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Topics covered

• Constraint-based approach to metabolic modelling

• Principles of FBA and some biological applications

• Mathematics behind FBA: Optimisation
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Introduction

• A major goal of systems biology is to relate genome 

sequence to cell physiology

• This requires the identification of the components and 

their interactions in the system + mathematical modelling

• Small molecule metabolism is the best described 

molecular network in the cell and there are various 

computational tools to model its behaviour
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Metabolic network reconstructions

Network reconstruction = delineation of the chemical and 

physical interactions between the components

Reed JL, Famili I, Thiele I, Palsson BO. Towards multidimensional 

genome annotation.

Nat Rev Genet. 2006 Feb;7(2):130-41. Review.

PMID: 16418748
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Metabolic network reconstructions

• Automated metabolic reconstructions for > 500 organisms 

based on genome sequence data (e.g. KEGG database)

• Automated reconstructions are usually not suitable for 

modelling

• Manual assembly gives higher quality networks and is 

based on genomic + biochemical + physiological data

Reed JL, Famili I, Thiele I, Palsson BO. Towards multidimensional 

genome annotation.

Nat Rev Genet. 2006 Feb;7(2):130-41. Review.

PMID: 16418748
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• Incorporate information on: 

reaction reversibility

cofactor usage

transport reactions

cellular compartments (e.g. mitochondrion) 

biomass composition

• Only available for well studied microbes (e.g. yeast, E. 

coli and ~10 other bacteria)

• Amenable to modelling

High quality manual reconstructions

For examples, see:

http://gcrg.ucsd.edu/organisms/index.html
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Example: Escherichia coli metabolic reconstruction*

• the best characterized network

• 931 reactions

• 625 different metabolites

But: 67 are dead end!

High quality manual reconstructions

* Reed et al . (2003) Genome Biol 4: R54

Reed JL, Vo TD, Schilling CH, Palsson BO. An expanded genome-scale 

model of Escherichia coli K-12 (iJR904 GSM/GPR).

Genome Biol. 2003;4(9):R54. Epub 2003 Aug 28. 

PMID: 12952533
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How to analyse such a complex network?

ExPASy – Metabolic Pathways

http://www.expasy.ch/cgi-bin/search-biochem-index
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In silico analysis of metabolic networks

• Topological analysis

→ identify pathways, redundancies in the network, 

graph theoretical properties, etc.

• Modelling: simulating the behaviour of metabolism

→ deduce phenotype from genotype + environment
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Two modelling approaches

Mechanistic

(kinetic)

Constraint-based

(stoichiometric)

Find an exact solution
Find a range of 

allowable solutions

Covert MW, Famili I, Palsson BO. Identifying constraints that govern 

cell behavior: a key to converting conceptual to computational models in 

biology?

Biotechnol Bioeng. 2003 Dec 30;84(7):763-72. Review. 

PMID: 14708117

Wiechert W. Modeling and simulation: tools for metabolic engineering.

J Biotechnol. 2002 Mar 14;94(1):37-63. Review.

PMID: 11792451
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Two modelling approaches

Kinetic rate equation for 

each reaction + parameters

Simulation of system’s 

behaviour

Mechanistic

(kinetic)

Constraint-based

(stoichiometric)

Covert MW, Famili I, Palsson BO. Identifying constraints that govern 

cell behavior: a key to converting conceptual to computational models in 

biology?

Biotechnol Bioeng. 2003 Dec 30;84(7):763-72. Review. 

PMID: 14708117

Wiechert W. Modeling and simulation: tools for metabolic engineering.

J Biotechnol. 2002 Mar 14;94(1):37-63. Review.

PMID: 11792451
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Problem with kinetic modelling

A lot of data is required to parameterize large-scale models,  

experimentally intractable at present. 

The largest kinetic metabolic model available: 

→ Human red blood cell (35 enzymes)

Jamshidi N, Edwards JS, Fahland T, Church GM, Palsson BO. Dynamic 

simulation of the human red blood cell metabolic network.

Bioinformatics. 2001 Mar;17(3):286-7. 

PMID: 11294796 
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Two modelling approaches

Kinetic rate equation for 

each reaction + parameters

Simulation of system 

behaviour

Mechanistic

(kinetic)

Constraint-based

(stoichiometric)

Consider all possible 

behaviours of the system 

(large solution space)

Imposing constraints 

(physicochemical laws, 

biological constraints)

Smaller allowable solution 

space

Covert MW, Famili I, Palsson BO. Identifying constraints that govern 

cell behavior: a key to converting conceptual to computational models in 

biology?

Biotechnol Bioeng. 2003 Dec 30;84(7):763-72. Review. 

PMID: 14708117 
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Types of constraints

• Physico-chemical constraints

→ mass, charge and energy conservation, laws of 

thermodynamics

• Biological constraints:

→ external environment, regulatory constraints

Covert MW, Famili I, Palsson BO. Identifying constraints that govern 

cell behavior: a key to converting conceptual to computational models in 

biology?

Biotechnol Bioeng. 2003 Dec 30;84(7):763-72. Review. 

PMID: 14708117 

Price ND, Reed JL, Palsson BO. Genome-scale models of microbial cells: 

evaluating the consequences of constraints.

Nat Rev Microbiol. 2004 Nov;2(11):886-97. Review. 

PMID: 15494745 
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Stoichiometric modelling of metabolism

Metabolic network Thermodynamic 

constraints

(irreversibility)

Mass balance 

constraint in 

steady state

Maximum 

enzyme capacity
etc.

Covert MW, Famili I, Palsson BO. Identifying constraints that govern 

cell behavior: a key to converting conceptual to computational models in 

biology?

Biotechnol Bioeng. 2003 Dec 30;84(7):763-72. Review. 

PMID: 14708117 

Price ND, Reed JL, Palsson BO. Genome-scale models of microbial 

cells: evaluating the consequences of constraints.

Nat Rev Microbiol. 2004 Nov;2(11):886-97. Review. 

PMID: 15494745 
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Problem:

Addition of constraints reduces the allowable solution space, 

but usually not to a single point (underdetermined system). 

How to find a particular solution?

We can look for a solution which optimises a particular 

network function (e.g. production of ATP or biomass) → FBA

Price ND, Reed JL, Palsson BO. Genome-scale models of microbial 

cells: evaluating the consequences of constraints.

Nat Rev Microbiol. 2004 Nov;2(11):886-97. Review. 

PMID: 15494745 
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1) Start from a reconstructed network (transport processes, direction 

and stoichiometry of reactions, biomass components (X,Y,Z) 

important for cell growth) 

2) Specify the nutrients available in the environment (B,E) and 

impose constraints (mass balance, etc.)

3) Calculate optimal growth rate: maximize biomass yield

growth 

rate 

(fitness)

Flux Balance Analysis (FBA) with growth 

optimisation

Reviews:

Kauffman KJ, Prakash P, Edwards JS. Advances in flux balance 

analysis.

Curr Opin Biotechnol. 2003 Oct;14(5):491-6. 

PMID: 14580578 

Bonarius HPJ, Schmid G, Tramper J (1997) Flux analysis of 

underdetermined metabolic networks: The quest for the missing 

constraints. 

Trends Biotech 15: 308–314. 

Price ND, Reed JL, Palsson BO. Genome-scale models of microbial cells: 

evaluating the consequences of constraints.

Nat Rev Microbiol. 2004 Nov;2(11):886-97. Review. 

PMID: 15494745 
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Biomass components in yeast 

(based on cellular composition)

1) Amino acids

2) Nucleotides 

3) Carbohydrates 

4) Lipids, sterols and fatty 

acids

Shulze 1995, Forster et al. 2003 
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What is Flux Balance Analysis good for?

Large systems can be analyzed (hundreds of reactions):

1) Prediction of optimal steady-state flux distributions in the 

network (it’s not necessarily the in vivo flux distribution!)

2) Simulate different environments

3) Simulate different genotypes (perturbations to network 

structure)
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Major assumptions of FBA

Physiological: all metabolites are in steady state

→ quasi steady state might be a good assumption (fast 

reactions and high turnover of reactants)

Evolutionary: the cell has adapted to maximize the efficiency 

of biomass production (optimality)

→ could be valid for certain microbes only (but not for 

multicellulars!)
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Limitations of FBA

1) Cannot track the dynamics of the system or determine the 

metabolite concentrations

2)  Data not incorporated:  

• enzyme concentrations

• mechanistic details on enzyme regulation (but gene 

regulation can be incorporated as further constraints)

3)  The assumption of optimality (but subtopimal phenotypic 

states can also be investigated)
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So, how good is this modelling framework?

→ need to compare FBA predictions with experimental data…
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Testing predictions of FBA  I.

Growth properties

Example: acetate and oxygen uptake rates in E. coli *

red line: prediction,  black line: linear regression through the experimental data points

* Edwards et al . (2001) Nat Biotech 19: 125

Edwards JS, Ibarra RU, Palsson BO. In silico predictions of Escherichia 

coli metabolic capabilities are consistent with experimental data.

Nat Biotechnol. 2001 Feb;19(2):125-30. 

PMID: 11175725 
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Testing predictions of FBA  I.

Growth properties

BUT: growth of E. coli is not optimal on glycerol*

* Ibarra et al . (2002) Nature 420: 186

After 1000 generations 

of evolution on glycerol

Validity of the optimality assumption depends on the evolutionary 

history of the strain!

Ibarra RU, Edwards JS, Palsson BO. Escherichia coli K-12 undergoes 

adaptive evolution to achieve in silico predicted optimal growth.

Nature. 2002 Nov 14;420(6912):186-9. 

PMID: 12432395 
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Testing predictions of FBA  II.

Gene essentiality

1) Forster et al. (2003) OMICS 7:193 

2) Kuepfer et al. (2005) Genome Res 15: 1421

3) Segre et al. (2002) PNAS 99: 15112

Single gene deletions were investigated both in 

silico and in vivo in yeast1,2: 

→ FBA model of yeast metabolism predicts gene 

deletion phenotypes (viable / lethal) with 81 – 89% 

accuracy2

→ Assumption of optimal growth in mutants is 

problematic. Therefore other optimality criteria have 

been suggested3.

Forster J, Famili I, Palsson BO, Nielsen J. Large-scale evaluation of in

silico gene deletions in Saccharomyces cerevisiae.

OMICS. 2003 Summer;7(2):193-202. 

PMID: 14506848 

Kuepfer L, Sauer U, Blank LM. Metabolic functions of duplicate genes 

in Saccharomyces cerevisiae.

Genome Res. 2005 Oct;15(10):1421-30. 

PMID: 16204195 

Segre D, Vitkup D, Church GM. Analysis of optimality in natural and 

perturbed metabolic networks.

Proc Natl Acad Sci U S A. 2002 Nov 12;99(23):15112-7.

PMID: 12415116 
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Application of FBA I.  Bioengineering

Q: How to engineer the metabolism of a microbe to 

improve the production of certain compounds?

Improving ethanol production in yeast:

- Ethanol is the largest fermentation product (109 $ annual sale)

- produced by anaerobic 

fermentations with S. cerevisiae

- production could be increased by 

redirecting carbon flow to glycerol 

towards ethanol

Related applications in biotechnology:

Burgard AP, Maranas CD. Probing the performance limits of the

Escherichia coli metabolic network subject to gene additions or deletions.

Biotechnol Bioeng. 2001 Sep 5;74(5):364-75. 

PMID: 11427938 

Burgard AP, Pharkya P, Maranas CD. Optknock: a bilevel programming 

framework for identifying gene knockout strategies for microbial strain

optimization.

Biotechnol Bioeng. 2003 Dec 20;84(6):647-57. 

PMID: 14595777 

Fong SS, Burgard AP, Herring CD, Knight EM, Blattner FR, Maranas

CD, Palsson BO. In silico design and adaptive evolution of Escherichia 

coli for production of lactic acid.

Biotechnol Bioeng. 2005 Sep 5;91(5):643-8. 

PMID: 15962337 
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Application of FBA I.  Bioengineering

There can be alternative strategies to redirect glycerol flux by

engineering redox metabolism.  

But which one is the most efficient?

A computational approach to find the best strategy:

1) Take a database of reactions not found in yeast (~3800 

reactions from different species)

2) Use yeast FBA model to assess the effect of inserting these 

reactions one at a time

3) Identify reactions that improve both growth and ethanol 

production

Bro et al . (2006) Metab Engineering 8: 102

Bro C, Regenberg B, Forster J, Nielsen J. In silico aided metabolic 

engineering of Saccharomyces cerevisiae for improved bioethanol

production.

Metab Eng. 2006 Mar;8(2):102-11. 

PMID: 16289778 
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Application of FBA I.  Bioengineering

One of the best strategies according to the 

model: inserting the gene for GAPN, which 

substitutes production of glycerol with 

production of ethanol

→ Theoretically, this could increase 

ethanol production by 10%

Bro et al . (2006) Metab Engineering 8: 102

Experimental test: gapN gene from Streptococcus mutans was 

expressed in yeast

→ 3% increase in ethanol production in vivo

Bro C, Regenberg B, Forster J, Nielsen J. In silico aided metabolic 

engineering of Saccharomyces cerevisiae for improved bioethanol

production.

Metab Eng. 2006 Mar;8(2):102-11. 

PMID: 16289778 

GAPN: non-phosphorylating, NADP+-dependent glyceraldehyde-3-P 

dehydrogenase
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Applications of FBA II.  Network evolution

Q: How new enzymes are added to the network during 

evolution?

1) Gene duplication

2) Horizontal gene transfer (HGT): acquisition of genes from other 

species

→ Can be frequent among bacteria, but rare in eukaryotes

What is the advantage of acquiring enzymes via HGT? 

Which enzymes are most prone to HGT?

Related applications in evolutionary genetics:

Papp B, Pal C, Hurst LD. Metabolic network analysis of the causes and 

evolution of enzyme dispensability in yeast.

Nature. 2004 Jun 10;429(6992):661-4. 

PMID: 15190353 

Blank LM, Kuepfer L, Sauer U. Large-scale 13C-flux analysis reveals 

mechanistic principles of metabolic network robustness to null mutations 

in yeast.

Genome Biol. 2005;6(6):R49. 

PMID: 15960801 

Segre D, Deluna A, Church GM, Kishony R. Modular epistasis in yeast 

metabolism.

Nat Genet. 2005 Jan;37(1):77-83.

PMID: 15592468

Pal C, Papp B, Lercher MJ, Csermely P, Oliver SG, Hurst LD. Chance 

and necessity in the evolution of minimal metabolic networks.

Nature. 2006 Mar 30;440(7084):667-70. 

PMID: 16572170
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Hypothesis: enzymes acquired via HGT enable adaptation to 

new environments (i.e. not housekeeping)

Prediction: HGT enzymes should have environment-specific 

growth contributions

Test: use FBA to simulate the growth effects of gene deletions 

in E. coli under a large number of environments

Pál et al . (2005) Nat Genet 37: 1372

Applications of FBA II.  Network evolution

Pal C, Papp B, Lercher MJ. Adaptive evolution of bacterial metabolic 

networks by horizontal gene transfer.

Nat Genet. 2005 Dec;37(12):1372-5.

PMID: 16311593 
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Horizontally transferred enzymes have growth contributions

only under a small number of environments

1 2 3 4 5 6 7 8 9 10 >10

Number of gene transfers and losses on the phylogenetic tree
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Pal C, Papp B, Lercher MJ. Adaptive evolution of bacterial metabolic 

networks by horizontal gene transfer.

Nat Genet. 2005 Dec;37(12):1372-5.

PMID: 16311593 



33

Topics covered

• Constraint-based approach to metabolic modelling

• Principles of FBA and some biological applications

• Mathematics behind FBA: Optimisation

• Mathematical examples



34

Optimisation and Mathematical Programming

• optimisation problem or mathematical programming problem: a 

formulation in which a function is minimised by systematically 

choosing the values of variables from within an allowed set

Given a function f: A� R (e.g. min x2+1)

Find an element x0 in A such that f(x0) ≤ f(x) for all x in A

• The domain A of f is called the search space, while the 

elements of A are called feasible solutions

• A is specified by a set of constraints (equalities or inequalities)

• function f is called an objective function

• A feasible solution that minimizes the objective function is 

called an optimal solution



35

Subfields 

• Linear programming studies the case in which the objective 

function f is linear and the constraints linear equalities and 

inequalities

• Integer linear programming studies linear programs in which 

some or all variables take on integer values

• Nonlinear programming studies the general case in which the 

objective function or the constraints or both are nonlinear
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Techniques for solving 

mathematical programming problems

• There exist robust, fast numerical techniques for optimising 

mathematical programming problems

– Gradient descent (steepest descent) 

– Nelder-Mead method 

– Simplex method 

– Ellipsoid method 

– Newton's method 

– Quasi-Newton methods 

– Interior point methods 

– Conjugate gradient method
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Alternatives for optimisation

• Mathematical programming and its techniques for solving of 

optimisation problems are powerful tools, but are not the only 

solutions available. Other approaches (that usually apply numerical 

analysis approximations) are:

– Hill climbing 

– Simulated annealing 

– Quantum annealing 

– Tabu search 

– Beam search 

– Genetic algorithms 

– Ant colony optimization 

– Evolution strategy 

– Stochastic tunneling 

– Particle swarm optimization

– Differential evolution



38

Linear Programming (LP)

• LP model  �

objective function + linear constraints 

• extensively used optimisation 
technique

• allocation of limited resources to 
competing activities in the optimal 
way

• examples of application: graphs, 
network flows, plant management, 
economics, business management

• most prominent method for solving: 
simplex method

• Prominent solver: CPLEX

minimise c1
.x1+ c2

.x2+ … +cn
.xn

subject to:

linear constraints

ai1
.x1+ ai2

.x2+ … +ain
.xn = ai0

nonlinear constraints

bi1
.x1+ bi2

.x2+ … +bin
.xn ≤ bi0

or in matrix form:

min cT.x

subject to:

A.x = a

B.x≤ b
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Integer Programming

• If variables are required to be integer, then the problem is an integer 

programming (IP) or mixed integer programming (MIP) problem

• In contrast to linear programming, which can be solved efficiently in 

the worst case, integer programming problems are in the worst case 

undecidable, and in many practical situations NP-hard

• MIP problems are solved using advanced algorithms such as branch

and bound or branch and cut

• LP and MILP solvers are in widespread use for optimization of various 

problems in industry, such as optimization of flow in transportation 

networks

– CPLEX 

– MINTO

– AIMMS 

– SYMPHONY 

– Xpress-MP

– GNU Linear Programming Kit 

– Qoca 

– Cassowary constraint solver
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Software Applications

• General Algebraic Modelling System (GAMS)

– consists of a language compiler and a number of integrated high-
performance solvers for mathematical programming models

– tailored for complex, large-scale modelling applications

• CPLEX solver (standalone)

• Simpheny (http://genomatica.com/solutions_simpheny.shtml)
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Optimisation in FBA

• optimisation is used to predict metabolic flux distributions at 

steady state based on the assumption of maximised growth 

performance along evolution

• only stoichiometric data and cellular composition required

• valuable for identifying flux distribution boundaries for the 

metabolic function of cellular systems

• Linear Programming  may be used to study the 

stoichiometric constraints on metabolic networks
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Application

• FBA involves carrying out a steady state analysis, using the 

stoichiometric matrix (S) for the system in question

• The system is assumed to be optimised with respect to objectives such 

as maximisation of biomass production or minimisation of nutrient 

utilisation

• At steady state:

• The required flux distribution is the null space of S. Since the number 

of fluxes typically exceeds the number of metabolites, the system is 

under-determined and may be solved by selecting an optimisation 

criterion, following which, the system translates into an LP problem

0
dx

S v
dt

= ⋅ =
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Mathematical Model

max  Σ c
j
. v

j

Σ Sij
. vj = 0 ∀∀∀∀i

Lj ≤ vj ≤ Uj ∀∀∀∀jreversible
0 ≤ vj ≤ Uj ∀∀∀∀jirreversible

Sij: stoichiometric matrix
vj: reaction fluxes (mmol / gDW hr)
cj: weight

j

j

i: metabolites
j: reactions

s.t.

Lj, Uj: bounds
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Small example for S matrix construction

A ↔ B, which is equivalent to:

A → B and B → A

A + B → C

B + C → 2 A

• Maximise the sum of a particular reaction flux, or some 
combination of fluxes in order to accomplish a goal

1 2 3 4

-1   1 -1   2

  1 -1 -1 -1

  0   0   

   

1 -1

 j j j j

A

B

C

 
 
 
  
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Model Network

• Simplified model of E. coli metabolic network

Varma and Palsson, J.Theor.Biol. (1993) 165, 477

• Reactions: 35
– 17 reversible

– 18 irreversible

• Metabolites: 30
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0.91G6P

1.50OA

2.00Pyr

2.00PEP

2.003PG

11.00NADPH

11.57NADH

18.67ATP

1.00SuccCoA

1.00aKG

2.00AcCoA

1.74T3P

1.33E4P

1.08R5P

0.91F6P

Single metabolite production maximisation

Maximum stoichiometric yields (mmol/mmol Glc)
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Flux distribution map for maximal ATP production
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Glc

Mal

G6P

F6P

T3P

3PG

PEP

Pyr
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NADPH
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QH
2

NADH

Flux distribution map for maximal PEP 

production
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0.0709F6P

0.8977R5P

0.3610E4P

0.2050G6P

18.2250NADPH

-3.5470NADH

41.2570ATP 0.1290T3P

1.7867OA

1.49603PG

0.5191PEP

2.8328Pyr

1.0789aKgG

3.7478AcCoA

Biomass production maximisation

Metabolic Demands for 1g of biomass yield (mmol)

Maximum biomass yield:

0.589 g DW / g Glc
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Finding minimal reaction sets

gene 1. What is the smallest gene set capable 

of maximising biomass?

2. What is the maximum number of gene 

deletions that still maintains biomass 

production above certain levels?

• MILP problem

enzyme

reaction
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Mathematical model

min  Σ yk

Σ Sij
. vj = 0 ∀∀∀∀i

Lj
. Σ ajk

. yk ≤ vj ≤ Uj
. Σ ajk

. yk ∀∀∀∀j

vbiomass ≥ vtarget

k

j

k

s.t.

k: genes 

yk: 1 if gene k is present and functional, 0 otherwise

Lj, Uj: bounds

ajk: 1 if gene k codes for an enzyme catalysing reaction j, 0 otherwise

k
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Results

• 23 out of 35 reactions are 

required to sustain optimal 

growth

• Small tolerance, albeit 

lessened biomass demands

• 25 removals render the 

network incapable of 

biomass formation

removals% max biomass

241 %

2410 %

2420 %

2230 %

2150 %

2070 %

1990 %

12100 %
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FBA

• Simple, no kinetic information needed

• Can be applied to large networks

• In accordance with experimental results

• Can be used for defining wider limits of metabolic 

behaviour
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Further reading

Bernhard O. Palsson: Systems Biology: Properties of reconstructed 

networks, Cambridge University Press, 2006

Metabolic network reconstruction:

Nature Reviews Genetics (2006) 7:130-141.

Metabolic modelling approaches:

Journal of Biotechnology (2002) 94: 37-63.

Biotechnology and Bioengineering (2003) 84: 763-772

Flux Balance Analysis:

Current Opinion in Biotechnology (2003) 14: 491-496.

Nature Reviews Microbiology (2004) 2: 886-897

Mathematical programming:

Paul Williams: Model Building in Mathematical Programming


