent National Academy of
Sciences report “The New Science of Metagenomics — Revealing the Secrets of our Microbial Planet.”

The great potential of metagenomics comes with enormous challenges in the analysis of the data’.
These challenges include the fragmentary nature of sequence data, the sparse sampling of genomes,
populations and communities and the unknown phylogenetic diversity and ecological structure of the
communities being sampled [7]. Methods designed for analysis of single organism genomes simply do
not work well on data sets sampled from complex ecological communities. To develop new methods, the
NAS report suggested (and we agree) that integrated approaches involving interdisciplinary teams of
researchers are needed in which the researchers both ask scientific questions and develop new data
analysis tools.

Here we propose building exactly such an integrated, interdisciplinary effort bringing together
methods of statistics (to deal with the sparse sampling), comparative genomics (because the data is
genomic in nature), evolutionary biology (to assess phylogenetic and genomic diversity), and ecological
theory (to examine community structure). To develop this integrated approach we have brought together
three labs to work on this project (Table 1) with expertise in the following areas:

Table 1. Principal investigators involved.

PI Areas of expertise

Jonathan Eisen Evolutionary and comparative genomics, metagenomics

Katie Pollard Statistical and computational genomics

Jessica Green Applied and theoretical ecology, microbial community structure

We aim to address six distinct but interrelated computational metagenomics projects (see Table 2). Three
of these projects focus on fundamental questions about microbes that we and others have identified as
having the potential to be revolutionized by metagenomic studies.” The other three projects are more
methodological in focus and are designed to provide a general framework for the analysis of
metagenomic data.

Table 2. Proposed projects.

Fundamental questions about microbes
1. Microbial biogeography and biodiversity
2. Microbial population structure and evolutionary dynamics
3. Functions of microbial communities

Methodologically focused
4. A statistical framework for metagenomics
5. Assessment of sequencing methods used in metagenomics
6. Expanding the use of simulations in metagenomic studies

' We use the term metagenomics to refer to shotgun sequencing DNA from environmental samples

% The NAS report identifies five challenges in metagenomics: need for interdisciplinary teams, role of government, methods
development, complexities of data analysis and need for databases

* In the NAS report they identify four key questions: how can we find new functions, how diverse is life, how do microbes evolve
and what role do microbes play in the health of their hosts



For each project, we propose novel mathematical, statistical and computational studies utilizing
metagenomic data that will provide new insight into microbial ecology and evolution. In addition, we
propose to develop novel computational and statistical methods for analyzing metagenomic data that will
be of use to the community at large. We note the all methods development will have a component that
will focus on making the methods readily available to the research community (e.g., through CAMERA).
In addition, though we are not proposing here to explicitly test any predictions by carrying out
experimental studies, we would like to work with other groups to do this.

We propose to carry out this work over three years. We outline specific deliverables for this time
frame for each project in terms of the Years in which deliverables will be produced. For each project the
deliverables have been determined in part by the number of personnel we have allocated to each (see
Table 6). Timelines could be changed and priorities shifted as request by the Moore Foundation. In
addition, we outline the general resources that would be needed to carry out the whole project at the end
of the proposal including in particular computational resources.

Though each of these projects can be considered separate activities, they are highly
interdependent. For example, the simulations will be used to both design and test new methods and to
create artificial communities as controls to compare to real data. The methods being developed will
influence both the development of simulation approaches and the scientific studies. And the results of the
scientific studies will guide the simulations (e.g., by allowing simulations to mimic real community
structure) and the development of methods.

In addition, though each project has a lead PI who will be coordinating the work, all Pls will
participate in each. For example, in the studies of spatial patterns in biodiversity, Dr. Green will
coordinate the work and focus on the ecological components, Dr. Eisen will aid in the genome-
informatics and phylogenetic components, and Dr. Pollard will aid in the statistical components.

We believe that by taking this integrated approach — both in terms of the research topics and by
combining separate fields of study, we will not only make important scientific discoveries about
microbial communities but we will also build and develop novel methods and approaches of great utility
to the metagenomics community.



I. MICROBIAL BIODIVERSITY AND BIOGEOGRAPHY

Metagenomics offers an unprecedented opportunity to explore the biodiversity of microbes.
These “who is out there” questions can be considered to have three main components: how many types of
organisms are present at a particular study site, what types of organisms are those, and what are the
relative abundances of the different types? With this information one can then answer questions regarding
the ecology and evolution of the communities (e.g., how does community composition shift across the
environmental landscape?). Previously, these questions have been answered primarily through the use of
PCR amplification of rRNA genes and then analysis of the rRNA data [10]. Using this framework, the
types of organisms present are studied by examining the relative position of clones in a phylogenetic tree
of rRNA sequences including those from other organisms and environments [10]. The relative abundance
of organisms is estimated by first dividing up the rRNA sequences into phylotypes (also known as
operational taxonomic units or OTUs) and then counting the number of clones for each phylotype. The
total number of phylotypes in a sample (richness) is estimated from the data using approaches such as the
Chao diversity index. These types of analyses can be used both to study single samples as well as to
compare and contrast different samples.

The potential of metagenomics lies in the fact that it circumvents two of the key limitations of
rRNA PCR: bias in PCR amplification and inaccuracies of estimates from analysis of rRNA [11]. PCR
bias is avoided because the sequencing is effectively random and the rRNA limitations can be avoided by
also using other genes for the analysis. Here we propose to use metagenomic data to address fundamental
questions relating to the phylogenetic diversity of microbes and the spatial structure of microbial
communities. To do this properly requires the development of novel mathematical and computational
methods for estimating diversity. Below we describe the scientific questions we will be asking and the
methods we propose to develop. Importantly, these methods will be of use to anyone wishing to analyze
the diversity of microbes from metagenomic data.

Understanding how and why microbial diversity varies over the surface of the Earth (Green)

A key goal of ecology is to understand the spatial scaling of biodiversity. Patterns in the spatial
distribution of organisms provide important clues about the mechanisms that regulate diversity and are
central to setting conservation priorities [12-14]. Although microorganisms comprise much of Earth’s
diversity, little is know about their biodiversity scaling relationships relative to that for plants and
animals. It has been argued that the small size, large abundance, high dispersal capability and short
generation times of microbes result in fundamentally different diversity patterns compared to larger
organisms [15-17]. Advances in molecular methods for quantifying microbial biodiversity, mostly based
on community fingerprinting and rRNA-PCR, have resulted in empirical evidence suggesting that
microbes exhibit spatial scaling patterns akin to larger organisms [18]. Despite these recent advances,
consensus regarding the generality and consequence of microbial biodiversity scaling patterns is lacking
[19].

Approach
To quantify the spatial structure of marine microbial communities we will use five patterns

central to ecology: the number of taxa within individual sites (richness), the number of taxa unique to
individual sites (endemism), the distribution of rare and common taxa within sites (relative abundance),
the number of co-occurring taxa within sites (co-occurrence), and the change of taxa composition
between sites (beta-diversity). We will report these patterns focusing on phylogenetic diversity as
measured by the observed numbers of 16S genes and protein-coding genes within individual
metagenomic samples. Statistical developments discussed in Methods 2 below will yield more rigorous
estimates of diversity. Analysis of beta-diversity requires samples gathered in a spatially-explicit manner
with sites separated by a range of geographic distances. Preliminary analysis of the GOS GPS coordinates
shows that the sample design is particularly well suited for beta-diversity spatial-scaling analyses (Figure

).
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To test the hypothesis that marine microbes have fundamentally different diversity patterns
compared to larger organisms, we will also analyze data gathered by the H.M.S. Challenger (1872-1876)
which circumnavigated the oceans in a manner parallel to GOS exploring the diversity of macroscopic
marine life [20]. In the same spirit as CAMERA, the H.M.S. Challenger data is publicly available online.
This analysis will entail georeferencing and taxonomically updating this historic data set.

To understand the mechanisms driving microbial diversity spatial scaling we will first leverage
the phylogenetic beta-diversity patterns. We will use Mantel tests to quantify the role of geographic
isolation (i.e. dispersal limitation) versus environmental heterogeneity (in instances where abiotic data is
available) in generating observed patterns [21]. We will also leverage phylogenetic co-occurrence
patterns to test mechanisms commonly invoked to understand the structure of diversity within ecological
communities such as neutrality, competitive exclusion and abiotic filtering [22, 23].

Deliverables

1. Analysis of beta-diversity spatial-scaling for rRNA and protein-coding genes will be presented at
a National Academy of Sciences Colloquium December 2007.

2. Comprehensive analysis of marine microbial metagenomic biodiversity (richness, endemism,
relative abundance, co-occurrence, beta-diversity) using a spatially explicit framework. (Year 2)

3. Comparative analysis of microorganism metagenomic and microorganism morphospecies
biogeography. (Year 2)

4. Insight into the mechanisms driving marine microbial metagenomic diversity. (Year 3)

What are the phylogenetic types of organisms present on the planet? (Eisen)

rRNA-PCR revolutionized studies of the tree of life by allowing uncultured organisms to be
placed on the tree [10, 24]. This led to the discovery of dozens of novel major subdivisions of cellular
organisms, as well as hundreds of novel branches within particular groups [25-29]. However, rRNA PCR
poses limitations for three main reasons: trees based on rRNA are not always accurate (e.g., [30]), PCR
does not amplify all cellular organism’s rRNA genes [31] and some organisms do not have rRNA genes
(i.e., viruses). Metagenomic sequencing has the potential to open up a new window into microbial
phylogenetic diversity by revealing rRNA sequences that did not amplify with PCR (e.g., [31]) and
allowing the use of other genes to search for novel branches on the tree of life.



Approach
We have developed automated methods to build phylogenetic trees for various gene families and

to search for novel metagenomics-only branches in these trees (Eisen et al., in preparation). We propose
to further develop these methods and to use them for a select set of gene families to search for novel
branches on the tree of life. Initially, the gene families will be a select set of 50 genes including all rRNAs
and widely distributed protein-coding genes. These genes will be selected to cover bacterial, archaeal,
eukaryotic and viral diversity. For each gene we will perform phylogenetic analysis of all available
homologs (including those in Genbank, completed genomes and metagenomic data sets). We will then
identify deep evolutionary lineages in these trees that are unique to metagenomic samples. When done
with small subunit rRNA genes, this will allow the identification of organisms that have been missed by
rRNA PCR surveys.

When novel lineages are found in analyses of genes other than rRNA the interpretation will be a
bit trickier. Suppose one built trees for all available RpoB genes including those from all metagenomic
samples. And suppose that one found a novel deep branch in the RpoB tree which contained only
sequences from metagenomic projects. While such a novel branch might indicate the existence of a
previously unseen group of organism, it might also be caused by other factors including (i) the presence
of a group that is known but that has not had its RpoB gene sequenced or (ii) the presence of paralogous
RpoB genes or (iii) the occurrence of some type of phylogenetic or sequencing artifact. One way to help
determine which of these possibilities is correct would be to identify in which environmental samples the
unusual RpoB genes were found and then to look if in those samples other novel branches are found in
analyses of other gene families. A truly novel group of organisms should show up in analyses of many
gene families whereas artifacts may occur only for a small number of genes. Once novel lineages are
found we will then characterize these lineages in more detail — such as by analyzing other genes that
appear to be from these same organisms.

Deliverables
1. Automated system for searching for novel branches using rRNA sequences in metagenomic data
(Year 1)

2. Automated systems for other marker genes (e.g., RpoB, HSP70, etc. as identified in Methods 3
below). (Year 2)

3. Identification of novel branches for each gene family . New analyses will be carried out each year
with new metagenomic data sets (Years 1-3)

4. Targeted binning and the identification of other genes present in the genomes of these novel
organisms (Years 2-3)

Methods 1: Identifying which genes to use and how to use them for metagenomic based diversity
assays (Eisen)

It is clear that metagenomic data will be fundamental to studies of the biodiversity and
biogeography of microbes. Above we outlined three key questions: how many types of organisms are
present at a particular study site, what types of organisms are those, and what are the relative abundances
of the different types? Using metagenomic data to answer these questions poses great challenges.

The first challenge is that all genes will not be equally useful for characterizing the multiple
dimensions of microbial diversity. For example, a gene may be very useful in classifying organisms but it
may not be useful in determining relative abundance due to copy number variation between species (we
believe this is the case for rRNA). Other genes may be useful for both classification and relative
abundance but may only work for certain taxa. The second challenge is how to normalize classification
schemes between different gene families. For example, if one wanted to compare species richness
estimates using 16s rRNA, RpoB and RecA it would be necessary to normalize ones definition of
phylotypes for the different genes. For rRNA, frequently researchers use a 99% or 97% identity cutoff to
define phylotypes. The percent identity cutoff for defining phylotypes using RecA or RpoB, two protein
coding genes common to metagenomic diversity assays, may be very different. A final challenge is




dealing with the fragmentary nature of metagenomic data. For example, if a fragment only covers a highly
conserved portion of a gene a simple percent identity cutoff will lead to “overclustering” of this fragment
with others in terms of defining phylotypes.

We believe there is a remarkably simple (though computationally costly) method for dealing with
all of these challenges. The solution is a comparative analysis of all gene families found in complete
genomes and the development of a database of weighting parameters for each gene family. These
weighting parameters will be designed to quantify the relative contribution of each gene in various assays
of microbial diversity. For example, if a gene is present in two copies per genome in all bacteria and one
copy per genome in all archaea, then to calculate relative abundance of organisms from the number of
copies of genes, one needs to divide the archaea abundance estimate in half compared to the bacterial
abundance estimate.

Approach
We propose a two-tiered approach to identify a framework for utilizing a variety of genes in

metagenomic based studies of diversity. First, we will analyze a set of 50-100 candidate genes selected to
broadly cover bacteria, archaea, eukaryotes and viruses. This will include multiple protein coding genes
(we have 20 in development) and 5S and 23S rRNA genes (which have mysteriously been neglected in
this type of work). Second, rather than a priori selecting candidate genes we will examine all gene
families found in complete genomes to assess and rank their utility for various purposes (using the
methods described below). This approach will allow the identification of new metagenomic marker genes.

To derive a rank and weighting scheme of different genes for diversity assays we propose to build
a likelihood matrix for all gene families that contains information about how useful the family is for
phylotyping and estimating relative abundance and richness within samples. We will rank and weight
genes in the following manner. We will start with complete genome sequences of both cellular organisms
and a selected set of DNA based viruses. All proteins and non coding RNAs in these genomes will be
placed into families and then subfamilies. Then alignments and phylogenetic trees will be generated for
each subfamily. From these alignments and trees, multiple scores will be calculated to reveal how useful
gene families are for various measures of diversity and to quantify weighting parameters for use in the
assays of diversity that normalize the relative contribution of each gene. These weighting parameters will
cover three diversity related tasks: phylogenetic classification, phylotyping, and estimates of relative
abundance.

We note that using complete genomes as the basis for making these calculations will allow us to
compare different gene families to each other without sampling biases due to having sequences from
different genomic sets. A schematic summarizing this is shown in Figure 2 and more detail is given in
the following text.
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Figure 2. Development and use of weighting scores for metagenomic based measures of phylogenetic diversity. On the right of the figure,
represented by black arrows, are the proposed analyses of complete genome sequences. On the left are the proposed anal yses of
metagenomic data (arrows in red). First genes in these genomes will be divided into gene families and subfamilies. Then alignments and
gene trees will be made for each subfamily. Analyses of these subfamilies, alignments and trees will produce we ighting scores for carrying
out metagenomic analyses of diversity. From the distribution patterns of subfamilies we will calculate universality indices for families that
will then be used to aid in converting relative abundance measures into diversity ind ices. From measures of the copy number of gene
families per genome we will calculate copy number variation (CNV) weights which will be used to convert counts of different operational
taxonomic units (OTUs) into relative abundance estimates. From analysis of the alignments we will calculate sequence conservation indices.
RSC will measure differences in conservation between gene families, which will be used to normalize the identification of OTUs between
genes. PSC will measure variation in conservation within genes which will be used to handle fragmented sequence data in identifying OTUs.
From comparison of trees of each gene family with species trees we will calculate phylogenetic utility (PU) measures for each gene family
which will then be used to place confidence levels on phylogenetic assignments.

Phylogenetic classification utility

Not all gene families are equally useful for phylogenetic classification. Some gene families are
prone to lateral transfer. Others are difficult to align or too short for robust analysis. We can measure the
phylogenetic utility of a gene family by comparing trees of the gene family to trees of the species from
which they came. If a gene family is not useful (whatever the cause) its gene tree will be substantially
different than the species tree. We propose two measures of gene family phylogenetic utility that will be
calculated by comparing the gene family tree to the species trees. For the species tree we will create a tree
of all organisms in our comparison using concatenated alignments of housekeeping genes (for cellular
organisms) and the phage proteomic tree method for the viral genomes. Each gene family will be assigned
a global phylogenetic utility (GPU) score that reflects how similar the gene tree is to the species tree. In
addition, taxon specific phylogenetic utility (TPU) scores will be assigned for the gene family based on
the similarity of the gene tree and species tree just for that subset of taxa. These scores will be tested
using metagenomic simulations to see whether they can be used to improve the accuracy of phylogenetic

typing.

Phylotype/OTU weighting

As discussed above, if one wants to use different genes to simultaneously identify phylotypes in a
metagenomic data set, one needs a way of normalizing the definition of phylotype between the different
families. We propose to create two such normalization scores for each gene family by comparing the
sequence alignment of the family to that of 16s rRNA genes from the same species. First, we will
calculate a gene family specific relative sequence conservation (RSC) score by comparing the overall
sequence conservation of the gene family to sequence conservation of rRNA genes. This will allow the
use of equivalent percent similarity cutoffs for each gene when identifying phylotpyes.

Another challenge in phylotyping is the fragmentary nature of the sequence data which makes it
difficult to even detect phylotypes within a single gene family. We propose two methods to better handle
fragmentary data for phylotyping. First, for similarity-based determination of phylotypes we will create



position specific conservation (PSC) scores for each gene family. Thus for the fragment that only covers a
highly conserved region of a gene (discussed above) a higher percent identity will be required to place it
into a phylotype with other fragments. Second, we will develop phylogenetic approaches, such as the use
of supertrees, which will allow non overlapping fragments or fragments from different regions of a gene
to be placed on the same gene tree. Then phylotypes can be determined from the tree itself and not by
using a percent cutoff. As with the phylogenetic typing scores, these scores will be tested empirically
using metagenomic simulations.

Relative abundance weighting

Even if one assumes that one can identify phylotypes perfectly and normalize estimates between
different genes, it is still not straightforward to use the number of “hits” to a particular phylotype to
estimate the relative abundance of that phylotypes in the sample. In particular, three critical factors
influence this “hits” to relative abundance calculation.. First and perhaps most importantly, the copy
number of particular genes varies between taxa. To account for this we will calculate both global and
taxon specific copy number variation scores (GCNV and TCNV) for each gene family in the genomes
analyzed. These scores will be tested empirically using metagenomic simulations.

A second factor in calculating relative abundance is that the size of a gene affects the ability to
detect it robustly in metagenomic data (e.g., very short genes are hard to detect with certainty even when
present). We will assess this effect metagenomic simulations and develop weighting schemes to account
for it.

A third factor is that not all genes show up with equal probability in metagenomic sequence data
even when present in equal amounts. This variation is mostly due to differences in clonability when using
clone-based sequencing. We will assess this by using our in vitro simulations as well as in silico
simulations that utilize real sequencing data as raw material for the simulations.

Finally, to estimate the total number of taxa in a sample requires some information on the
universality of a particular gene. Genes found only in particular phylogenetic groups can obviously only
be used to estimate the total numbers for that group. To aid in such estimates we will calculate
universality indices for each gene family both at a global level (GUI) and in a taxon specific manner
(TUI). Though some genes may not be found in all taxa, one could use iterative approaches to estimate
the total number of organisms present. For example, if one a set of universal genes for bacteria, and a
separate set for eukaryotes and archaea, together they could be used to estimate total numbers of species
of cellular organisms.

Deliverables
1. Generation of scores for select marker genes. Testing the utility of these scores using simulated
metagenomic communities (Year 1)
2. Generation of scores for all genes. Testing the utility of these scores using simulated
metagenomic communities (Year 2)
Integration of score with development of diversity assays (see above). (Years 2-3)
4. Creation and updating of a database (possibly through CAMERA) of the scores for different
genes (Years 1-3)

98]

Methods 2: Estimating microbial biodiversity from metagenomic samples (Green)

A formidable challenge in the study of microbial diversity is that of undersampling. The
extraordinary abundance of microorganisms makes the task of exhaustively sampling a full community
even within a single environmental sample impossible. For this reason, microbial biodiversity and
biogeography studies rely on statistical estimators of diversity. The most commonly used estimators of
diversity were first derived by Anne Chao and colleagues in the ecology literature [32, 33]. These
estimators, which focus on richness within samples and beta-diversity between samples, originate from
the mark-recapture models of mobile animals. Despite their tractability, their applicability to



metagenomic data is unknown. In addition, the Chao estimators lack a framework for predicting patterns
of relative abundance within samples.

We propose to evaluate currently available diversity estimators and to develop new estimators for
the study of metagenomic biogeography patterns including richness, endemism, relative abundance, co-
occurrence and beta-diversity. Theoretically, metagenomic data will be more reliable than PCR data for
making such statistical estimates since there is no amplification step in the generation of the data,
although this has not been tested. Challenges will include assessing the accuracy of estimators when
applied to different genes and in dealing with variability between organisms in copy number of genes (or
in the number of copies of the genome per cell).

Approach
We will first evaluate the Chao richness and beta-diversity estimators by sampling from in vitro

and in silico microbial communities where diversity is known. We will quantify how sample effort (the
proportion of the community sampled) and community structure (patterns of relative abundance,
endemism and co-occurrence) influence the accuracy of each estimator. In collaboration with Anne Chao
and Yi-Huei Jiang at the University of Taiwan, we will derive novel diversity statistics aimed at
estimating microbial diversity from metagenomic data sets. Novel estimates of relative abundance will be
guided by the mathematical framework outlined in [34]. All statistics will incorporate the effect of copy
number variation by using the relative abundance weighting schemes described above.

Deliverables
1. Assessment of the fidelity of currently used richness and similarity estimators. (Year 1)
2. Development of novel biodiversity estimators geared towards metagenomics. Chao, Green and
Jiang have planned their first meeting in California September 2007. (Year 2)
3. Publicly available software parallel to Estimate S for the metagenomics community
(http://viceroy.eeb.uconn.edu/EstimateS). (Year 3)

II. MICROBIAL POPULATION STRUCTURE AND EVOLUTIONARY DYNAMICS

By providing random samples of the organisms present in a particular community, metagenomics
has potential to reveal novel insights into the evolutionary dynamics of microbes in nature. Such
evolutionary dynamics must be understood if we are to make predictions about the response of organisms
to environmental change and if we are to better understand and model microbial communities. We
propose two research projects in this area: studies of the spatial patterns of genomic variation and studies
of the connection between patterns of genome evolution and environmental/ecological properties of
communities (both extending the studies of biodiversity spatial patterns proposed above).

Spatial patterns in genomic variation within microbial species (Eisen)

Genome sequencing of cultured isolates has revealed that the genomic variation among closely
related microbial types is enormous. This it true even among what are considered to be different strains of
the same species [35]. Some of this genomic variation is due to the occurrence of lateral gene transfer
which can create large genomic differences between otherwise closely related types. Whatever the cause
of the variation, this means that organisms that are placed into the same or related phylotypes can have
significant biological differences. This fact has been the driving force behind the development of
metagenomics — since the position of an organism in the rRNA tree of life is not always useful in
predicting its biology. The genomic variation among close relatives means that even more than for plants
and animals, to gain a full understanding of the evolution and ecology of microbes one needs to look at
variation within species.

Though genome sequencing of cultured species has led to many new insights, it is limited in that
it usually focuses on single populations from certain environments and it has a bias introduced by
culturing. Metagenomics allows for the first time genomic variation patterns to be studied in multiple



species simultaneously. This will not only be useful for understanding the structure within populations of
microbes but will also be of value in designing binning methods (see below).

Approach
To carry out this work we will do two types of analyses. First, we will compare closely related

populations/species of microbes within single samples. Second we will compare those same
populations/species across multiple samples. This will allow the detection and identification of patterns of
gene flow and the detection of genetic boundaries between populations. For example, the recently
proposed pangenome concept [36] implies that gene flow occurs at nearly an infinite rate in microbial
communities. We will be able to measure gene flow using a metagenomics Fgr-like statistics (which
measures within vs. between population genetic variation) to test predictions of the pangenome
hypothesis.

Deliverables

1. The first genomic-based studies of multispecies geographic clines in microbes. In Year 1 we will
focus on three phylotpyes from available transect data sets (e.g., HOTs, GOS). In Years 2-3 we
will expand to more organisms.

2. Development of Fsr like measures of genomic variation within communities versus between
communities (Year 1)

3. Development of the genomic x spatial species concept for microbes. Geographic differential is
critical in species concepts in animals and plants — and we will see whether it can be applied to
microbes. Analysis of the pangenome concept. (Year 3)

4. Estimates of effective population (N.) sizes for different microbes and design of methods to
detect community level bottlenecks that may make communities vulnerable as seen in endangered
species. N, is a critical parameter for population genetics and yet has been very difficult to
estimate for microbes. We will use the approach of Lynch and Conery [37, 38] to do this for
multiple microbes at once. (Years 2-3)

How do measures of genome evolution relate to the ecosystem? (Pollard)

Genome sequence analysis has revealed that cultured microbes differ significantly in their
evolutionary properties including rates of mutation and recombination. These differences significantly
affect the evolvability of organisms, such as their ability to genetically respond to environmental change.
It has also been found that ecological niche can influence this evolvability — with the best example being
intracellular microbes having high mutation rates and low levels of recombination. Metagenomic data
allows for the first time a thorough assessment of the effect of ecosystem characteristics (e.g. physical
parameters and, levels of diversity) on evolutionary properties (e.g. mutation rates and effectiveness of
natural selection). In addition metagenomics allows one to look for parallel or convergent evolutionary
events in multiple taxa at the same time. When events are seen in multiple separate lineages this is strong
evidence for some environmental effect rather than a historical artifact.

Approach
Genomic regions and genes with evolutionarily unique sequence distributions (rates and patterns

of substitution, polymorphism, recombination, etc.) will be compared across metagenomic samples from
different ecosystems. Correlation analysis will be used to identify associations between the sequence data
and ecosystem variables, including demographic variables (e.g. population size), characteristics of the
microbial community (e.g. species diversity, competitors, symbiotic relationships), and environmental
variables (e.g. temperature, salinity, pH). Correlation analysis will also be done on general patterns of
“evolvability” such as mutation rates, population size, recombination patterns with community
characteristics. We will address questions such as: do certain gene families or functions evolve more
quickly in particular ecosystems? Which biological processes are most stable? Which are most
environmentally sensitive? Do some environmental variables foster rapid evolution more than others?
Specific cases of very rapid evolution will be investigated in an effort to identify examples of directional
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selection. A goal of this analysis will be to identify the genetic basis for various “keystone” traits often
associated with species radiations - traits which allowed the ancestors of organisms alive today to
colonize new environments and utilize new resources. Interpretation of these associations will be aided by
characterizing sequence data based on gene function (or function of nearby genes for non-coding
regions), using protein families [39] and publicly available ontologies [40]. This project will employ the
evolutionary and population genetic methods described below, as well as the statistical approaches to
correlation analysis developed in Project IV.

Deliverables
1. Assessment of global evolutionary patterns and trends. (Year 1)
2. Correlation of evolutionary patterns with ecosystem variables. (Year 2)
3. Detailed investigation of particular cases of very rapid genome. (Year 3)

Methods 1. Binning (Eisen)

A critical step in metagenomic analyses is binning in which one attempts to assign reads to bins
that correspond to organisms from the sample. One reason this is critical is that one can treat bins much
like one would treat a genome of a cultured organism and then one can use various computational tools
developed for cultured species (e.g., the prediction of metabolic pathways) on the bin. Another reason
binning is critical is for doing population genetic analysis of metagenomic data. For example, if one
wants to look at allele diversity in relation to environmental parameters using standard population genetic
methods requires calculating allele diversity within species.

Approach.
Although there is a diversity of approaches to binning we believe that ecological and evolutionary

approaches can lead to great improvements. We propose to develop three novel approaches to binning.
First, we propose to make use of the phylogenetic analysis of all gene families described above to develop
and test the utility of phylogenetic binning, a method we pioneered in analysis of symbionts of the glassy
winged sharpshooter [41] but which has not been systematically developed or tested. Second, we propose
to develop methods that will explicitly link diversity assays of a sample to binning. For example, what
type of binning method is ideal will vary depending on the number of species in a sample. In addition,
binning should be greatly improved by comparing similar samples with differences in the relative
abundance of particular taxa (the autocorrelations in abundance within vs. between samples can be used
to identify bins). Third, we propose to develop methods that will use phylogenetic and population genetic
analyses to assess whether proposed bins appear to contain more than one species. For example if a bin
contains four closely related but non-interbreeding species, phylogenetic analysis of different genes
should always show four subtypes. In contrast, if the bin contains four interbreeding populations, then
different genes will likely show different patterns due to recombination. For each of these approaches,
binning methods will be tested both with realistic simulations (see below) and through the comparison of
the ecological and functional studies described throughout this proposal (e.g., unusually high functional
diversity levels could indicate that a proposed bin contains many organisms).

Deliverables
1. Development and testing of methods for phylogenetic binning. (Year 1)
2. Development of methods for linking binning and diversity measures. (Year 2)
3. Development of phylogenetic and population genetic methods to deconvoluting and testing
proposed bins. (Year 3)

Methods 2. Measuring genome evolution in metagenomic data (Pollard)

Because of the vast and growing number of new genes, species, and environments represented by
metagenomic data (e.g., [1, 2]), these sequences are a fertile ground for studies of genome evolution.
Since metagenomic data sets provide for the first time random samples of microbial communities, they
also have enormous potential to be used to infer details of processes that shape the populations. Our goal
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is to identify a reasonable approach to computing molecular evolutionary and population genetic
parameters from metagenomic data. These include mutation rates and patterns, recombination rates and
patterns, and selection (both positive and negative). We are particularly interested in identifying rapidly
evolving genes and genome sequences, which has been a fruitful approach in studies of mammalian
evolution [42, 43]. The challenge lies in developing and/or adapting metrics of genetic divergence that are
appropriate for metagenomic samples.

Approach
Most molecular evolutionary parameters are not straightforward to estimate from a single

metagenomic sequence read or short assembled contig that lacks the concept of a genome. Similarly,
population genetic parameters are difficult to estimate without knowledge about which sequences belong
to which genomes. The main barrier for studies of metagenomic genome evolution is the lack of clear
definitions of organism and species. For example, in this context population diversity is difficult to
distinguish from species divergence. And patterns of linkage between alleles cannot be estimated.

It has been proposed that recombination rates and patterns may be estimated from inter- and intra-
sample variation [3]. Binning will provide an alternative approach; by treating the bin as a “genome”,
many standard parameter estimators for genome evolution can be applied. Both of these approaches await
validation and testing, which our simulation approach (Project VI) will facilitate. There is considerable
risk, however, that an inaccurate species concept will lead to flawed analysis. This is particularly true for
less abundant species whose sequence reads are unlikely to be binned accurately. An alternative approach
is to use simulations to investigate what sequence data would look like under a range of different
assignments of sequence reads to populations. While these simulations are not likely to identify the exact
population structure and allele distributions in a sample, they may help us rule out certain interpretations
of the data that are highly unlikely. Finally, it may also be possible to estimate substitution rates and test
for directional selection in the absence of a species concept (e.g. comparing synonymous to non-
synonymous rates within a protein family).

Another roadblock in the analysis of metagenomics genome evolution is the lack of a species
phylogeny. Calculation of substitution rates (synonymous and non-synonymous), for example, typically
requires estimation of an ancestral state. One approach to this problem, for protein sequences, is to use the
phylogeny of related proteins in a sample in place of the species phylogeny. While this method will not
easily distinguish paralogs from orthologs, it will enable estimation of substitution rates in well-sampled
protein families.

In addition to empirical studies, we will devote effort towards theoretical developments, including
new population genetic models for metagenomics. In all of these analyses, care will be taken to account
for sampling issues. These investigations will lead to recommendations for software development for
CAMERA and other projects, including our own project to develop open source statistical software for
molecular evolutionary analysis as part of the Bioconductor project (http://bioconductor.org [44]).
Finally, we will apply the most promising methods to sequence data from GOS and other metagenomic
studies and evaluate global patterns of genome evolution. These patterns will then be related to
characteristics of the ecosystem, as described above.

Deliverables
1. Development of molecular evolutionary methodology for metagenomics. (Year 1)
2. Development of population genetics methodology for metagenomics. (Years 1-2)
3. Empirical evaluations of methods for measuring genome evolution. (Years 2-3)
4. Software development and applications. (Year 3)

II1. FUNCTION(S) OF MICROBIAL COMMUNITIES

The driving force behind the development of metagenomics has been the ability to use analysis of
genome sequences of uncultured organisms to predict their biological properties. A hallmark discovery
that launched the field of metagenomics was the finding of proteorhodopsin in uncultured microbes in
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surface ocean waters. Subsequently, analysis of metagenomic data has led to many fundamental insights
into the biological properties (e.g., metabolism, pathogenicity, light sensitivity) of uncultured microbes,
from endosymbionts to microbes in the human gut to those of the deep sea and open ocean. We believe
that much greater insights about the functions present in microbial communities can be provided through
the better integration of ecological, evolutionary and statistical methods in the analysis of the
metagenomic data sets. For example, most current approaches to making functional inferences from
metagenomic data involve treating the community like a bag of genes. However, it is clear that
compartments (i.e., cells, populations, species) matter in making such predictions (e.g., [41]). We propose
here to focus on two research areas that can particularly benefit from an integrated approach — the link
between ecosystem function and biodiversity and the identification of novel, previously unknown
functions from metagenomic data.

QOuantifying the link between microbial diversity and ecosystem function across scales

Disentangling the link between biological diversity and ecosystem function is a fundamental goal
of scientists and policy makers worldwide [45-47]. It has long been assumed that unlike plants and
animals, microorganisms are functionally redundant, meaning that distinct microbial consortia are capable
of the same ecosystem functions and services [48]. Under this paradigm microbial community
composition is not important to ecosystem function, conservation of microbial populations is moot [19],
and microbial extinction poses no threat to the natural flow ecosystem services. Metagenomics makes it
possible to rigorously test these assumptions. We propose to quantify the link between microbial diversity
and ecosystem function using an integrated approach that leverages classic distance-decay analyses from
ecology and recently available metagenomic data sampled from ocean environments. Beyond addressing
the question of functional redundancy in microbial communities, our analyses will yield insight into the
role of environmental heterogeneity and spatial scale in driving phylogenetic and functional diversity
patterns.

Approach
We will first examine the GOS data set, as it provides information for a large number of protein-

encoding genes sampled across 41 marine microbial communities along an 8000 km transect; more
metagenomic data sets will be studied as they become available through CAMERA. To begin our
analysis, we will answer the following basic questions which have yet be explored: 1) which communities
are the most and least diverse, both phylogenetically and functionally?, 2) is there a relationship between
functional and phyogenetic diversity?, and 3) what environmental parameters and ecosystem properties
are correlated with the diversity and signature of functional and phylogenetic types? Phylogenetic
diversity in each sample will be estimated using the methods outline above in “Estimating microbial
biodiversity from metagenomic samples”, and functional diversity will be estimated using the methods
described below

Next we will address the longstanding scientific assumption that microbial communities are
functionally redundant. To do this will require estimating the similarity of different microbial
communities both functionally and phylogenetically. As explained above for diversity estimates,
phylogenetic and functional similarity (or beta-diversity) between samples will be estimated using newly
developed metagenomics statistical techniques. We note that the GOS data may be organized into protein
families and taxonomic groups to quantify functional similarity and phylogenetic distance between a large
number of pairwise comparisons. We have derived a novel way to assess the degree of functional
redundancy between microbial communities by examining the degree to which phylogenetically distinct
communities harbor the same metabolic or biochemical potential. Our approach is briefly outlined in
Figure 3.
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Deliverables

1. Statistical methods for assessing the functional diversity within samples and the similarity in
function between samples. (Year 1)

2. A quantitative analysis of phylogenetic and functional diversity, and the relationship between the
two, across environmental gradients and spatial scales. (Year 2)

3. A map of the correlation between functional or metabolic similarity and phylogenetic similarity,
which will address the longstanding assumption that microbial communities are functionally
redundant. (Year 3)

Using metagenomics to find novel functions (Eisen)

Genes and genomes of uncultured organisms were originally studied by those searching for new
functions and processes that could be used for industrial and biotechnological purposes (e.g., Diversa,
Microbia, etc). This is still one of the most important potential uses of metagenomic data and analyses.
Metagenomics has potential for providing clues to novel functions and processes for a variety of reasons
but especially due to the random nature of sampling genomes from uncultured organisms. For example,
we previously showed in analysis of the Sargasso Sea data that a large number of novel proteorhodopsin
families were present that had been missed by PCR based methods. In principal, embedded within
metagenomic sequence data are sequences that encode completely novel pathways, activities, or
specificities. We believe that searching for such novel activities can be aided by the integration of
ecological, evolutionary and statistical approaches. Information on novel functions can be of great value
in understanding the evolution of communities and the mechanisms underlying the origin of novelty.

Approach.
We propose to take a two-tiered approach to studying functional novelty. First, we will design

new methods for identifying potential novel functions and for quantifying novelty within metagenomic
samples (here by novelty we mean functions and processes that are rare or not seen in cultured
organisms). This will include methods to identify novel protein families and subfamilies, novel
proportions of different types of genes, novel gene combinations, and novel molecular processes (e.g.,
new genetic codes). In addition, we will develop and use methods to use non-homology functional
prediction methods for metagenomic data (e.g.. co-occurrence of genes). Second, we will examine
whether functional novelty is related to any community properties including phylogenetic novelty,
population structure, and degree of isolation (e.g. unmixed vs. mixed). The key question here will be — are
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there communities that possess more novelty than others? And if so, why? Is it because new processes
evolve more readily in those communities? Of it is simply due to the presence of novel phylogenetic types
of organisms (as identified in Project 1 above?).

Deliverables
1. Development of functional novelty indices for metagenomic data and testing against simulations.
(Year 1)

2. Comparison of protein family novelty (as identified by Yooseph et al. with phylogenetic novelty)
for different GOS samples. (Year 2)
3. Identification of environmental parameters that are related to metagenomic novelty. (Year 3)

Methods. Functional diversity, novelty, and community metabolic potential (Eisen)

Perhaps the greatest informatics challenge in analyzing metagenomic data lies in making
predictions about the functions present in individual organisms and their communities by analyzing the
fragmented, unlinked, undersampled genomes. The real challenge is that functional prediction methods
for genome sequence data are designed around the analysis of the genomes of single organisms not
communities. Even for as simple a system as the two symbionts living inside the glassy winged
sharpshooter, functional prediction for the community did not work well. In the symbiont case the only
thing that worked was binning the data into pools corresponding to each symbiont, making separate
predictions for each, and then integrating the information back together to make predictions for the
community [41]. And these difficulties came up in a study of a single sample, with very very few
organisms present. It is orders of magnitude more difficult to design methods for analyzing more complex
ecosystems and for comparing samples to each other.

We believe it is currently virtually impossible to make complete, robust predictions of all the
functions present in organisms or communities from metagenomic data. However, we believe there are
some useful measures and indices that can be developed to aid in comparative studies of different
metagenomic data sets, even with the caveat that specific functional inferences are almost certainly
suspect.

Approach
Our general approach is to use simulations and statistical resampling of real metagenomic data

sets to ask questions about how robust functional predictions can be and to aid in the design of functional
diversity indices. For example, a simple question one might ask is, how robust are binning independent
estimates of functional diversity. That is, if you do not assign metagenomic data to bins, how well can
you make inferences about functional diversity? Another simple question is how well do different
functional diversity estimates perform in various simulations? For example, one way of estimating
functional diversity would be to map all predicted proteins in a system to gene ontology role categories
and measure how much of the GO space is covered. Another method would be to map genes to gene
families and see what proportion of gene families are represented. A third method would be to map
functions to metabolic charts and measure the total network coverage. One could then create simulations
with different functional mixes (e.g., one could have all photosynthetic species, another could have
diverse metabolisms represented) and see which methods perform well. One could use a similar approach
to comparing samples (using some of the methods described in the statistics section below).

Deliverables
1. Development and testing of functional diversity measures for metagenomic data including
mapping of genes to GO categories, to PFAM families, and to metabolic charts (Year 1)
2. Design of methods to distinguish convergent similarities from homologous ones (Year 2)
3. Design of methods to weight functional diversity measures by how likely it is to find certain
genes (e.g., a single nitrogen fixation gene might count more than a single carbohydrate
transporter). (Year 2)
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4. Testing of methods by comparing spatial patterning of phylogenetic diversity vs. functional
diversity (Year 3)

IV. STATISTICAL APPROACHES TO METAGENOMICS

A Statistical framework for metagenomics (Pollard)

In a newly emerging field such as metagenomics it is essential to evaluate the reliability and
repeatability of data analyses, since there is not typically a “gold standard” to which results can be
compared. The simulations proposed in Project 6 are a critical component of methods assessment.
Another is the development of measures of variability for each estimator (distance, correlation, and
diversity), so that statistical significance can be assessed. Both simulation studies and significance testing
rely on a sound statistical framework.

Approach
The first step to defining a statistical framework is to develop a concept of the sampling unit.

What is the thing on which measurements are made? Is it the pool of DNA sequenced? Or the species? Or
the gene family? The answer will depend to some extent on the application. Regardless, we must ask if
the data we are analyzing represents a random sample from a population of interest. What is that
population? Could we easily collect more data from the population? Were enough samples collected to
assess variability? Were they collected and measured in an unbiased way or at least in a way in which we
can quantify bias? With the concept of a statistical (not necessarily genetic) population in hand, we can
define our data as realizations from a data generating distribution for this population. Then, quantities of
interest, such as correlations and measures of diversity, can be viewed as parameters of this population
distribution, which are estimated from observed data. This framework allows us to develop simulation-
based and theoretical measures of variability for parameter estimates, thereby facilitating estimation of
confidence intervals and assessment of statistical significance. This work will feed into the studies of
similarity, correlation, and diversity described in Projects I and II as well as the simulation studies in
Project VI. We will publish a paper about the statistical framework itself, as we did for microarray data
[49]. Such a publication would include recommendations, along the lines of Yang & Speed [50], for
optimal study designs for use in future data collection efforts.

Deliverables
1. Formulation of a statistical framework for metagenomic studies. (Year 1)
2. Development of study design/sampling recommendations. (Year 2)
3. Extensions and applications to other project aims. (Year 3)

Similarity measures for metagenomics (Pollard)

As the means for collecting and storing increasingly large amounts of metagenomic data develop,
it is essential to have sound methods for measuring similarity between samples of sequence data.
Similarity measures are useful at many levels of analysis, from binning to phylogenetics. Furthermore, a
concrete definition of distance between samples will enable analysis of associations between sequence
data and metadata, such as ecological and geographic variables. The goal of this project is to understand
which measures perform best under a range of realistic data scenarios.

Approach
Similarity measures quantify the distance between any pair of samples. The Pollard lab and others

have developed and employed a variety of approaches for other fields of genomics [44, 51]. The first
issue to resolve with regard to developing robust and useful similarity measures for metagenomics is what
level of sequence data to use: phylotype/bin, protein family, protein, or sequence read. For example,
consider the goal of clustering samples based on sequence data to see if these clusters correlate with
environmental variables of interest. Do we want to call two samples similar if they contain the same
organisms? Or the same kinds of genes (i.e. functional distance)? Or actually the same genes/sequences?
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A second consideration is how to encode the sequence data for computations: presence/absence (binary
variable) or score (quantitative variable, e.g. from a BLAST search). The optimal choice will depend on
the application and quality of available data. Reducing data to presence/absence calls is useful when there
is not good information about quantitative levels for at least some variables, but it can be less powerful
than quantitative approaches when such data is available. For each choice of data encoding (binary or
quantitative), there are many different formulas for quantifying similarity, including metric (e.g.
Minkowski) and non-metric (e.g. correlation) distances. These equations can be extended to include
weights that may be used to adjust for differences in quality, sampling depth, etc. between samples
generated with different technologies and in a variety of labs. The results of this investigation will be
published and will lead to recommendations for software implementation through the CAMERA and
Bioconductor projects.

Deliverables
1. Survey of metagenomic data to determine the scope of data types and similarity concepts. (Year
1)

2. Development of weighted similarity measures for metagenomics. (Year 2)
3. Simulation-based comparison of different similarity measures. (Year 3)
4. Software development and applications. (Year 3)

Correlation of genome sequence data with metadata (Pollard)

In addition to comparing metagenomic samples to each other, we are also interested in measuring
association between sequence data and a variety of different types of metadata, such as environmental
clines and measures of ecosystem complexity. Identifying correlations between genomic variables and
environmental variables is at the core of many of the scientific questions in the metagenomics research
community, including those posed in Projects 1-3. Our goal is to develop models that allow us to quantify
the magnitude and statistical significance of correlations.

Approach
Methodology for association modeling and statistical testing is well developed in the statistical

literature. The challenges for metagenomics will be to appropriately encode data and to account for
variable sampling scenarios. Correlation analysis, like similarity analysis, relies on several choices about
data handling. As discussed above, metagenomic data can be analyzed at the level of phylotype,
functional category, or sequence/allele. In addition, each type of data can be encoded as binary
(present/absent) or quantitative (score or frequency). Similarly, metadata may be categorical or
continuous. The appropriate statistical model for measuring correlation depends on how each variable
(metagenomic or metadata) is encoded. For example, presence/absence of a protein family can be
modeled as a function of a continuous environmental variable (e.g. temperature) through generalized
linear models, such as logistic regression. When both variables are categorical, loglinear models may be
appropriate. Most of these models allow for weights, which we will use to adjust for the uneven sampling
that we see in metagenomic data, including uneven taxa sampling and possibly non-random missing data
(e.g. metadata only measured on a subset of samples). These methods also allow us to include multiple
variables into a single model, producing conditional estimates of association that are adjusted for the
effects of other variables. A key feature of this statistical modeling approach is that estimates of
correlation are accompanied by estimates of variability (due to sampling depth, sequence quality,
sequencing method, etc.) that lead naturally to tests of statistical association (p-values). Results will be
disseminated through publications and conference presentations. Promising methods will be included in
software implementations through CAMERA and Bioconducor.

Deliverables
1. Methods for model selection in metagenomics. (Year 1)
2. Methods for weighted correlation analysis of metagenomic data. (Year 2)
3. Simulation studies comparing correlation methods. (Year 2)
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4. Software development and applications. (Year 3)

V. ASSESSMENT OF SEQUENCING AND SAMPLING METHODS USED IN METAGENOMICS (EISEN)

Many important questions in metagenomic studies relate to the methods used for sequencing and
gathering samples. We propose here to use a combination of simulations and analysis of real data sets to
address some of the most pressing questions in the techniques used in metagenomics. Two areas we
believe are most important to evaluate at this time are the design of the metagenomic sequencing and the
selection and sequencing of reference genomes. We discuss both here but in addition propose to use
similar approaches to address other metagenomic methods questions as they arise (e.g., these could come
from the CAMERA Scientific Advisory Board).

First, we consider methods in metagenomic sequencing. Metagenomic sequencing includes a
diversity of methods and options within each method. A critical question for the field is which methods
and options should be used for particular purposes. For example, there are at least three major classes of
methods that can be used to carry out the sequencing: Sanger clone based, 454 cloning independent, and
massively parallel but short read methods (e.g., ABI-solid or Illumina/Solexa). These methods have
different read lengths, error rates, and costs. Which is best? Even if one chooses a method (e.g., based
upon availability of a machine) there are still many options to choose from. For example, for clone based
capillary sequencing, one has to choose the library insert size.

One method that has been used more and more recently in metagenomic analysis is the
comparison of metagenomic data sets to the “reference” genomes of cultured species that are closely
related to phylotypes found in the metagenomic data. Such reference genomes have been in a variety of
ways including as scaffolds for assembly (e.g., [52]), as tools in binning data (e.g., [2], [53]), to enable
studies of recombination (e.g., [3, 54]) and to identify genomic islands that are absent from particular
environmental samples. It is the potential uses of such reference genomes that has led to “Moore 175”
project to sequence relevant marine microbe references, an NHGRI project on the human microbiome,
and multiple other projects to inform particular environmental studies. However, there has been no
significant effort to determine how to select reference genomes (e.g., how closely related do they have to
be to phylotypes from the environment to be useful) nor to determine just what information is needed for
these genomes (e.g., do the genomes have to be complete, do they have to be annotated?). In addition, the
information one has about reference genomes will influence which sequencing methods are most useful
for the metagenomic data itself and thus questions about reference genomes are directly linked to
questions about sequencing raised above.

Approach
We propose to use a combination of simulations to assess the methods used for sequencing

metagneomic samples and the methods for sequencing and selection of reference genomes. For
metagenome sequencing, we will compare different sequencing methods and different methods and
options within each method. To compare methods we will generate and then compare data sets with either
same total amount of sequence data generated or the same total cost of generating the data. For each
simulation we will ask how well the data can be used to answer some of the questions raised in the three
scientific research project areas. We will focus our analysis in particular on questions relating to read
length, sequence quality, insert size, and availability of mate pairs.

For the analysis of reference genomes, using our simulations and analysis of real data, we will
conduct comparisons of results varying which reference genomes are used and the state of the genome
(e.g., closed vs. 8x coverage, Sanger vs. 454 draft sequencing). Among the questions we will test: what is
the effect of phylogenetic distance of the reference genome to the phylotypes in the data set?, what is the
effect of the distance of the closest phylotype to other phylotypes in the data set?, and how much does
using finished reference genomes improve ones inferences compared to unfinished genomes (different
levels of coverage will also be analyzed)?

Finally, we will combine the two questions to ask if the use of reference genomes affects which
sequencing method is useful. Theoretically if one had enough reference genomes then short sequence read
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methods might become quite useful for metagenomic studies much in the way they are being used for
genotyping in single organisms. This can be assessed through simulations.

Deliverables
1. Comparison of Sanger, 454 and Illumina/ABI methods for measuring phylogenetic diversity.
(Year 1)
Comparison of library insert sizes for Sanger sequencing. (Year 1)
Comparison of sequencing methods for prediction of community functions. (Year 2)
Comparison of single-sided versus mate pair based methods. (Year 2)
Generation and release of in-vitro and in-silico data sets from comparisons of different
sequencing methods. (Years 1-2)
Analysis of new sequencing methods as they become available. (Years 1-3)
Generation of “comparison” simulation data sets for publicly available metagenomics projects.
For example, release of a simulation of GOS with Sanger vs. 454. (Years 1-3)
8. Analysis of the effects of sequencing errors on inferences (especially important for some of the
new sequencing methods) (Year 2)
9. Analysis of the effect of phylogenetic distance of reference genomes. (Year 1)
10. Analysis of the effect of different levels of coverage of reference genomes. (Years 1-2)
11. Analysis of the use of multiple reference genomes for particular groups. (Year 3)
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VI. EXPANDING THE USE OF SIMULATIONS IN METAGENOMIC STUDIES (ALL PIS)

Simulations are a critical component of theoretical and computational biology. While simulations
are leveraged in many scientific disciplines such as physics, ecology and genomics, this is not the case in
metagenomics (although there are notable exceptions [55]). We propose to integrate the use of
simulations with our methods development and scientific studies. In addition, we will release simulated
data sets for use by others in the field.

Approach
The main purpose behind the use of metagenomic simulations is to create data sets of known

entities that can be used to test the accuracy, consistency and robustness of metagenomic methods. We
propose to use three types of simulations (Table 3) of metagenomic data sets: (i) in silico creation of
artificial communities using genome sequences of isolates, (ii) in-vitro simulations generated by mixing
DNA or cells of organisms and then submitting these to standard metagenomic processes, and (iii)
resampling simulations in which real metagenomic data sets are resampled in various ways.

Table 3. Types of Metagenomic Simulations.

Type Details

In Silico In silico communities of organisms whose genome sequence is known
will be created and metagenomic sequencing of these communities
will be simulated. For this we will use both simulated sequence reads,
and real reads from the trace archive.

In Vitro DNA, cells or libraries from organisms whose genome sequence is
known will be mixed in vitro and these mixes will then be used for
metagenomic sequencing.

Resampling Metagenomic data from real communities will be resampled (e.g.,
paired ends will be broken, a subset of reads will be randomly
selected). For example, simple symbiont communities where binning is
well-resolved will be used to test binning methods.
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The simulations will be used to control specific variables that will then allow the testing of how well
methods perform in the face of such variation. Such variables are easiest to control in the in silico
simulations and those we plan to use are summarized in Table 4.

Table 4. Variables for computational (in silico) simulations

Variable

Details

Community structure
Number of taxa

Phylogenetic distance between

types
Relative abundance of taxa

Particular isolate used for specific

phylotypes

Type but not functions

Functions but not type

Genome features

Creating alternative genomes
Creating  recombinants
known genomes
Simulation of evolution

Lateral gene transfer
Generation of sequence data

Depth of sequencing

Sequencing methods

Library properties

Other issues
Resampling

Environmental mimics

from

The total number of organisms used will be varied. This could include both
real organisms and simulated genomes (e.g., simulated recombinants).

Many metagenomic methods should work well when taxa are all distantly
related but will start to fail with closely related sets of organisms.

Keeping the total number of individual cells and total taxa richness constant
but changing the relative abundance of taxa.

Sets of simulations will be created where all variables are held constant (e.g.,
number of types and relative abundance of those types) but where specific
types are replaced by close relatives (e.g., E. coli K12 will replace E. coli
O157:H7).

We will create artificial communities with functionally similar dominant
taxa but from different taxonomic groups. For example, photosynthetic
communities dominated by cyanobacteria vs. green sulfur bacteria vs.
chloroflexi vs. algae. This will be used to assess functional analysis methods.
We will create artificial communities with phylogenetically similar dominant
taxa but with different functional groups. For example, communities
dominated by photosynthetic, chemosynthetic or heterotrophic
proteobacteria.

We will vary features such as GC content, number of genetic elements,
presence of repetitive DNA, number of copies of particular genes (e.g.,
rRNA), and genome size.

Multiple sequenced genomes will be mixed to create recombinants.

Mutation, deletion, recombination will be simulated to create more realistic
populations of genomes for the simulations.
Foreign genes will be artificially inserted into some of the genomes.

We will test how the depth of sequencing affects various inference methods.
We will simulate different methods of sequencing, holding either the total
number of bases constant or the total costs constant. We will also simulate
errors for each method, such as clone chimeras and sequencing errors.

We will simulate different insert sizes for shotgun libraries. This variable is
likely important for both methods assessment and design of metagenomics
projects. For example we have shown that binning methods work better with
paired end sequences from 20 kb libraries than from 2 kb libraries.

Multiple simulations will be run on each data set to assess the effects
of sampling on conclusions.
For specific metagenomic projects we will create simulations that try
to mimic the natural community, both in terms of species diversity
and also by using genomes from organisms related to those from the
environment when possible.

We also propose to perform a series of in vitro simulations but since these are more expensive
these will be narrower in scope. Most important in these simulations will be to generate data sets using
multiple sequencing methods from the same samples.
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A critical part of the use of these simulations is that they will be done in conjunction with the
other Tiers and thus the simulation design will be geared towards assessing specific methods and as
controls for particular scientific questions. For example, to test methods for estimating the number of
species in a metagenomic sample, we will create simulations with different numbers and relative
abundances of taxa as well as the depth of sequencing performed. To address questions concerning the
ideal sequencing methods to use, we will create simulations of different methods and then ask how
metagenomic analyses (e.g., estimates of diversity) are affected by the different sequencing methods.

Deliverables:
1. A large suite of publicly available simulated datasets with known parameters for use by the
metagenomics community to test scientific hypotheses. (Years 1-3)
2. Software for generating in silico simulations. (Year 2)
3. Mimic simulations of select metagenomic data sets (e.g., GOS, AMD). (Years 1-3)
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REQUIREMENTS AND BUDGET

We provide here a summary of what we believe it will take in terms of personnel and supplies to
carry out these tasks. Each of the tasks could be either expanded or contracted depending on the goals of
the Moore Foundation but we believe this outline provides a good estimate of what it would take to get
interesting and useful results in each area. First we provide a Table showing the allocation of personnel
to the different projects and groups. Included in here are personnel dedicated to general support for the
whole project who will be supervised by Dr. Eisen but will provide support for all.

Table 5. Personnel involved.

Projects Green Eisen Pollard
1. Biodiversity

A. Spatial variation 100% Post doc #1

B. Novel types 50% Post doc #2

C. Methods — Genes 50% Post doc #2

25% Software engineer

D. Methods — Diversity 100% Post doc #3
II. Population structure

A. Spatial patterns 50% PhD #1 50% PhD #1

B. Genome evolution 100% Post doc #4

C. Methods — Binning 50% Post doc #5 50% Post doc #5

D. Methods — Measuring evolution 100% Post doc #6
III. Functions

A. Function vs. phylogeny 100% PhD #2

B. Novel functions 50% PhD #3

C. Methods — Functional diversity 50% PhD #3
IV. Statistical estimators 50% Post doc #7 50% Post doc #7
V. Metagenomic methods 50% Post doc #8

25% Lab technician

VI. Simulations 50% Post doc #8

25% Software engineer
75% Lab technician
General Summer Salary Summer Salary Summer Salary
50% Software engineer
50% Project scientist #1
50% Project scientist #2

Total personnel
* Post doctoral researchers 800%
* Lab technician 100%
* Software engineer 100%
¢ PhD students 300%
*  Project scientists 100% (50% Martin Wu and 50% Dongying Wu)
¢ Summer salary x 3 Pls

Other requirements
* Computational resources
o Linux cluster nodes: ~$30,000
Large memory machine: ~ $15,000
Disk space: ~ $5,000
Desktop computers x 10: ~ $20,000
Web server: ~ $5,000

O O O O
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o Misc. equipment and supplies: ~ $5,000
o Support services (e.g., cluster maintenance): ~ $5,000
* Sequencing expenses
o Sequencing for in vitro simulations
=  Sanger runs: ~ $40,000
= 454 runs: ~$30,000
= ABI Solid/Illumina runs: ~ $20,000
o Lab supplies and equipment: ~$5,000
* Travel: ~$15,000
e Publication costs: ~ $10,000

COORDINATION AMONG GROUPS AND DISSEMINATION OF RESULTS AND METHODS

We realize that we are proposing an ambitious plan in the above project descriptions. However,
we believe that this type of large scale, interdisciplinary effort is critically needed in metagenomics at this
time. Each of the PIs project is committed to making this a true collaborative project and each has
significant experience with large-scale collaborations involving multiple disciplines.

In terms of specific details, the overall coordination of the project will be carried out by Dr. Eisen
who has coordinated on dozens of large scale collaborative genome projects and has been working on
metagenomic related projects for many years. Dr. Eisen will supervise personnel to be shared between
the projects and will coordinate the communications among the groups. To facilitate communications
among the group we will have weekly video-conferences among the PIs and monthly group meetings
where methods, research and technical issues will be discussed. In addition we will utilize the Eisen —
Lab wiki site to share information about projects (the Eisen lab uses this site for all research activities in
the group and to communicate with dozens of outside collaborators on various projects). Finally, we plan
to have personnel rotate between groups to generate cross — fertilization of ideas and to aid in the training
of these individuals.

We also believe that communication with other researchers is critical for this project. In addition
to the “normal” publications and presentations we are committed to “Open Science” in terms of software,
data, and publications. In addition, we plan to work closely with the CAMERA database for
dissemination of results and methods.

Finally, we believe that the landscape of metagenomics is changing very rapidly and realize that
there may be new projects or areas of interest to the Moore Foundation in our area. We are committed to
doing research related to critical needs of the community and with our interdisciplinary team would be
able to move into new projects quickly if so requested.

SUMMARY

In this proposal, we have outlined a collaborative interdisciplinary approach to the analysis of
metagenomic sequence data. In particular we have designed projects that integrate statistical,
mathematical, evolutionary and ecological approaches because we believe that these are critical for
handling the complexities of metagenomic data. In total, we propose six projects — three focusing on
specific scientific questions about microbes and three focusing on general methods for metagenomic
studies. In all of the projects, one of the driving forces is the development of methods and tools to aid the
community of scientists working with metagenomic data. Thus a critical part of our project is the
dissemination of results and methods to the broader community. We are committed to making this
dissemination as wide and as user friendly as possible both through publications and presentations but
also through development of software and integration of results and methods into the CAMERA database.
We are excited about the possibility of working on this project and working with the Moore Foundation to
make metagenomic data a more valuable resource for the scientific community.
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