

MAGIC design

and other topics

Karl Broman

Biostatistics & Medical Informatics
University of Wisconsin – Madison

biostat.wisc.edu/~kbroman

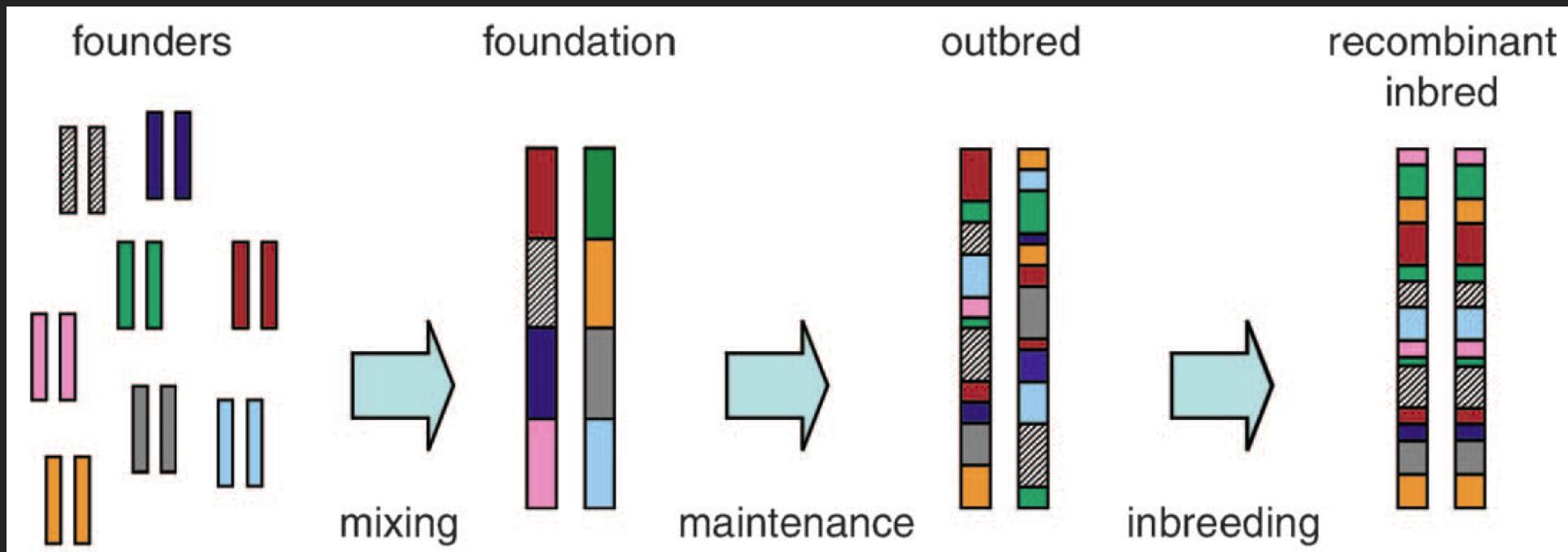
github.com/kbroman

kbroman.wordpress.com

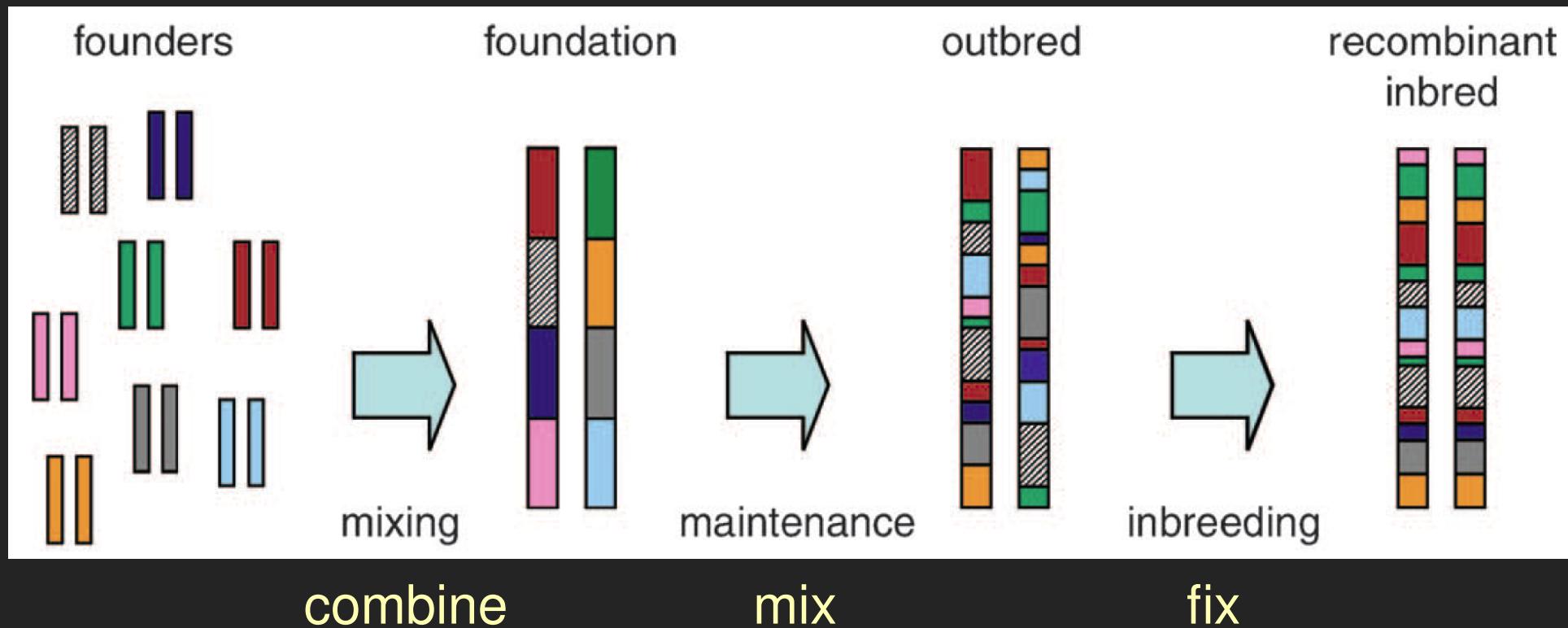
[@kbroman](https://twitter.com/kbroman)

CC founders

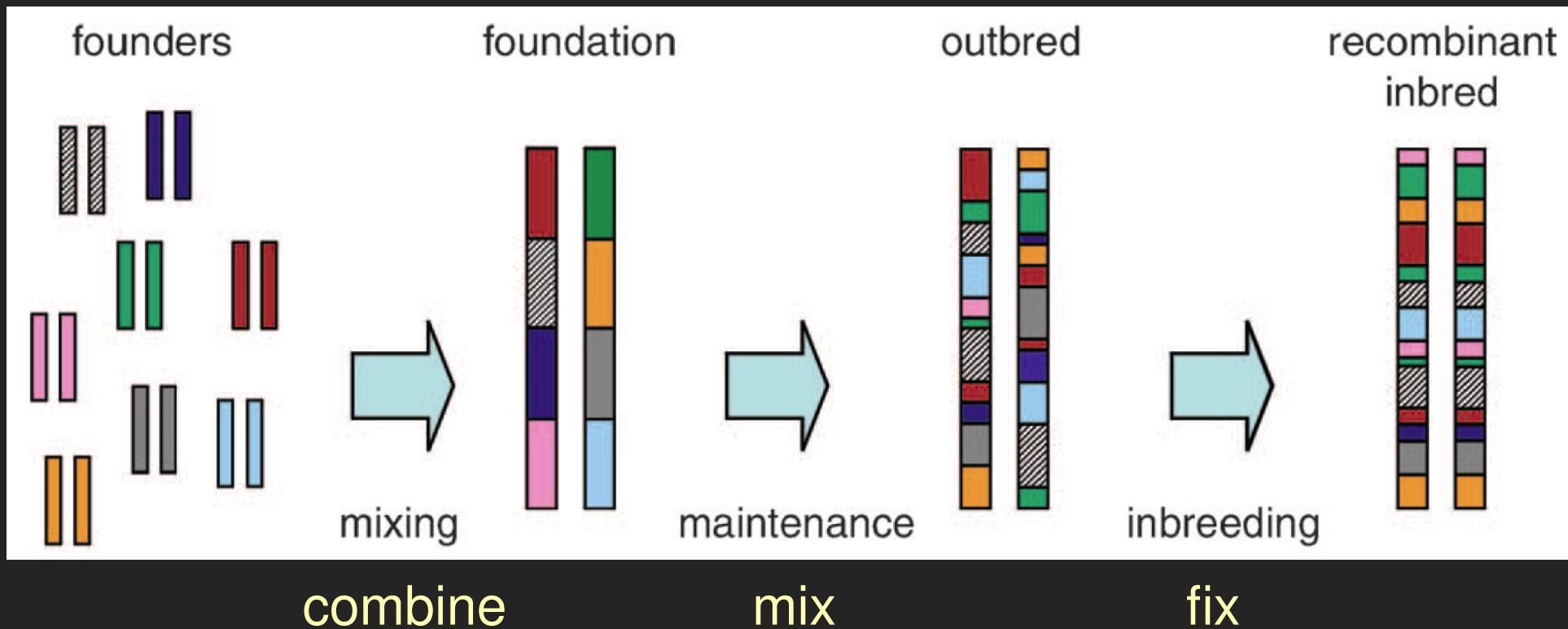
MAGIC lines



MAGIC lines

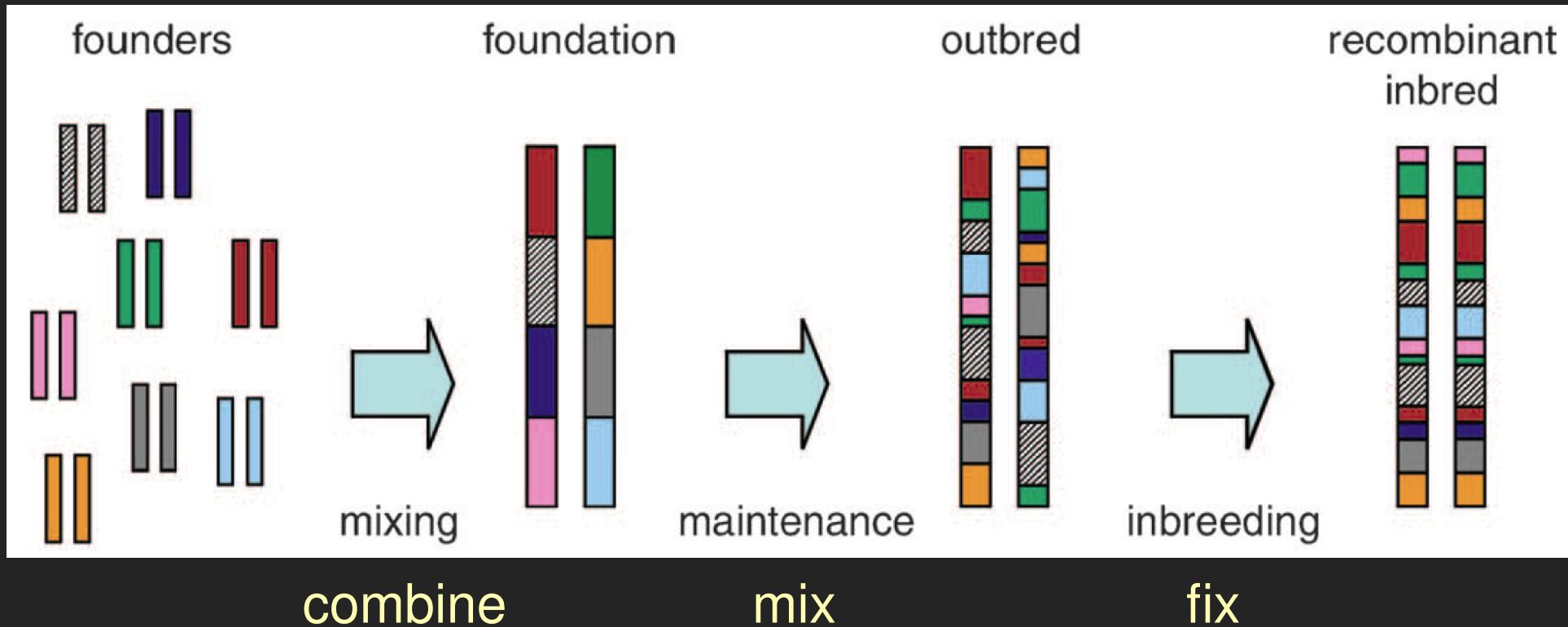


MAGIC lines



How many?

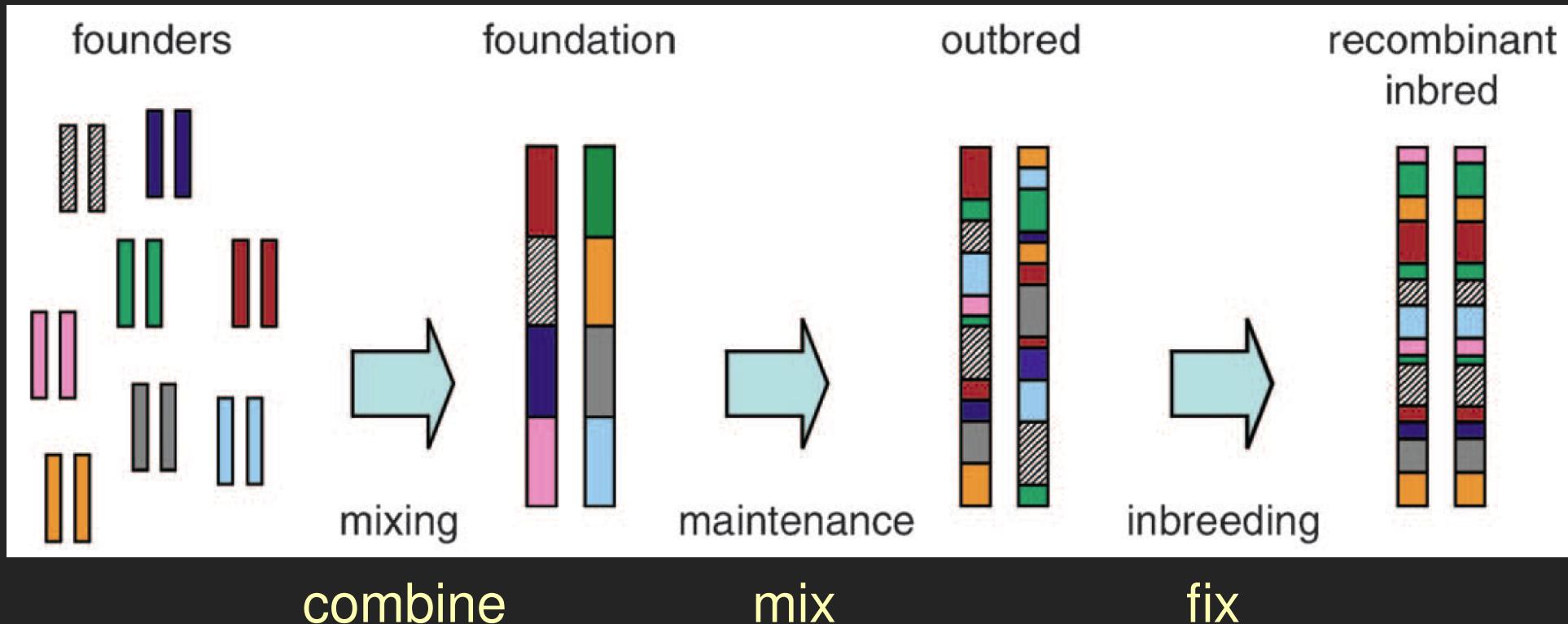
MAGIC lines



How many?

Which?

MAGIC lines

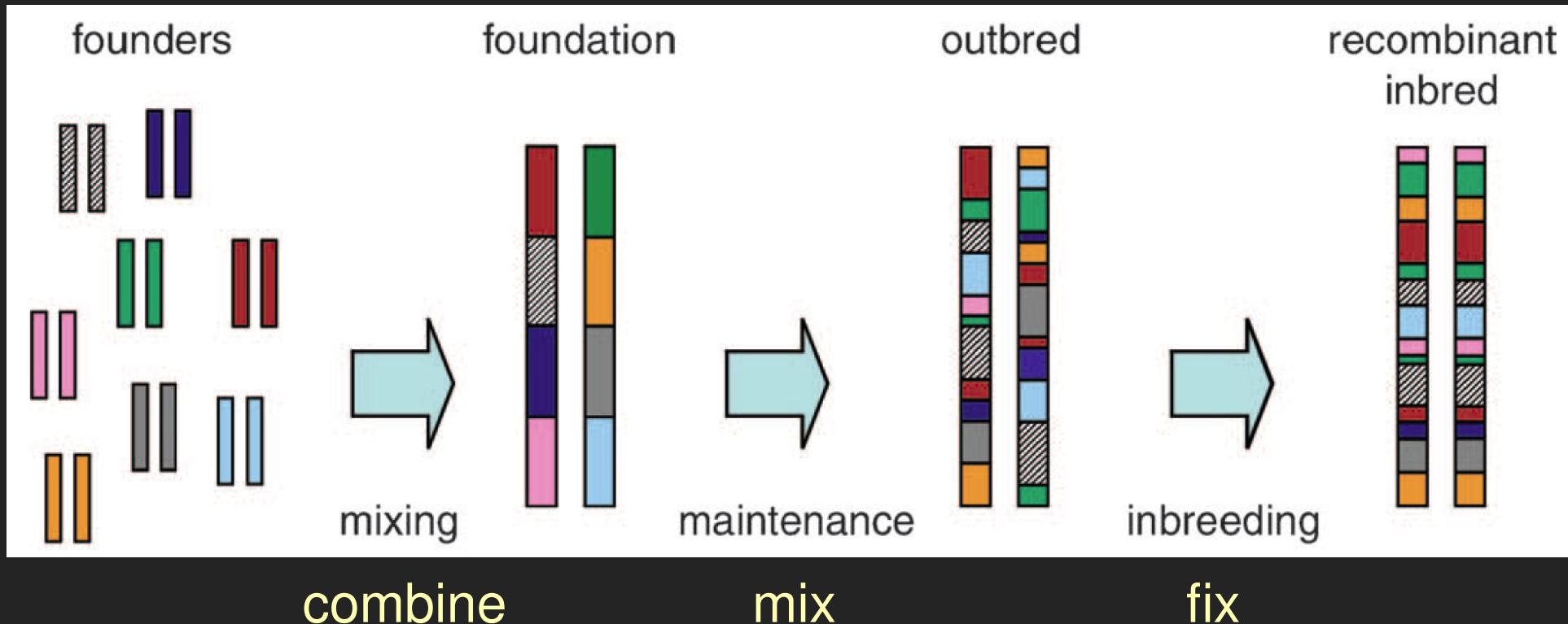


How many?

Which?

How long?

MAGIC lines



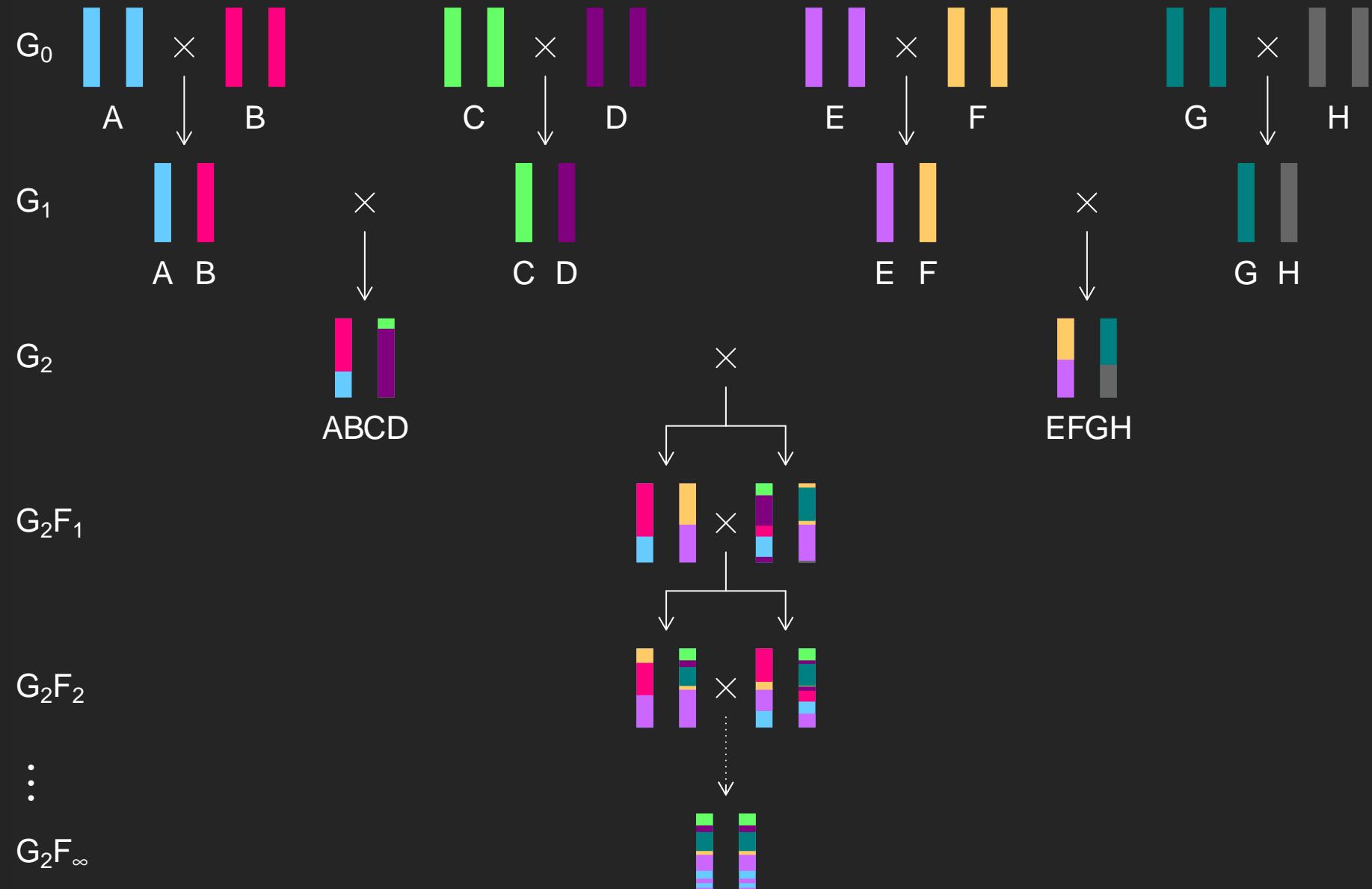
How many?

Which?

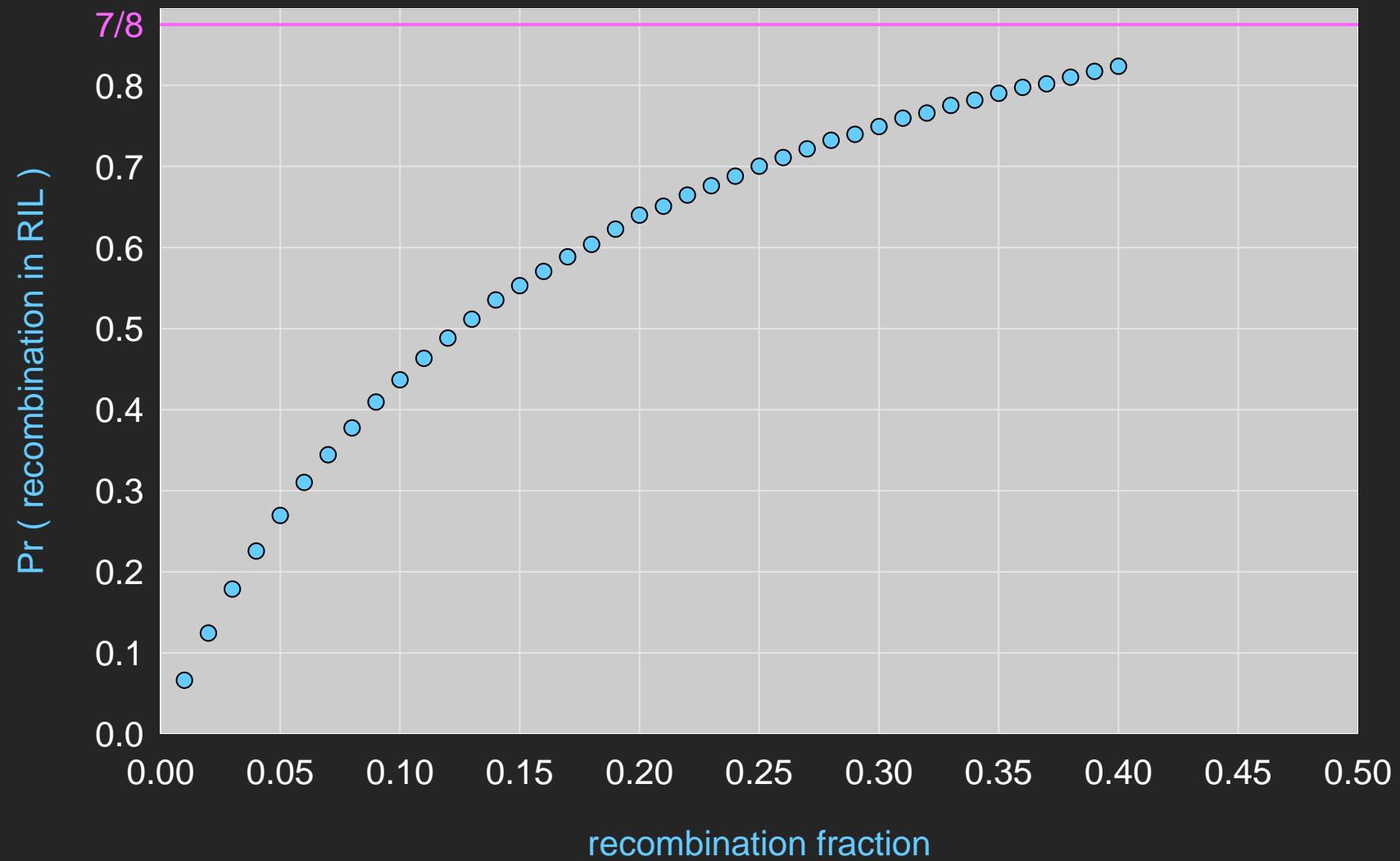
How long?

How?

But first . . .



Simulation results



Haldane & Waddington 1931

INBREEDING AND LINKAGE*

J. B. S. HALDANE AND C. H. WADDINGTON

John Innes Horticultural Institution, London, England

Received August 9, 1930

TABLE OF CONTENTS

	PAGE
Self-fertilization.....	358
Brother-sister mating. Sex-linked genes.....	360
Brother-sister mating. Autosomal genes.....	364
Parent and offspring mating. Sex-linked genes.....	367
Parent and offspring mating. Autosomal genes.....	368
Inbreeding with any initial population.....	370
Double crossing over.....	372
DISCUSSION.....	373
SUMMARY.....	374
LITERATURE CITED.....	374

Result for selfing

$$\text{Then } c_n + \lambda d_n \equiv c_n + \frac{1}{4}(1 - 2x)d_n + \frac{1}{2}\lambda(1 - 2x)d_n$$

$$\therefore \lambda = \frac{1 - 2x}{2 + 4x}.$$

Then since $d_\infty = 0$, and $c_1 = 0$, $d_1 = 2$,

$$c_\infty = c_\infty + \lambda d_\infty = c_1 + \lambda d_1 = \frac{1 - 2x}{1 + 2x}.$$

Put $y = D_\infty$ (the final proportion of crossover zygotes)

$$\therefore C_\infty + D_\infty = 1, C_\infty - D_\infty = c_\infty \therefore y = \frac{1}{2}(1 - c_\infty).$$

$$\boxed{\therefore y = \frac{2x}{1 + 2x}.} \quad (1.3)$$

Result for sib-mating

Omitting some rather tedious algebra, the solution of these equations is:

$$\begin{aligned}\zeta &= \frac{q}{2-3q}, & \theta &= \frac{2q}{2-3q}, & \kappa &= \frac{1}{2-3q}, \\ \lambda &= \frac{1-2q}{2-3q}, & \mu &= \frac{1-2q}{2-3q}, & \nu &= \frac{2q}{2-3q}\end{aligned}$$

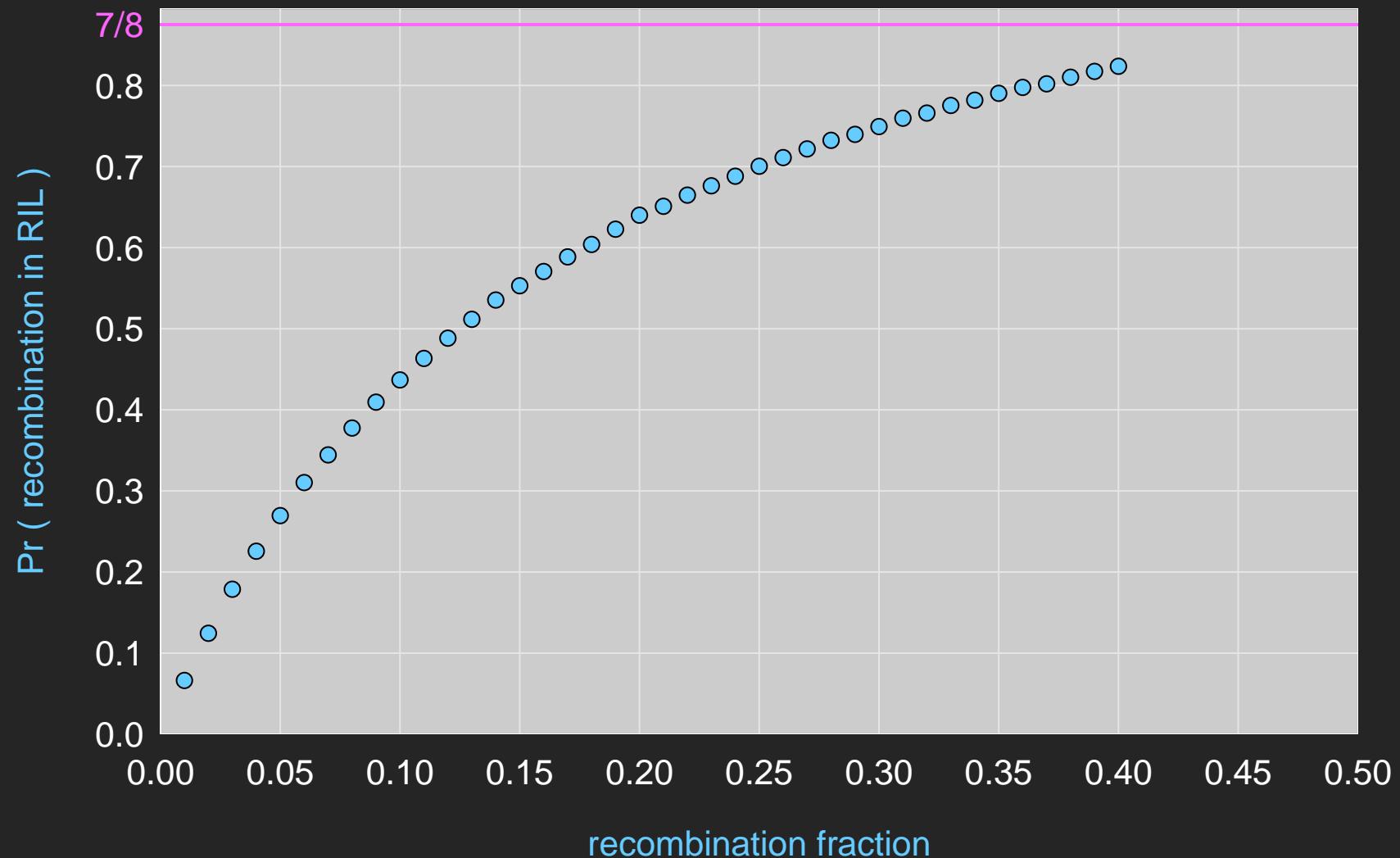
as may easily be verified.

$$\begin{aligned}\therefore c_\infty &= c_n + 2e_n + \frac{1}{1+6x} [(1-2x)(d_n + 2f_n + 2j_n + \frac{1}{2}k_n) \\ &\quad + 2g_n + 4x(h_n + i_n)]\end{aligned}\tag{3.4}$$

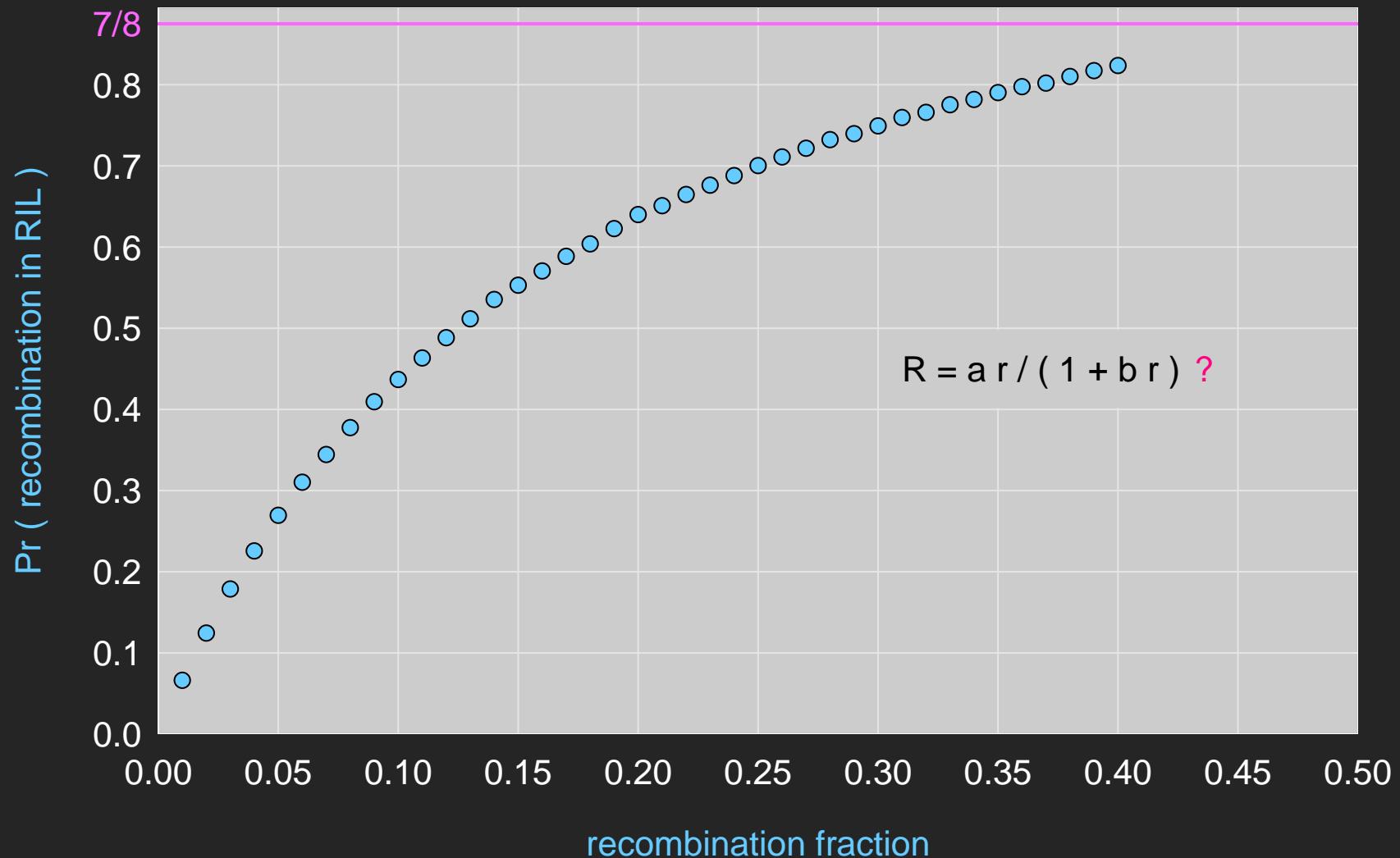
and $y = \frac{1}{2}(1 - c_\infty)$.

In the case considered, $d_0 = 1$, $\therefore c_\infty = \zeta d_0 = 1 - 2x/1+6x$. Hence the proportion of crossover zygotes, $y = 4x/1+6x$ (3.5).

Simulation results



Simulation results



Non-linear regression

```
out <- nls( R ~ a*r/(1 + b*r) ,  
           data = data.frame(r=r, R=R) ,  
           start = list(a=4, b=6))  
summary(out)
```

Non-linear regression

```
out <- nls( R ~ a*r/(1 + b*r) ,  
           data = data.frame(r=r, R=R) ,  
           start = list(a=4, b=6))  
summary(out)
```

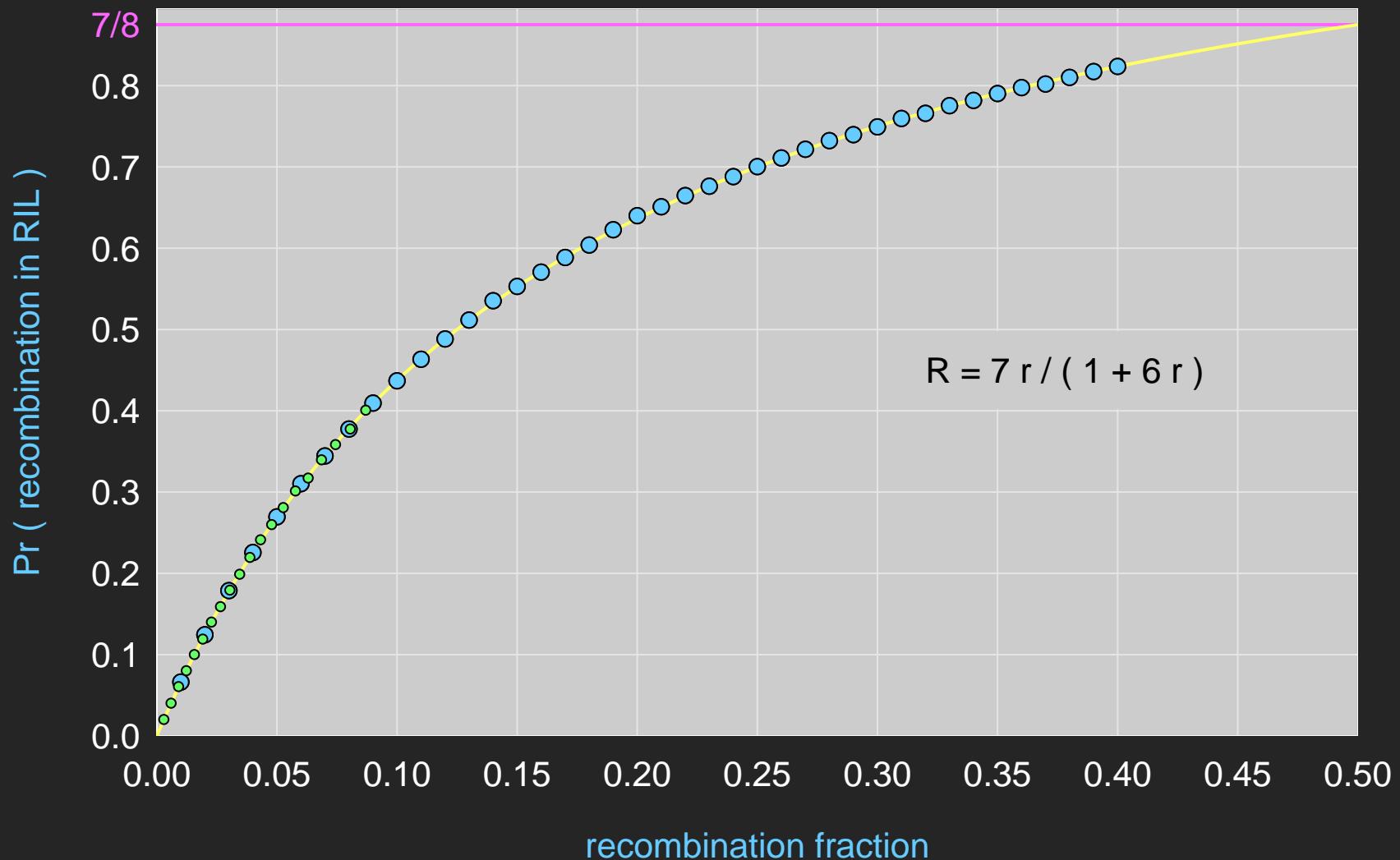
	Estimate	Std. Error
a	7.016	0.011
b	6.023	0.016

Non-linear regression

```
out <- nls( R ~ a*r/(1 + b*r) ,  
           data = data.frame(r=r, R=R) ,  
           start = list(a=4, b=6))  
summary(out)
```

	More data		
	Estimate	Std. Error	Estimate
a	7.016	0.011	7.003
b	6.023	0.016	6.005

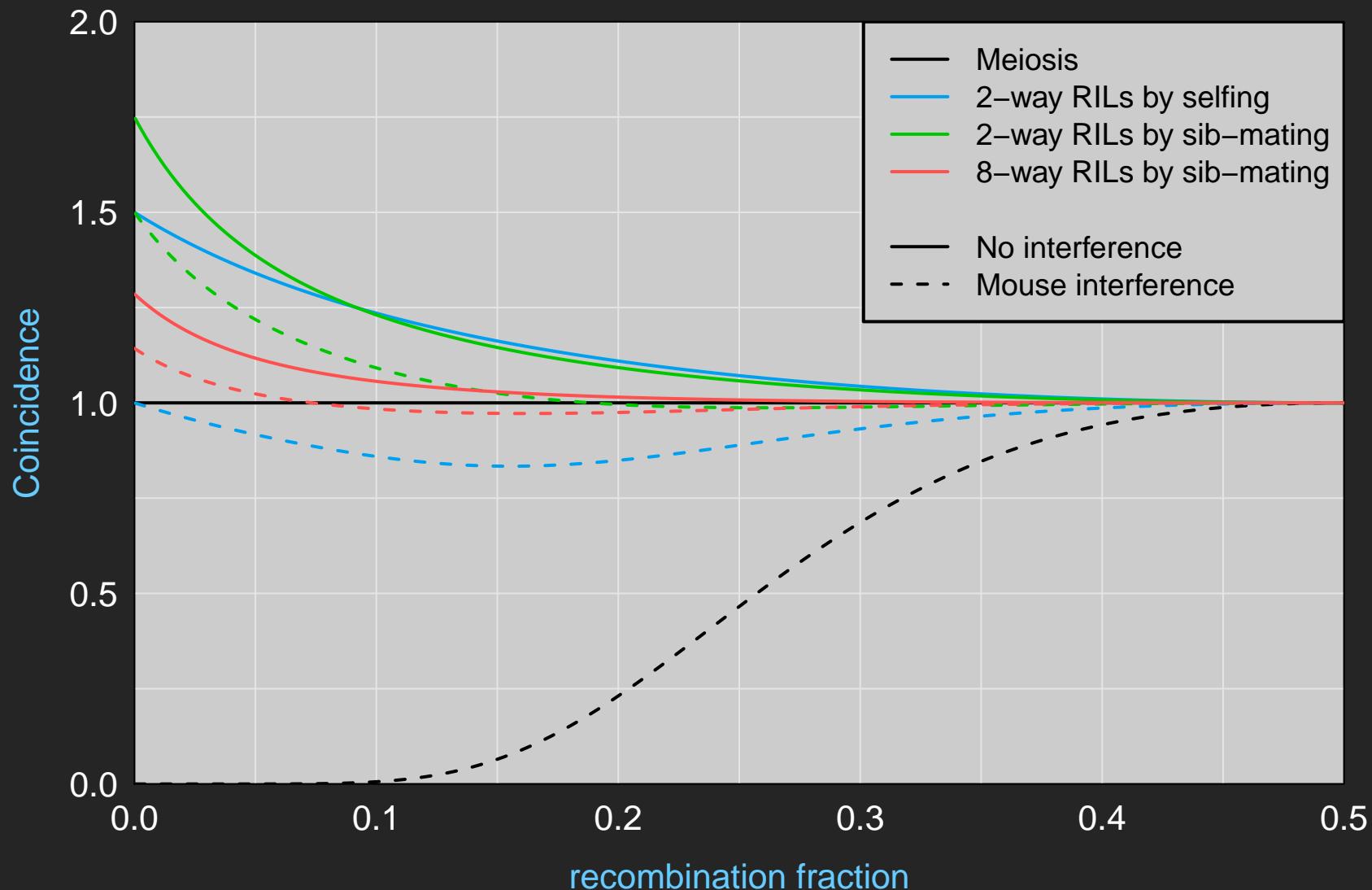
Simulation results



3-point coincidence

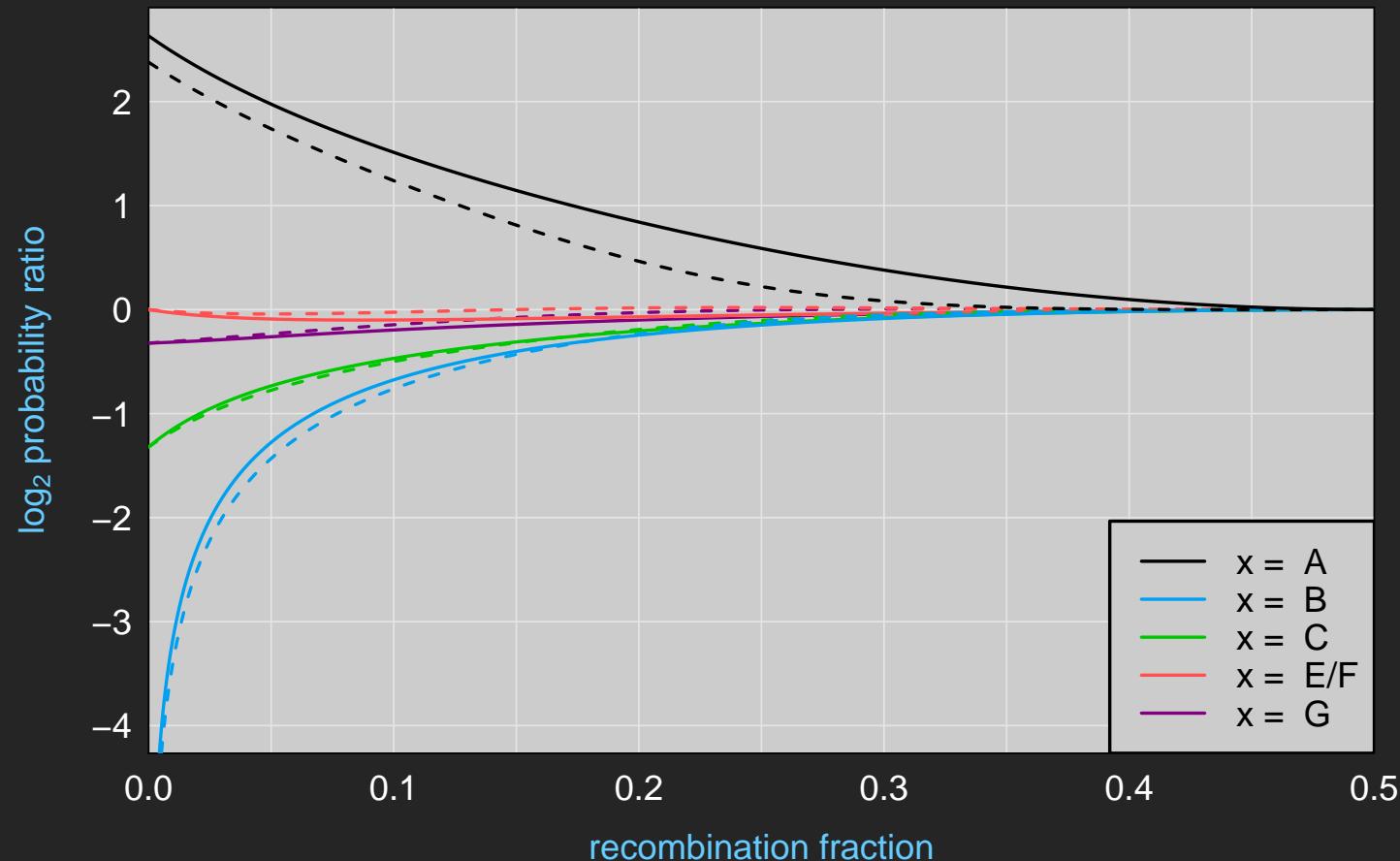
- r_{ij} = recombination fraction for interval (i, j)
Assume $r_{12} = r_{23} = r$.
- Coincidence = $c = \Pr(\text{double recombinant})/r^2$
 $= \Pr(\text{rec'n in 23} \mid \text{rec'n in 12})/\Pr(\text{rec'n in 12})$
- No interference = 1
Positive interference < 1
Negative interference > 1
- Generally c is a function of r

Coincidence function



non-Markov property

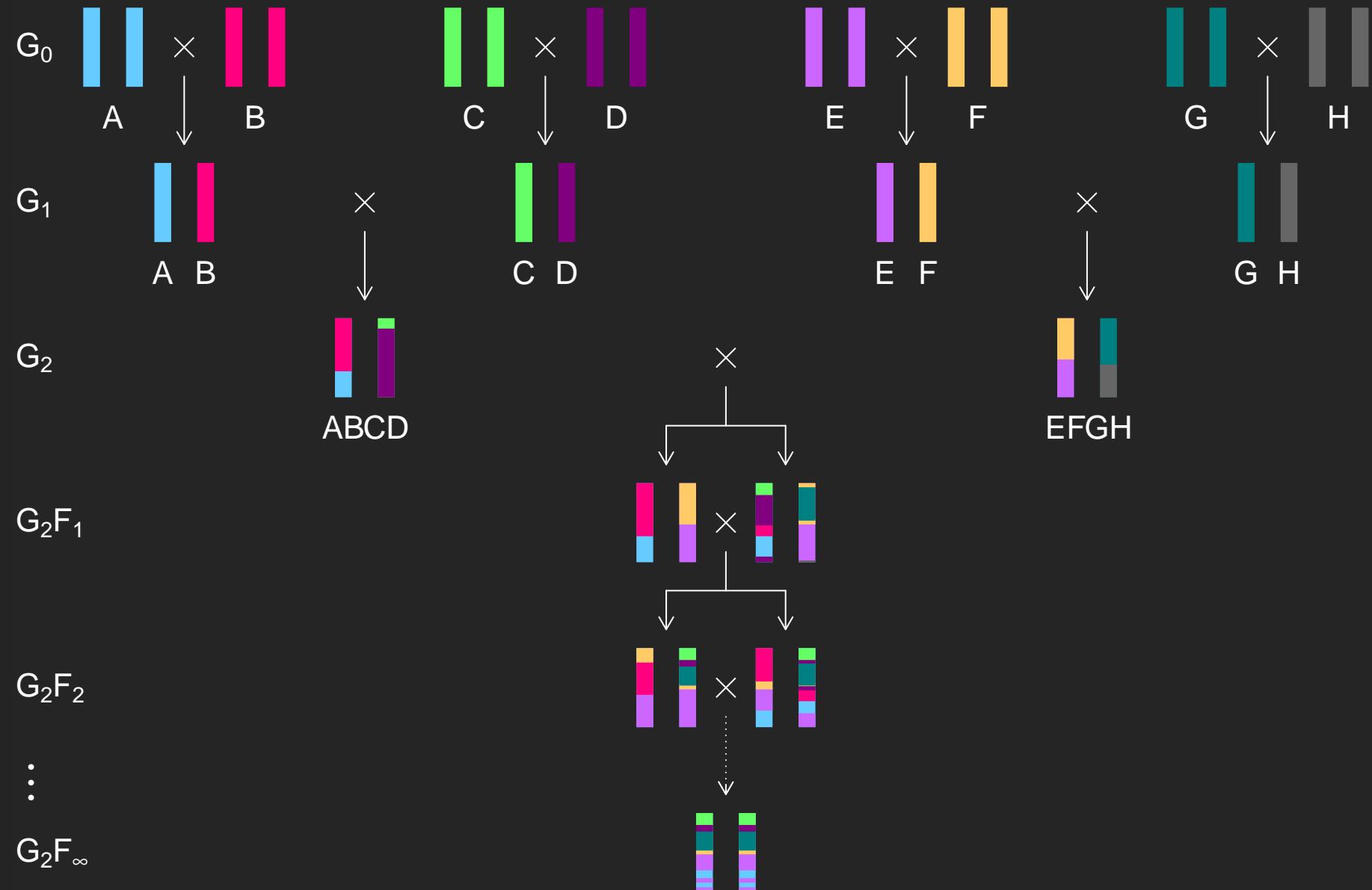
$$\log_2 \left\{ \frac{\Pr(M_3 = A \mid M_2 = E, M_1 = x)}{\Pr(M_3 = A \mid M_2 = E)} \right\}$$



Coincidence formula

$$C = \frac{(1 + 6r)[280 + 1208r - 848r^2 + 5c(7 - 28r - 368r^2 + 344r^3) - 2c^2(49 - 324r + 452r^2)r^2 - 16c^3(1 - 2r)r^4]}{49(1 + 12r - 12cr^2)[5 + 10r - 4(2 + c)r^2 + 8cr^3]}$$

The CC again



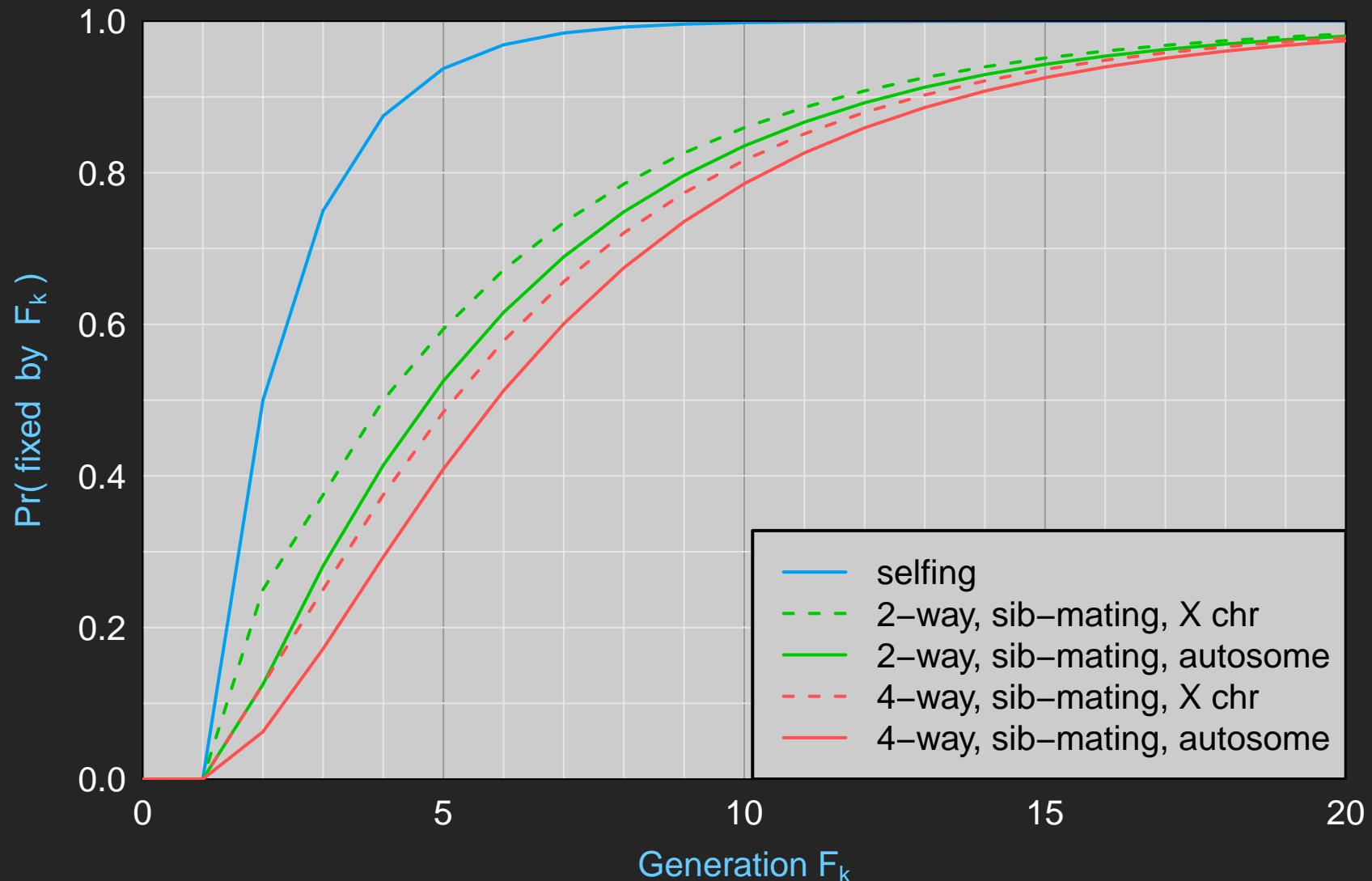
Crazy table

Table 4 Two-locus haplotype probabilities at generation F_k in the formation of four-way RIL by sibling mating

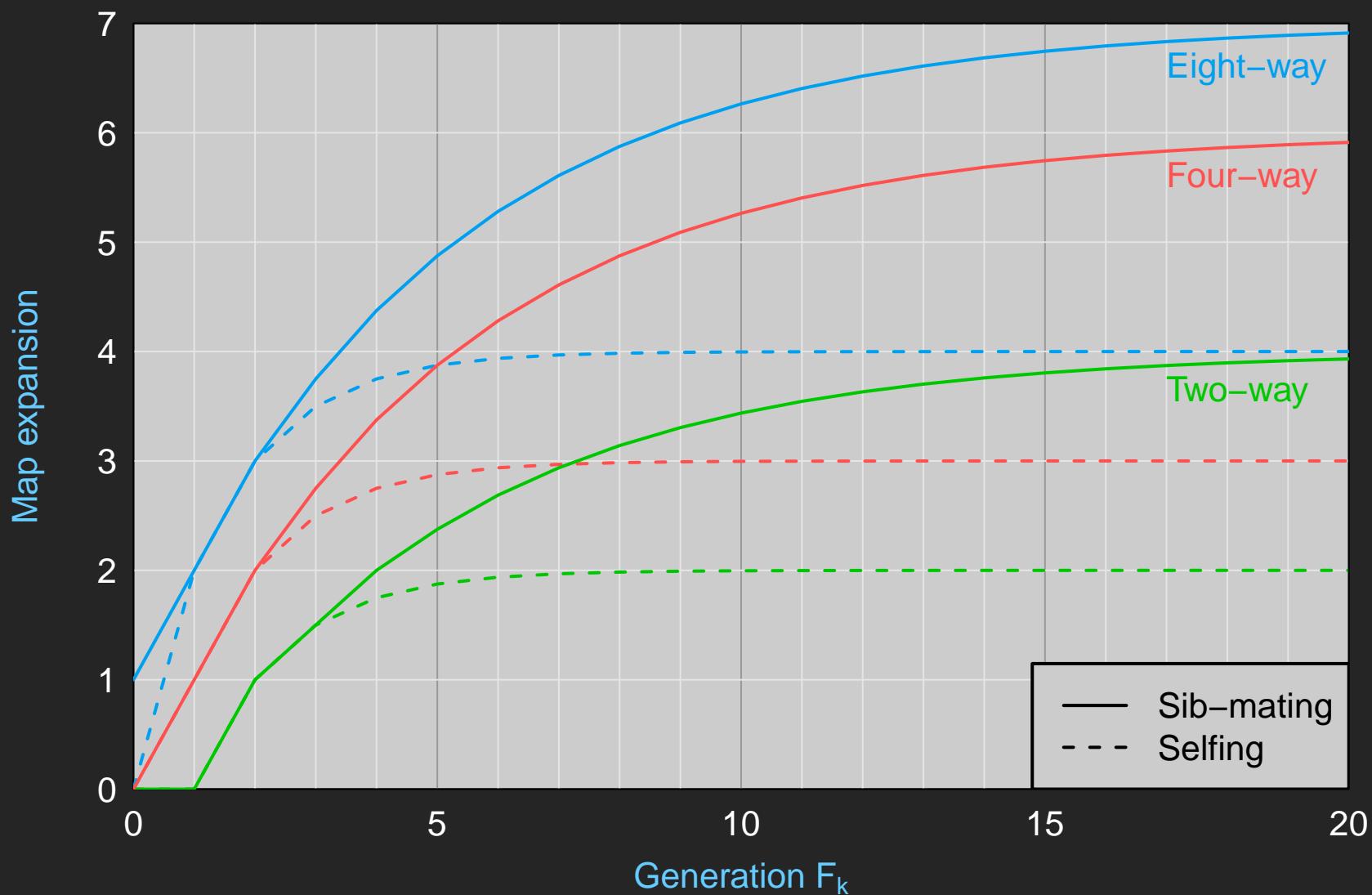
Chr.	Individual	Prototype	No. states	Probability of each
A	Random	AA	4	$\frac{1}{4(1+6r)} - \left[\frac{6r^2-7r-3rs}{4(1+6r)s} \right] \left(\frac{1-2r+s}{4} \right)^k + \left[\frac{6r^2-7r+3rs}{4(1+6r)s} \right] \left(\frac{1-2r-s}{4} \right)^k$
		AB	4	$\frac{r}{2(1+6r)} + \left[\frac{10r^2-r-rs}{4(1+6r)s} \right] \left(\frac{1-2r+s}{4} \right)^k - \left[\frac{10r^2-r+rs}{4(1+6r)s} \right] \left(\frac{1-2r-s}{4} \right)^k$
		AC	8	$\frac{r}{2(1+6r)} - \left[\frac{2r^2+3r+rs}{4(1+6r)s} \right] \left(\frac{1-2r+s}{4} \right)^k + \left[\frac{2r^2+3r-rs}{4(1+6r)s} \right] \left(\frac{1-2r-s}{4} \right)^k$
X	Female	AA	2	$\frac{1}{3(1+4r)} + \frac{1}{6(1+r)} \left(-\frac{1}{2} \right)^k - \left[\frac{4r^3-(4r^2+3r)t+3r^2-5r}{4(4r^2+5r+1)t} \right] \left(\frac{1-r+t}{4} \right)^k + \left[\frac{4r^3+(4r^2+3r)t+3r^2-5r}{4(4r^2+5r+1)t} \right] \left(\frac{1-r-t}{4} \right)^k$
		AB	2	$\frac{2r}{3(1+4r)} + \frac{r}{3(1+r)} \left(-\frac{1}{2} \right)^k + \left[\frac{2r^3+6r^2-(2r^2+r)t}{2(4r^2+5r+1)t} \right] \left(\frac{1-r+t}{4} \right)^k - \left[\frac{2r^3+6r^2+(2r^2+r)t}{2(4r^2+5r+1)t} \right] \left(\frac{1-r-t}{4} \right)^k$
		AC	4	$\frac{2r}{3(1+4r)} - \frac{r}{6(1+r)} \left(-\frac{1}{2} \right)^k - \left[\frac{9r^2+5r+rt}{4(4r^2+5r+1)t} \right] \left(\frac{1-r+t}{4} \right)^k + \left[\frac{9r^2+5r-rt}{4(4r^2+5r+1)t} \right] \left(\frac{1-r-t}{4} \right)^k$
		CC	1	$\frac{1}{3(1+4r)} - \frac{1}{3(1+r)} \left(-\frac{1}{2} \right)^k + \left[\frac{9r^2+5r+rt}{2(4r^2+5r+1)t} \right] \left(\frac{1-r+t}{4} \right)^k - \left[\frac{9r^2+5r-rt}{2(4r^2+5r+1)t} \right] \left(\frac{1-r-t}{4} \right)^k$
X	Male	AA	2	$\frac{1}{3(1+4r)} - \frac{1}{3(1+r)} \left(-\frac{1}{2} \right)^k + \left[\frac{r^3-(8r^3+r^2-3r)t-10r^2+5r}{2(4r^4-35r^3-29r^2+15r+5)} \right] \left(\frac{1-r+t}{4} \right)^k + \left[\frac{r^3+(8r^3+r^2-3r)t-10r^2+5r}{2(4r^4-35r^3-29r^2+15r+5)} \right] \left(\frac{1-r-t}{4} \right)^k$
		AB	2	$\frac{2r}{3(1+4r)} - \frac{2r}{3(1+r)} \left(-\frac{1}{2} \right)^k + \left[\frac{r^4+(5r^3-r)t-10r^3+5r^2}{4r^4-35r^3-29r^2+15r+5} \right] \left(\frac{1-r+t}{4} \right)^k + \left[\frac{r^4-(5r^3-r)t-10r^3+5r^2}{4r^4-35r^3-29r^2+15r+5} \right] \left(\frac{1-r-t}{4} \right)^k$
		AC	4	$\frac{2r}{3(1+4r)} + \frac{r}{3(1+r)} \left(-\frac{1}{2} \right)^k - \left[\frac{2r^4+(2r^3-r^2+r)t-19r^3+5r}{2(4r^4-35r^3-29r^2+15r+5)} \right] \left(\frac{1-r+t}{4} \right)^k - \left[\frac{2r^4-(2r^3-r^2+r)t-19r^3+5r}{2(4r^4-35r^3-29r^2+15r+5)} \right] \left(\frac{1-r-t}{4} \right)^k$
		CC	1	$\frac{1}{3(1+4r)} + \frac{2}{3(1+r)} \left(-\frac{1}{2} \right)^k + \left[\frac{2r^4+(2r^3-r^2+r)t-19r^3+5r}{4r^4-35r^3-29r^2+15r+5} \right] \left(\frac{1-r+t}{4} \right)^k + \left[\frac{2r^4-(2r^3-r^2+r)t-19r^3+5r}{4r^4-35r^3-29r^2+15r+5} \right] \left(\frac{1-r-t}{4} \right)^k$

$s = \sqrt{4r^2-12r+5}$ and $t = \sqrt{r^2-10r+5}$; the autosomal haplotype probabilities are valid for $r < \frac{1}{2}$

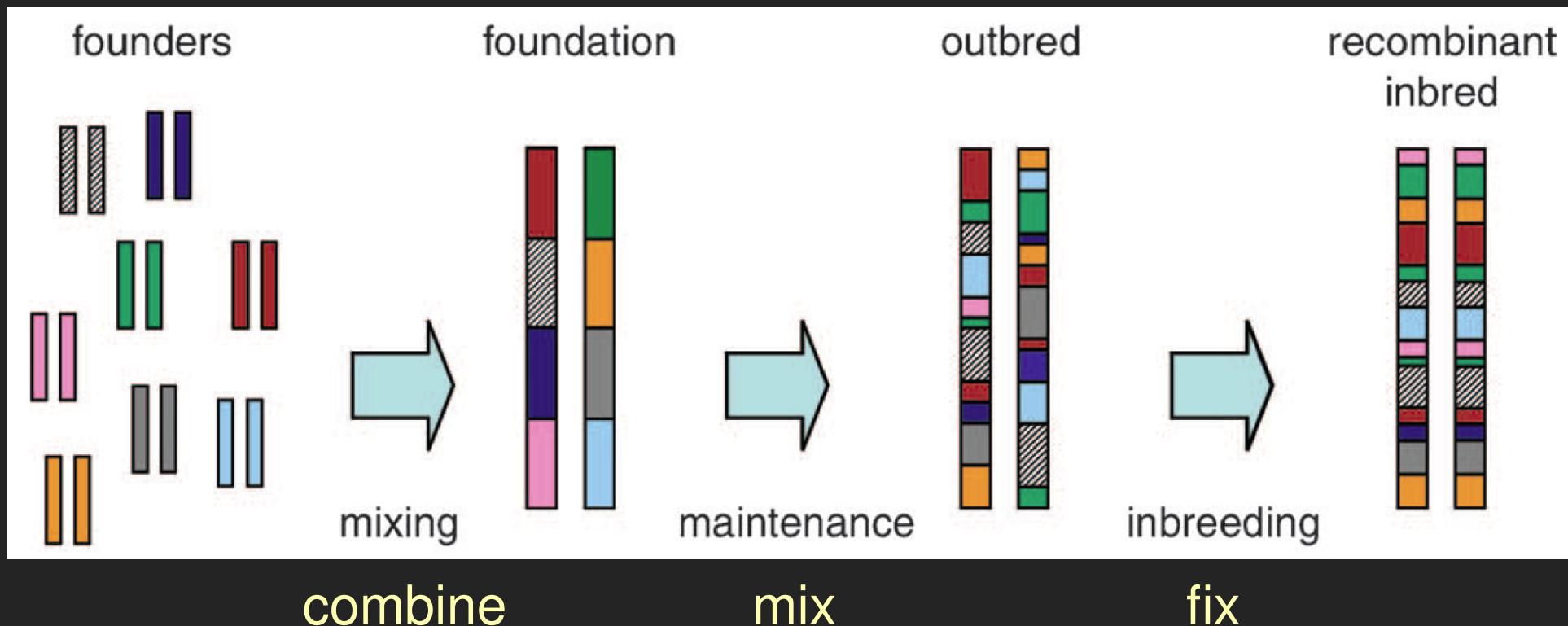
Time to fixation



Map expansion



MAGIC lines



How many?

Which?

How long?

How?

MAGIC is magic

- Genetic diversity
- High-precision mapping
- Predictable linkage disequilibrium
- Phenotype replicates to reduce individual variation
- Pool phenotypes from multiple labs, environments, treatments
- Genotype once

MAGIC is magic

- Genetic diversity
- High-precision mapping
- Predictable linkage disequilibrium
- Phenotype replicates to reduce individual variation
- Pool phenotypes from multiple labs, environments, treatments
- Genotype once
- Cool name

The goal

Identify QTL

- Power
- Mapping precision

The goal

Identify QTG

- Power
- Mapping precision

The goal

Identify QTG

- Power
- Mapping precision
- Estimate QTL allele frequencies

Principles

- Avoid population structure
- Tradeoff between *power for de novo discovery* and *mapping precision*
- More QTL to find \Rightarrow more QTL getting in the way?
- More QTL alleles \Rightarrow less information about each
- Are QTL alleles common or rare?

How many founders?

More

- More general use
- More QTL
- Greater precision
- Estimate allele frequencies
- Haplotype analysis in founders

Fewer

- Lower residual variance
- Greater power for a particular QTL?
- Better power for epistasis
- Rare alleles are less rare

Which founders?

- Diverse
- Interesting
- No breeding problems
- Balanced: star phylogeny

How much mixing?

- More mixing \Rightarrow Greater mapping precision
- ...but lower power for *de novo* mapping
- Potential for population structure, missing alleles
- Random mating or curated mating?
- Start with many random cross directions?

Selfing or DH?

- Inbreeding gives added recombination
- But not so much as at the mixing stage
- If doubled haploids are feasible, use them

Key analysis issues

How to deal with the multiple alleles?

- Full model (an effect for each allele)
- Diallelic QTL model
- Random effects model (like BLUP)

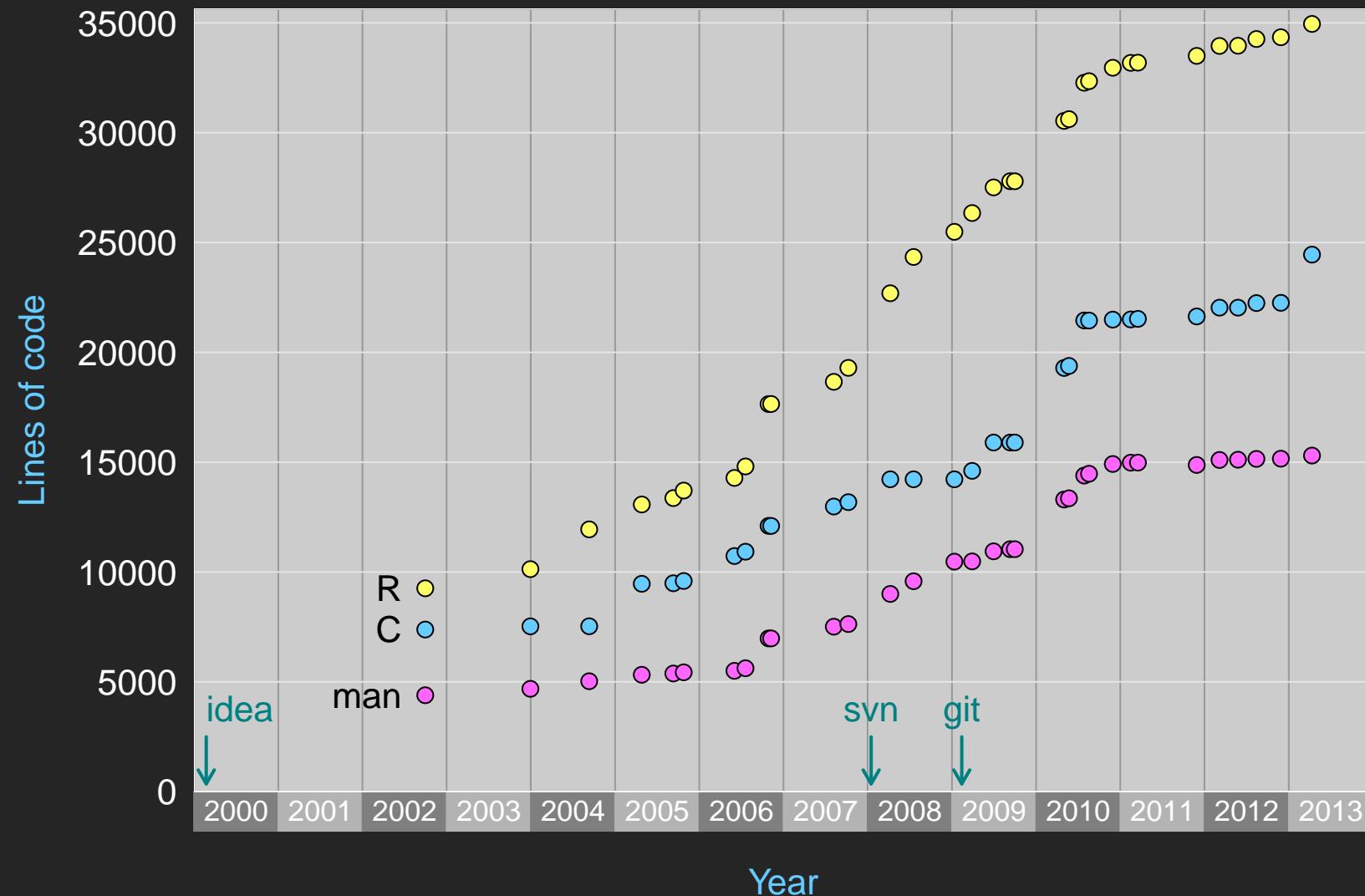
How to account for multiple QTL?

- Stepwise selection
- Bayesian model averaging
- Random effect for polygenes

Sharing is also key

- The greatest power of MAGIC comes from sharing
Pooling data, exploring multiple environments/treatments
- Common software needs
Analysis software, database infrastructure
- Our students need to learn the same stuff
Joint training opportunities

R/qtI



R/qtl: Good things

- Hidden Markov model code
- Many methods
- Extensible
- Open

R/qtl: Not-so-good

- Some really bad code
 - “Scantwo” is 4% of R code and 20% of C code, with a 1354-line R function
 - The stupidest R code ever:

```
for(i in 1:n) {  
  temp[i] <- all(data[2,1:i]== "")  
  if(!temp[i]) break  
}
```
- The central data structure is too restrictive
 - Can't handle multiple individuals per genotype
- Memory mis-management
- Lack of connections to genome databases
- Largely one developer (who is also the support staff)

qtlHD

- Re-implementation of R/qtl
Aimed at high-throughput computing
- High-dimensional data
Dense markers, high-dim phenotypes, modern cross designs
- Separate from R
But accessible from R (and ruby and python)
- Interactive graphics
- Connections to genome DBs/browsers
- github.com/qtlHD/qtlHD
(Still at an exploratory stage)

Summary

- How many founders?

Tradeoff between diversity and information about particular alleles

- Which founders?

Diverse, interesting, no breeding problems, star phylogeny

- How long to mix?

Tradeoff between power and precision

- How to fix?

Doubled haploids are great if feasible

- Let's share!

Lines, data, software, training

Summary

- How many founders?

Tradeoff between diversity and information about particular alleles

- Which founders?

Diverse, interesting, no breeding problems, star phylogeny

- How long to mix?

Tradeoff between power and precision

- How to fix?

Doubled haploids are great if feasible

- Let's collaborate!

Lines, data, software, training

Acknowledgments

RIL calculations

James Crow

Bret Larget

David Levin

Dan Naiman

Timo Seppäläinen

Friedrich Teuscher

R/qtl

Danny Arends

Gary Churchill

Ritsert Jansen

Pjotr Prins

Śaunak Sen

Hao Wu

Brian Yandell

Funding: NIH R01 GM074244