
Image Processing and Analysis III

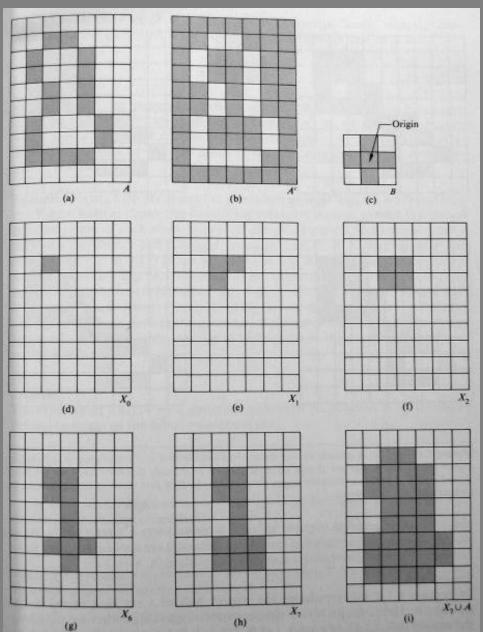

Materials extracted from Gonzalez & Wood and Castleman

Image Segmentation – Boundary based Threshold and Region Filling II

(3) Region Filling

Assign all boundary points to zero. Identify a point P inside the boundary, the region can be filled by iterative application to neighboring points of:

$$X_k = (X_{k-1} \oplus B) \cap A^c$$

Image Segmentation – Region Growing by Pixel Aggregation

Basic idea: Selected a number of "seed" pixels in the image. Find neighbors that are similar in value. Aggregate similar value pixels into a region. Merge regions with similar values. Add more seeds as necessary until all the picture is filled.

-	1	2	3	4	5
3	0	-0	5	6	7
2	1	1	5	8	7
3	0	1	6	2	7
4	2	0	7	6	6
5	0	1	5	6	5
			(s)		e parent
	2	a		ь	b
	2	2	ь	ь	ь
I	2	2	ь	ь	ь
ſ	2	2	ь	ь	ь
I	2		ь	ь	ь
			(b)	FRE	12.50
1	2			2	2
T	2	2	2		
T	2		3	2	
1					
	2				

Threshold 3

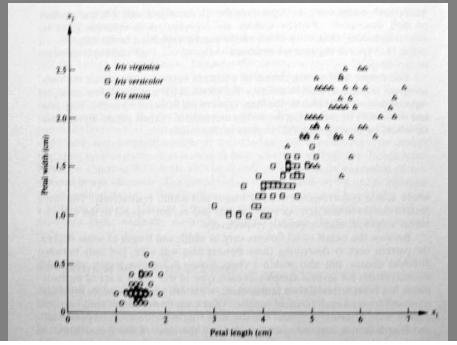

Threshold 8

Image Classification and Recognition I

Image recognition is the problem of classifying patterns. Pattern classes can be Denoted by M classes: $\omega_1, \omega_2, \omega_3... \omega_M$

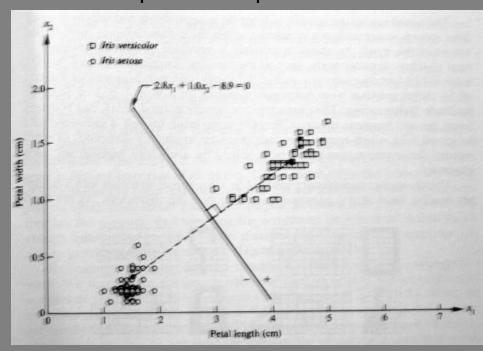
Recognition problem is relatively straightforward if each class can be distinctly described by some measurable characteristics denoted by the pattern vector $x=\{x1, x2, x3,\}$

Example, classify images of three type of iris flowers (setosa (ω_1) , virginica (ω_2) , and versicolor (ω_3)) by their petal width (x1) and petal length (x2)

Image Classification and Recognition II

We can define a n dimensional characteristic vector for each class i:

$$\vec{X}_i = \{X_i^1 \cdots X_i^n\}$$


We can define M distances of a pattern found in the image to each defined class:

$$d_{i} = \sqrt{\sum_{j}^{n} (x^{j} - X_{i}^{j})^{2}}$$

Where $\vec{x} = \{x^1 \dots x^n\}$ is the pattern vector of the pattern in question

Then the pattern before to class ω_i if:

$$d_i(\vec{x}) < d_j(\vec{x})$$
 $j = 1, 2, ..., M; j \neq i$

