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MAGIC lines
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How many?
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How long? How?
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But first . . .
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Simulation results

recombination fraction
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When a heterozygous population is self-fertilized or inbred the ultimate 
result (apart from effects of mutation) is complete homozygosis. The final 
proportions of the various genotypes are usually independent o f  the system 
of inbreeding adopted, although, as JENNINGS (1916) and others have 
shown, the speed at  which equilibrium is approached is greater in the case 
o f  self-fertilization than of brother-sister mating, and so on. 

I f  however the population be heterozygous for linked genes, the final 
proportions depend on the system of mating, for crossing over can only oc- 
cur in double heterozygotes, and the proportion of double heterozygotes 
falls off a t  a different rate in different mating systems. JENNINGS (1917) 
stated that he “would find it a relief if someone else would deal thoroughly 
with the laborious problem of the effects of inbreeding on two pairs of 
linked factors.” This is the object of the present paper. ROBBINS (1918) 
solved the problem in the case o f  self-fertilization. 

In what follows we employ a direct method to obtain the final propor- 
tions of the population. The rate of approach can be calculated, but this 
is a very laborious process, and always involves the irrational roots of 
quadratic, sometimes those of quartic or higher equations. In  each case we 
shall suppose that the number of dominant and recessive genes of each 
type in the population is equal throughout the progress of the inbreeding. 
This enormously simplifies the mathematics. Thus a system of 55 equa- 

MENDEL MEMORIAL FUND. 

GENETICS 16: 357 J1 1931 

* Part of the cost of the mathematical composition in this article is paid by the GALTON AND 
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Result for selfing
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Result for sib-mating
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Non-linear regression

out <- nls( R ~ a*r/(1 + b*r),

data = data.frame(r=r, R=R),

start = list(a=4, b=6))

summary(out)
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Non-linear regression

out <- nls( R ~ a*r/(1 + b*r),

data = data.frame(r=r, R=R),

start = list(a=4, b=6))

summary(out)
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Non-linear regression

out <- nls( R ~ a*r/(1 + b*r),

data = data.frame(r=r, R=R),

start = list(a=4, b=6))

summary(out)

More data

Estimate Std. Error Estimate Std. Error

a 7.016 0.011 a 7.003 0.008

b 6.023 0.016 b 6.005 0.012
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Simulation results
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3-point coincidence

1 32

• rij = recombination fraction for interval (i, j)
Assume r12 = r23 = r.

• Coincidence = c = Pr(double recombinant)/r2

= Pr(rec’n in 23 | rec’n in 12)/Pr(rec’n in 12)

• No interference = 1
Positive interference < 1
Negative interference > 1

• Generally c is a function of r
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Coincidence function

recombination fraction
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non-Markov property

log2

{
Pr(M3 = A | M2 = E,M1 = x)

Pr(M3 = A | M2 = E)

}

recombination fraction
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Coincidence formula

C =
(1 + 6r)[280 + 1208r − 848r2 + 5c(7− 28r − 368r2 + 344r3)− 2c2(49− 324r + 452r2)r2 − 16c3(1− 2r)r4]

49(1 + 12r − 12cr2)[5 + 10r − 4(2 + c)r2 + 8cr3]

Teuscher & Broman, Genetics 175:1267, 2007
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The CC again
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Crazy table

Table 4 Two-locus haplotype probabilities at generation Fk in the formation of four-way RIL by sibling mating
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Time to fixation

Generation Fk
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Map expansion
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MAGIC lines

combine mix fix

How many?

Which?

How long? How?
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MAGIC is magic

• Genetic diversity

• High-precision mapping

• Predictable linkage disequilibrium

• Phenotype replicates to reduce individual variation

• Pool phenotypes from multiple labs, environments, treatments

• Genotype once

• Cool name
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The goal

Identify QTL

• Power

•Mapping precision
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The goal

Identify QTG

• Power

•Mapping precision

• Estimate QTL allele frequencies
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Principles

• Avoid population structure

• Tradeoff between power for de novo discovery and mapping precision

• More QTL to find ⇒ more QTL getting in the way?

• More QTL alleles ⇒ less information about each

• Are QTL alleles common or rare?

23



How many founders?

More

• More general use

• More QTL

• Greater precision

• Estimate allele frequencies

• Haplotype analysis in founders

Fewer

• Lower residual variance

• Greater power for a particular QTL?

• Better power for epistasis

• Rare alleles are less rare

24



Which founders?

• Diverse

• Interesting

• No breeding problems

• Balanced: star phylogeny

25



How much mixing?

•More mixing ⇒ Greater mapping precision

• ...but lower power for de novo mapping

• Potential for population structure, missing alleles

• Random mating or curated mating?

• Start with many random cross directions?

26



Selfing or DH?

• Inbreeding gives added recombination

• But not so much as at the mixing stage

• If doubled haploids are feasible, use them

27



Key analysis issues

How to deal with the multiple alleles?

• Full model (an effect for each allele)

• Diallelic QTL model

• Random effects model (like BLUP)

How to account for multiple QTL?

• Stepwise selection

• Bayesian model averaging

• Random effect for polygenes

28



Sharing is also key

• The greatest power of MAGIC comes from sharing
Pooling data, exploring multiple environments/treatments

• Common software needs
Analysis software, database infrastructure

• Our students need to learn the same stuff
Joint training opportunities

29



R/qtl

Year

Li
ne

s 
of

 c
od

e

0

5000

10000

15000

20000

25000

30000

35000

●
●

●
● ●●

●
●

●●
●

●

●

●
●

●
●●●

●●

●●
●●● ● ●●● ●

●

● ● ●

● ●●
●●

●●
●●

● ● ●●

●●●

●●

●● ●●● ● ●●● ●

●

● ● ● ● ●● ●●

●●
●●

●
●

●● ●●●

●●
●●

●●● ● ●●● ● ●

2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013

R
C

manidea svn git

30

http://www.rqtl.org


R/qtl: Good things

• Hidden Markov model code

•Many methods

• Extensible

• Open
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R/qtl: Not-so-good

• Some really bad code
– “Scantwo” is 4% of R code and 20% of C code, with a 1354-line R function
– The stupidest R code ever:

for(i in 1:n) {

temp[i] <- all(data[2,1:i]=="")

if(!temp[i]) break

}

• The central data structure is too restrictive
Can’t handle multiple individuals per genotype

•Memory mis-management

• Lack of connections to genome databases

• Largely one developer (who is also the support staff)

32
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qtlHD

• Re-implementation of R/qtl
Aimed at high-throughput computing

• High-dimensional data
Dense markers, high-dim phenotypes, modern cross designs

• Separate from R
But accessible from R (and ruby and python)

• Interactive graphics

• Connections to genome DBs/browsers

• github.com/qtlHD/qtlHD
(Still at an exploratory stage)

33
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Summary

• How many founders?
Tradeoff between diversity and information about particular alleles

•Which founders?
Diverse, interesting, no breeding problems, star phylogeny

• How long to mix?
Tradeoff between power and precision

• How to fix?
Doubled haploids are great if feasible

• Let’s share!
Lines, data, software, training
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Diverse, interesting, no breeding problems, star phylogeny

• How long to mix?
Tradeoff between power and precision

• How to fix?
Doubled haploids are great if feasible

• Let’s collaborate!
Lines, data, software, training
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