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Gene–gene interaction may play important roles in complex disease studies, in which interaction effects
coupled with single-gene effects are active. Many interaction models have been proposed since the
beginning of the last century. However, the existing approaches including statistical and data mining
methods rarely consider genetic interaction models, which make the interaction results lack biological or
genetic meaning. In this study, we developed an entropy-based method integrating two-locus genetic
models to explore such interaction effects. We performed our method to simulated and real data for
evaluation. Simulation results show that this method is effective to detect gene–gene interaction and,
furthermore, it is able to identify the best-fit model from various interaction models. Moreover, our
method, when applied to malaria data, successfully revealed negative epistatic effect between sickle cell
anemia and aþ -thalassemia against malaria.
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Introduction
The advent of high-throughput genotyping technology has
made the technology of whole-genome single-nucleotide
polymorphisms (SNPs) scanning for susceptible genes easy
and popular, resulting in the generation of mass geno-
typing data. Analysis of these data using statistical and data
mining methods have led to the discoveries of many
association or predisposing genes, yet few causative genes
were determined.1 In addition, it is hard to put forward

genetic mechanisms for most common diseases. Therefore,
many researches are focusing on factors affecting the

power of association study.2–4 One of the most important

factors is gene–gene interaction5,6 and the other is gene–

environment interaction.7 In this paper, we focus on gene–

gene interaction, or the so-called epistasis.
As first advanced by Bateson,8 epistasis has been defined

as a phenomenon whereby the effects of a given gene on a

biological trait are masked or enhanced by one or more

genes.9 Several studies8–11 have provided evidences for the

existence of gene–gene interaction or epistasis. Since

gene–gene interactions may play a role in the mechanisms

of complex diseases and weaken the major effects of single

gene, the association study often turns out to be confusing

and hard to explain.12 Genetic interaction models that

consider two-locus genotype combinations have been

proposed; for example (Figure 1), the threshold model,
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jointly recessive–recessive model and jointly dominant–
dominant model.13–15 Some of these models, such as the
additive model, multiplicative model and heterogeneity
model, can be presented as deviation formation.15–17 Li
and Reich15 have enumerated all possible two-locus
models, some of which had been reported with significant
biological meaning.

Statistical18 and data mining methods are the main-
stream in the current analysis approaches. One of the most
familiar methods is Cordell’s unified stepwise regression
procedure,5 which can be applied to the additive, multi-
plicative and heterogeneity model. It is the most familiar
method for analyzing interaction effects. Millstein et al19

developed an interaction testing framework called FITF,
which is also based on stepwise regression. Recently, Zhao
et al20 proposed an LD-based measure between two
unlinked loci and the method was proved to be powerful
under some two-locus disease models. Evans et al21

investigated the performance of two simple two-stage
strategies. Moore et al22 used attribute interaction23 to
select potential interacting SNPs and construct interaction
graph. While these methods are applicable and useful, they
often could not distinguish which two-locus model was
proper for the interaction effects but could only tell that

interaction exists under certain genetic data. Multilocus
statistics such as S-statistic24 and data mining approaches,
such as multifactor-dimensionality reduction (MDR),25

restricted partitioning method,26 combinatorial partition-
ing method,27 dynamic algorithm (DA),28 decision tree29

and random forest,30 are powerful to reduce data dimen-
sion and to get a set of SNPs that can interpret the results
best. Taking the popular MDR25 as an example, it considers
each possible genotype combination of SNPs as high- or
low-risk combinations, repeats the calculation from single
SNP to multi-SNP combinations and performs cross-
validation to get combinations with maximum cross-
validation consistency and minimum prediction error at
different dimensions. However, as Moore et al pointed out,
the combination results of MDR were still hard to interpret.
These methods focus on data reduction by mathematical
methods but ignore how to interpret the resulting inter-
action effects from the point of view of biology or genetics.
Thus the results are often confusing as statistical signifi-
cance may not correspond to biological or genetic
significance.6,31 For example, if we know two SNPs have
significant statistical interaction, how do they interact in
biology or genetics? Does each allele of SNPs act? Do
dominant or recessive effects exist?

To solve these problems, we developed a novel entropy-
based method called ESNP2 (entropy-based SNP–SNP
interaction method) integrating two-locus genetic models.
In our ESNP2 system, there are two options: ESNP2-S
(ESNP2-standard option) and ESNP2-Mx (ESNP2-model
option). The former aims to detect two-locus interactions,
whereas the latter, ESNP2-Mx, tests the interaction against
various two-locus genetic models and gets the best-fit
model. A program implemented by Java for ESNP2
algorithm can be downloaded from our website (http://
www.biosino.org/papers/esnp2/).

Methods
Entropy is defined as follows:32

Hðp;1# pÞ ¼ #p log p# ð1# pÞ logð1# pÞ

p ¼ Ncase

Ncase þNcontrol

where Ncase denotes the number of cases in the population
and Ncontrol the number of controls in the population.

ESNP2-S
Our entropy-based method has three steps (Figure 2).

First step: compute entropy of initial data set (H0)
Given an initial data set (or sample), D (caseþ control), p
and (1#p) are the proportions of case and control in the
data set, respectively. According to p, we can compute the
entropy of the data set:

H0 ¼ HðDÞ ¼ Hðp;1# pÞ ¼ #p log p# ð1# pÞ logð1# pÞ

Figure 1 Eight typical two-locus models. 1 denotes high-risk
genotype combinations and 0 low-risk. M1, jointly recessive-recessive
model (RR); M3, jointly recessive-dominant model (RD); M7, single-
gene recessive model (1L: R); M11, threshold model (T); M15,
modifying-effect model (Mod); M27, jointly dominant-dominant
model (DD); M78, exclusive OR model (XOR); M84. diagonal model
(Diagonal).
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Second step: compute gain ratio of single SNP (DR1 and DR2)
The effects of a single SNP that may be involved in
interaction can be estimated by computing its gain ratio.
Considering each SNP splitting the initial data set D with
its possible genotypes into several subsets, S1(D)¼ S1{DAA,
DAa, Daa}. Each subset has its sub-entropy H(Di) and
corresponding weighting coefficient P(Di), which is the
proportion of a certain genotype or genotype combina-
tions to the total data set.

H1 ¼ HðDjS1Þ ¼
X3

i¼1

PðDiÞHðDiÞ

GainðDjS1Þ ¼ H0 #H1

DR1 ¼ H0 #H1

H0

Gain refers to information gain, which is also called
mutual information when considering H1 as conditional
entropy. It reflects the relation between SNP and disease
status. As gain correlates with entropy of the initial data set
that is determined by p, we normalize it to eliminate the
effects of p and get gain ratio DR1. In addition, DR1 is a
likelihood ratio that can be approximated to a w2-test
(proof not shown here).

Similarly, we can compute the gain ratio of another SNP
DR2 involved in interaction.

Third step: compute gain ratio of SNPs’ interactions
(DR1,2)
Interacting SNPs split the initial data set D into nine
subsets:

S1;2ðDÞ
¼ S1;2fDAABB;DAABb;DAAbb;DAaBB;DAaBb;DAabb;

DaaBB;DaaBb;Daabbg

Its gain ratio DR12 can be computed as follows:

H1;2 ¼ HðDjS1;2Þ ¼
X9

i¼1

PðDiÞHðDiÞ

GainðDjS1;2Þ ¼ ðH0 #H1;2Þ #maxfðH0 #H1Þ; ðH0 #H2Þg
¼ minfH1;H2g #H1;2

DR1;2 ¼ minfH1;H2g #H1;2

minfH1;H2g

DR1,2 measures interaction effects of SNP1 and SNP2
whenever marginal effects exist. Bootstrapping strategy33

is performed to get P-values corresponding to DR1,2 with
the initial data set D. The bootstrapping strategy resamples
random samples of size (NcaseþNcontrol) with replacement
from the original data. Repeating the sampling procedure a
large number of times and counting new DR1,2 larger than
the original value generates P-values.

ESNP2-Mx
ESNP2-S aims to explore the interaction effects of two
SNPs. It explores all the nine possible combinations of two
SNPs independently. To bestow ESNP2 with biological or
genetic meaning, we extend ESNP2-S to ESNP2-Mx. Mx is
the abbreviation of Model x, such as M1, M11 and M27,
representing the jointly recessive model, threshold model
and jointly dominant model, respectively. It is a binary
coding system used by Li and Reich.15 Figure 1 shows eight
classical interaction models. Two-locus genetic models are
presented as penetrance table where 1 denotes high
penetrance or high risk and 0 low penetrance or low risk.
High-risk genotype combination leads to higher disease
susceptibility in case than in control. In practice, risk can
be evaluated by the ratio p (ie, if a certain SNP combination
has a p larger than the average of the data set, it can be
considered as a high-risk combination). By using ESNP2-S
to calculate gain ratios and P-values for each of the possible
models, we then get the best-fit model. If both ESNP2-S and
ESNP2-Mx result in similar and significant P-values, we can
conclude the data are fitting a certain interaction model.

Similar to ESNP2-S, ESNP2-Mx procedure has three steps
except the third step (Figure 2). With ESNP2-Mx, the initial

Figure 2 Workflows of ESNP2-S and ESNP2-Mx.
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data set D is divided into two subsets, namely high- and
low-risk subsets: S01;2ðDÞ ¼ S01;2fDhigh;Dlowg:

H 0
1;2 ¼ PðDhighÞHðDhighÞ þ PðDlowÞHðDlowÞ

DR0
1;2 ¼

minfH1;H2g #H 0
1;2

minfH1;H2g

where H
0

1,2 is the entropy and DR
0

1,2 is the gain ratio.
According to different candidate interaction models,

new gain ratio DR
0

1,2 can be calculated, followed by a
bootstrapping strategy, to get the P-values. The procedure
is similar to that of ESNP2-S.

Results
Data simulation
To validate the effect of ESNP2-S and ESNP2-Mx on
detecting the different association intensities between
SNPs and disease, we constructed a simulated data set with
respect to certain parameters. Odds ratio (OR) was used as a
parameter to define the relationship between disease and
two loci. For various interaction models, we set OR to be
1.2, 1.5 and 1.8 ordinally, the sample sizes of case and
control to be 1000 and simulation times to be 100 to get
the median of the results. Eight classical interaction models

were selected as shown in Figure 1. First, the total number
of high- and low-risk genotype combinations were ran-
domly generated for case and control according to the
above parameters. Then we got the number of all possible
genotype combinations with the collapsibility of OR and
certain interaction models.

The resulting simulation data were then analyzed by
ESNP2-S and ESNP2-Mx, respectively, with bootstrapping
times set to be 104 by which we could get the maximal
precision of 10#4 (we marked it as 0 instead of o10#4).
Even longer bootstrapping times can be consumed if
higher precise results are needed. The familiar logistic
stepwise regression has also been performed to estimate the
effects deviated from additive model in log scale, which is
considered to be interaction effects. Single-gene effects
have been estimated by the minimum P-value of single-
point association results of two genes (Figures 3 and 4). As a
control, one single-gene effect model (M7) was included.

As the value of the parameter OR increases, both single-
gene effects and interaction effects enhance rapidly as
shown by most models. Significant single-gene effects can
be observed except in models M78 and M84, whereas M7 is
a model of single-gene effects that is used as a control.
According to M7 data, as all of the three models initially
considered the single gene effect by default, they subse-
quently failed to detect any interaction effects. For models

Figure 3 P-value curves generated by single association, ESNP2-S, ESNP2-Mx and logistic regression for simulated data (M1, M3, M7 and M11).
Single, minimum P-value of two genes’ association results representing maximum single-gene effects; standard, interaction effects computed by
ESNP2-S; model, two-locus model effects computed by ESNP2-Mx; logistic, interaction effects computed by logistic regression representing effects
deviation from additive effects. Standard curve overlaps with model curve entirely.
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M1, M3, M11, M15 and M27, single-gene effects change
more variously than interaction effects. Contrarily,
although M78 and M84 are able to detect stronger
interaction effects, yet only weak single-gene effects have
been observed. Similarly, M1, M11 and M27 show
moderate ability in identifying single-gene effects and
can thus be considered to be standard and symmetric
interaction models. On the other hand, whereas most of
the genetic effects shown by M3 and M15 can be mainly
interpreted by a single gene, only a few epistasis effects
occur when OR is large. As shown in Figures 3 and 4,
ESNP2-Mx using correct models gets approximately the
same results with ESNP2-S because the model data are
simulated perfectly. For each of the eight models, the
corresponding two curves overlap entirely with each other.
In the case of real data analysis, results will deviate from
the proposed models. So ESNP2-Mx will also deviate from
ESNP2-S more or less. As shown in Appendix Table 1
(Supplementary Table 1), which presents with incorrect
models, ESNP2-Mx has much larger P-values than ESNP2-S.

As shown in Figures 3 and 4, ESNP2 gets similar power
with logistic regression, especially when interaction effects
weigh much heavier and single-gene effects behave incon-
spicuously (such as M78, M84). For one thing, our ESNP2-S
can detect interaction effects as sensitively as logistic
regression; for another thing, ESNP2-Mx bears the power
of selecting the best-fit model for the effects by analyzing
and integrating different two-locus models with ESNP2-S.

Analysis of real data
We then incorporated a real data set of malaria cohort
study (Tables 1 and 2) performed by Williams et al34 in
Kenya to further evaluate the availability of ESNP2-S and
ESNP2-Mx. Previous studies have shown that an important
causative protein in malaria is Hemoglobin (Hb), which
has two variants – heterozygote HbAS and homozygote
HbSS that can cause sickle cell anemia. While HbSS is a
lethal mutation leading to premature death, individuals
with HbAS are protective against malaria. Additionally,
there exist other mutations that can protect against severe
and fatal malaria – heterozygote #a/aa and homozygote
#a/#a, which cause aþ -thalassemia.

Table 1 shows data of genotype combinations for malaria
admission, formatted as case/control. w2-tests show that
sickle cell anemia has strong association (3&10#9) with
malaria resistance, while aþ -thalassemia has small associa-
tion (0.063). We first applied ESNP2-S on this data set to
detect the potential interaction effects. The resulting P-
value of this step, as equaling to 6.8&10#5, provides
supporting evidence for interaction. Then we performed
ESNP2-Mx using negative epistasis model (Table 3) to
calculate the interaction model effects and got a P-value of
0.008. As Table 1 is a cohort data, we corrected it with
surveying time (child years of follow-up) as shown in
Table 2. The corrected data have also been analyzed by our
models, resulting in the P-value being o10#6 of the
interaction model effects. We thus concluded that the

Figure 4 P-value curves generated by single association, ESNP2-S, ESNP2-Mx and logistic regression for simulated data (M15, M27, M78 and
M84).
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negative epistasis model fits the malaria data satisfactorily.
While the logistic regression model coupled with Wald test
can only tell whether interactions between sickle cell
anemia and aþ -thalassemia exist and affect malaria
resistance, our method goes a step further by not only
confirming the results but also finding that the negative
epistasis model is proper for the relationship.

Discussion
The epistasis models have been developed and enhanced to
be more complex and perfect since it was first proposed by
Bateson8 one hundred years ago, resulting in the appear-
ance of numerous published models.15 While these models
are effective and powerful in practice application, they
demand different number of disease alleles and variously
show interaction effects. The classical epistasis model or
the so-called modifying-effect model (Mod, M15) is similar
to the single-locus recessive model when regardless of Aabb
combination. The threshold model (T, M11) demands that
at least three disease alleles are affected; the jointly
recessive–recessive model (RR, M1) requires the presence
of two copies of disease alleles.15 Our simulation results in

Figures 3 and 4 show marginal and interaction effects of
various two-locus models, which have also been supported
by marginal effects computed by Li and Reich.15 Identify-
ing fitting models for the interacting SNPs will contribute
to our knowledge about both single gene and interaction
effects. Advances in researches on human diseases35 and
mouse models36 have proposed some gene–gene inter-
action models that contribute to discovering the genetic
mechanisms of common diseases. Moreover, the models
are widely used to simulate data for testing the power of
novel methods.20–22

In the situation of single SNP association, the routine
strategy includes performing allele/genotype tests to
ascertain susceptible SNP, followed by searching for the
best-fitting method to get proper genetic models (additive,
dominant, recessive, etc.).37 The existing interaction
approaches consider only the first step and calculate
interaction effects, while our methods implement the
second step: combining genetic models and gene–gene
interaction measurements with the information concept,
entropy. The advantage of our method has been exhibited
fully in the real data analysis where we got a negative
epistatic model. The key statistical parameter is called gain
ratio, which describes normalized information gain. A
similar work has been carried out by Moore et al.22 The
authors used attribute interaction23 to select SNPs, which
serve as a coordinate format of information gain. Gain
ratio has the further advantage of eliminating potential
effects of the initial data set (the ratio between case and
control) and computing interaction effects whenever
marginal effects exist. By integrating genetic models with
gain ratio, genotype combinations can be distinguished by
the level of risks, and different genotype combinations can
be grouped together if they have the same risk. In the
algorithm, we only categorize the risk into two classes
according to its value, namely high risk and low risk;
however, more levels can be used if needed.

As gain ratio of ESNP2 does not belong to any classical
statistic models, we performed bootstrapping to compute
the P-values. The power of bootstrapping depends on
bootstrapping times as well as the intensity of interaction
effects. Longer bootstrapping times can be consumed if
higher precise results are needed. Simulation results
showed that bootstrapping could gain similar power as
that of logistic regression under most circumstances.

On the whole, we developed an entropy-based method
called ESNP2 to explore gene–gene interaction in SNPs
aimed at discovering their potential biological or genetic
meaning. Two options are provided: the model-free option
ESNP2-S detects gene–gene interaction and the model-
based ESNP2-Mx gets the best-fitting model by fitting
various two-locus genetic models on the potential inter-
action. Both simulation data and real data of malaria show
that this method is effective in detecting gene–gene
interaction and revealing potential genetic models, which

Table 1 Malaria admission data of sickle cell anemia and
a+-thalassemia combination effects

a+-Thalassemia
aa/aa #a/aa #a/#a

Hb HbAA 168:458a 187:680 56:246
HbAS 6:107 9:141 10:36

aData are from Williams’s cohort data,34 shown as case/control format.

Table 2 Malaria admission data of sickle cell anemia and
a+-thalassemia combination effects with adjustment for
child years of follow-up

a+-Thalassemia
aa/aa #a/aa #a/#a

Hb HbAA 69.14:188.49a 55.69:202.52 47.22:207.42
HbAS 13.77:245.63 15.28:239.39 54.67:196.72

aData are from Williams’s cohort data34 with adjustment for child years
of follow-up, shown as case/control format.

Table 3 A negative epistasis model protecting against
malaria

a+-Thalassemia
aa/aa #a/aa #a/#a

Hb HbAA 1a 1 1
HbAS 0 0 1

a1, high-risk genotype combinations; 0, low-risk genotype combinations.
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may contribute to the understanding of genetic mechan-
isms of most common diseases. Further researches should
try to develop a more powerful statistic strategy that can
get the P-values directly instead of bootstrapping. Another
direction should be to focus on extending the methods and
rationale to multilocus.
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