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Introduction

» A major goal of systems biology is to relate genome

sequence to cell physiology

* This requires the identification of the components and

their interactions in the system + mathematical modelling

* Small molecule metabolism is the best described
molecular network in the cell and there are various

computational tools to model its behaviour




Metabolic network reconstructions

Network reconstruction = delineation of the chemical and
physical interactions between the components
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Reed JL, Famili I, Thiele I, Palsson BO. Towards multidimensional
genome annotation.
Nat Rev Genet. 2006 Feb;7(2):130-41. Review.

PMID: 16418748



Metabolic network reconstructions

» Automated metabolic reconstructions for > 500 organisms

based on genome sequence data (e.g. KEGG database)

» Automated reconstructions are usually not suitable for

modelling

» Manual assembly gives higher quality networks and is

based on genomic + biochemical + physiological data

Reed JL, Famili I, Thiele I, Palsson BO. Towards multidimensional

genome annotation.
Nat Rev Genet. 2006 Feb;7(2):130-41. Review.

PMID: 16418748



High quality manual reconstructions

* Incorporate information on:

reaction reversibility

cofactor usage

transport reactions

cellular compartments (e.g. mitochondrion)
biomass composition

* Only available for well studied microbes (e.g. yeast, E.
coli and ~10 other bacteria)

* Amenable to modelling

For examples, see:

http://gcrg.ucsd.edu/organisms/index.html



High quality manual reconstructions

Example: Escherichia coli metabolic reconstruction”

* the best characterized network

* 931 reactions
* 625 different metabolites

But: 67 are dead end!

* Reed et al . (2003) Genome Biol 4: R54

Reed JL, Vo TD, Schilling CH, Palsson BO. An expanded genome-scale
model of Escherichia coli K-12 (1JR904 GSM/GPR).
Genome Biol. 2003;4(9):R54. Epub 2003 Aug 28.

PMID: 12952533



How to analyse such a complex network?

ExPASy — Metabolic Pathways

http://www.expasy.ch/cgi-bin/search-biochem-index




In silico analysis of metabolic networks

» Topological analysis

— 1dentify pathways, redundancies in the network,
graph theoretical properties, etc.

* Modelling: simulating the behaviour of metabolism

— deduce phenotype from genotype + environment




Two modelling approaches

Mechanistic Constraint-based
(kinetic) (stoichiometric)

Find a range of

Find an exact solution .
allowable solutions

Covert MW, Famili I, Palsson BO. Identifying constraints that govern
cell behavior: a key to converting conceptual to computational models in
biology?

Biotechnol Bioeng. 2003 Dec 30;84(7):763-72. Review.

PMID: 14708117

Wiechert W. Modeling and simulation: tools for metabolic engineering.
J Biotechnol. 2002 Mar 14;94(1):37-63. Review.
PMID: 11792451
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Two modelling approaches

Mechanistic Constraint-based
(kinetic) (stoichiometric)

Kinetic rate equation for
each reaction + parameters

|

Simulation of system’s

behaviour

Covert MW, Famili I, Palsson BO. Identifying constraints that govern
cell behavior: a key to converting conceptual to computational models in
biology?

Biotechnol Bioeng. 2003 Dec 30;84(7):763-72. Review.

PMID: 14708117

Wiechert W. Modeling and simulation: tools for metabolic engineering.
J Biotechnol. 2002 Mar 14;94(1):37-63. Review.
PMID: 11792451
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Problem with kinetic modelling

A lot of data is required to parameterize large-scale models,
experimentally intractable at present.

The largest kinetic metabolic model available:

— Human red blood cell (35 enzymes)

Jamshidi N, Edwards JS, Fahland T, Church GM, Palsson BO. Dynamic
simulation of the human red blood cell metabolic network.
Bioinformatics. 2001 Mar;17(3):286-7.

PMID: 11294796
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Two modelling approaches

Mechanistic Constraint-based
(kinetic) (stoichiometric)

Kinetic rate equation for Consider all possible
each reaction + parameters behaviours of the system
J (large solution space)

l

Imposing constraints
behaviour (physicochemical laws,
biological constraints)

l

Smaller allowable solution
space

Simulation of system

Covert MW, Famili I, Palsson BO. Identifying constraints that govern
cell behavior: a key to converting conceptual to computational models in
biology?

Biotechnol Bioeng. 2003 Dec 30;84(7):763-72. Review.

PMID: 14708117
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Types of constraints

* Physico-chemical constraints

— mass, charge and energy conservation, laws of
thermodynamics

 Biological constraints:

— external environment, regulatory constraints

Covert MW, Famili I, Palsson BO. Identifying constraints that govern
cell behavior: a key to converting conceptual to computational models in
biology?

Biotechnol Bioeng. 2003 Dec 30;84(7):763-72. Review.

PMID: 14708117

Price ND, Reed JL, Palsson BO. Genome-scale models of microbial cells:
evaluating the consequences of constraints.

Nat Rev Microbiol. 2004 Nov;2(11):886-97. Review.

PMID: 15494745
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Stoichiometric modelling of metabolism

Metabolic network Thermodynamic
constraints
(irreversibility)

vouts vin 2 0

Mass balance
constraint in
steady state

Maximum
enzyme capacity

Covert MW, Famili I, Palsson BO. Identifying constraints that govern
cell behavior: a key to converting conceptual to computational models in
biology?

Biotechnol Bioeng. 2003 Dec 30;84(7):763-72. Review.

PMID: 14708117

Price ND, Reed JL, Palsson BO. Genome-scale models of microbial
cells: evaluating the consequences of constraints.

Nat Rev Microbiol. 2004 Nov;2(11):886-97. Review.

PMID: 15494745
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Problem:

Addition of constraints reduces the allowable solution space,

but usually not to a single point (underdetermined system).

How to find a particular solution?

We can look for a solution which optimises a particular
network function (e.g. production of ATP or biomass) - FBA

Allowable 1 Identifying optimal

solution space solutions ;
P An optimal

solution

Price ND, Reed JL, Palsson BO. Genome-scale models of microbial
cells: evaluating the consequences of constraints.

Nat Rev Microbiol. 2004 Nov;2(11):886-97. Review.

PMID: 15494745
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Flux Balance Analysis (FBA) with growth
optimisation

growth
= :;: Biomass rate
(fitness)

~

Metabolic
network

-

Start from a reconstructed network (transport processes, direction
and stoichiometry of reactions, biomass components (X,Y,Z)
important for cell growth)

Specify the nutrients available in the environment (B,E) and
impose constraints (mass balance, etc.)

Calculate optimal growth rate: maximize biomass yield

Reviews:

Kauffman KJ, Prakash P, Edwards JS. Advances in flux balance
analysis.

Curr Opin Biotechnol. 2003 Oct;14(5):491-6.

PMID: 14580578

Bonarius HPJ, Schmid G, Tramper J (1997) Flux analysis of
underdetermined metabolic networks: The quest for the missing
constraints.

Trends Biotech 15: 308-314.

Price ND, Reed JL, Palsson BO. Genome-scale models of microbial cells:
evaluating the consequences of constraints.

Nat Rev Microbiol. 2004 Nov;2(11):886-97. Review.

PMID: 15494745
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Biomass components in yeast

(based on cellular composition)

Amino acids
Nucleotides

Carbohydrates

Lipids, sterols and fatty

acids

Table 9, Cellular components of 8. cerevisiae

ALA

0.459

CMP

.05

ARG

0.161

dAMP

0.0036

ASN

0.102

dCMP

0-0024

ASP

0.297

dGMP

0.0024

CYS

0.007

DTMP

0.0036

GLU

0.302

TAGLY

0.007

GLN

0.105

ERGOST

0.0007

GLY

0.290

FYMST

0.015

HIS

0.066

PA

0.0006

ILE

0.193

PINS

0.005

LEL

0.296

P

0.002

LYS

0.286

PE

0.005

MET

0051

PC

0.006

PHE

0.134

CLYCOGEN

0519

PRO

0.165

TRE

0.023

SER

0.183

Mannan

0.809

THR

0.191

I3GLUCAN

1.136

TRP

0.028

SLF

0.02

TYR

0.102

ATP

239166

VAL

0.265

ADP

239166

AMP

0.051

Pl

239456

GMP

0.051

Biomass

LIMP

0.067

Shulze 1995, Forster et al. 2003
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What is Flux Balance Analysis good for?

Large systems can be analyzed (hundreds of reactions):

1) Prediction of optimal steady-state flux distributions in the

network (it’s not necessarily the in vivo flux distribution!)
2) Simulate different environments

Simulate different genotypes (perturbations to network

structure)

20



Major assumptions of FBA

Physiological: all metabolites are in steady state

— quasi steady state might be a good assumption (fast

reactions and high turnover of reactants)

Evolutionary: the cell has adapted to maximize the efficiency

of biomass production (optimality)

— could be valid for certain microbes only (but not for

multicellulars!)

21



Limitations of FBA

1) Cannot track the dynamics of the system or determine the
metabolite concentrations

2) Data not incorporated:

* enzyme concentrations

* mechanistic details on enzyme regulation (but gene
regulation can be incorporated as further constraints)

3) The assumption of optimality (but subtopimal phenotypic
states can also be investigated)

22



So, how good is this modelling framework?

— need to compare FBA predictions with experimental data. ..

23



Testing predictions of FBA 1.

Growth properties

Example: acetate and oxygen uptake rates in E. coli *

b
vs}

y= 3.0229%- 0.0831

y=0.0233x - 0.0097
R2« 0.8666

R? = 0.7960

Growth rate

2
8
£
E
Q
o
o

T

10 1 14 5 8 14 16

Acetate uptake rate Qxygen uptake rate

red line: prediction, black line: linear regression through the experimental data points

* Edwards et al . (2001) Nat Biotech 19: 125

Edwards JS, Ibarra RU, Palsson BO. In silico predictions of Escherichia
coli metabolic capabilities are consistent with experimental data.

Nat Biotechnol. 2001 Feb;19(2):125-30.

PMID: 11175725
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Testing predictions of FBA 1.

Growth properties

BUT: growth of E. coli is not optimal on glycerol”

R —
After 1000 generations

of evolution on glycerol

Validity of the optimality assumption depends on the evolutionary
history of the strain!

* Ibarra et al . (2002) Nature 420: 186

Ibarra RU, Edwards JS, Palsson BO. Escherichia coli K-12 undergoes
adaptive evolution to achieve in silico predicted optimal growth.
Nature. 2002 Nov 14;420(6912):186-9.

PMID: 12432395

25



Testing predictions of FBA 1I.

Gene essentiality

Single gene deletions were investigated both in

silico and in vivo in yeast!-:

— FBA model of yeast metabolism predicts gene
deletion phenotypes (viable / lethal) with 81 — 89%

accuracy?

— Assumption of optimal growth in mutants is
problematic. Therefore other optimality criteria have

been suggested?.

1) Forster et al. (2003) OMICS 7:193
2) Kuepfer et al. (2005) Genome Res 15: 1421
3) Segre et al. (2002) PNAS 99: 15112

Forster J, Famili I, Palsson BO, Nielsen J. Large-scale evaluation of in
silico gene deletions in Saccharomyces cerevisiae.

OMICS. 2003 Summer;7(2):193-202.

PMID: 14506848

Kuepfer L, Sauer U, Blank LM. Metabolic functions of duplicate genes
in Saccharomyces cerevisiae.

Genome Res. 2005 Oct;15(10):1421-30.

PMID: 16204195

Segre D, Vitkup D, Church GM. Analysis of optimality in natural and
perturbed metabolic networks.
Proc Natl Acad Sci U S A. 2002 Nov 12;99(23):15112-7.

PMID: 12415116
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Application of FBA 1. Bioengineering

Q: How to engineer the metabolism of a microbe to
improve the production of certain compounds?

Improving ethanol production in yeast:

- Ethanol is the largest fermentation product (10° $ annual sale)

Glocose

- produced by anaerobic

fermentations with S. cerevisiae

. 5 NAD* NAD' -
- production could be increased by C A C"“
redirecting carbon flow to glycerol [N P e o

NADPH
towards ethanol NAD- e o A
\N.ﬁ\m”‘
v

Ethanol + CO, Biomass Glyeerol

Related applications in biotechnology:

Burgard AP, Maranas CD. Probing the performance limits of the
Escherichia coli metabolic network subject to gene additions or deletions.
Biotechnol Bioeng. 2001 Sep 5;74(5):364-75.

PMID: 11427938

Burgard AP, Pharkya P, Maranas CD. Optknock: a bilevel programming
framework for identifying gene knockout strategies for microbial strain
optimization.

Biotechnol Bioeng. 2003 Dec 20;84(6):647-57.

PMID: 14595777

Fong SS, Burgard AP, Herring CD, Knight EM, Blattner FR, Maranas
CD, Palsson BO. In silico design and adaptive evolution of Escherichia
coli for production of lactic acid.

Biotechnol Bioeng. 2005 Sep 5;91(5):643-8.

PMID: 15962337



Application of FBA 1. Bioengineering

There can be alternative strategies to redirect glycerol flux by
engineering redox metabolism.

But which one is the most efficient?

A computational approach to find the best strategy:

1) Take a database of reactions not found in yeast (~3800
reactions from different species)

2) Use yeast FBA model to assess the effect of inserting these
reactions one at a time

3) Identify reactions that improve both growth and ethanol
production

Bro et al . (2006) Metab Engineering 8: 102

Bro C, Regenberg B, Forster J, Nielsen J. In silico aided metabolic
engineering of Saccharomyces cerevisiae for improved bioethanol
production.

Metab Eng. 2006 Mar;8(2):102-11.

PMID: 16289778
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Application of FBA 1. Bioengineering

One of the best strategies according to the G’“’;’S‘:
model: inserting the gene for GAPN, which !
3-P Glyceraldehyde

substitutes production of glycerol with wap
production of ethanol NADIT

GAPDH

1,3-P, Glycerate

— Theoretically, this could increase Arpd PGk

3-F Glyceraie

!

Pyruvate

ethanol production by 10%

Experimental test: gapN gene from Streptococcus mutans was
expressed in yeast

— 3% increase in ethanol production in vivo

Bro et al . (2006) Metab Engineering 8: 102

Bro C, Regenberg B, Forster J, Nielsen J. In silico aided metabolic
engineering of Saccharomyces cerevisiae for improved bioethanol
production.

Metab Eng. 2006 Mar;8(2):102-11.

PMID: 16289778

GAPN: non-phosphorylating, NADP*-dependent glyceraldehyde-3-P
dehydrogenase

29



Applications of FBA II. Network evolution

: How new enzymes are added to the network during
evolution?

Gene duplication

Horizontal gene transfer (HGT): acquisition of genes from other
species

— Can be frequent among bacteria, but rare in eukaryotes

What is the advantage of acquiring enzymes via HGT?
Which enzymes are most prone to HGT?

Related applications in evolutionary genetics:

Papp B, Pal C, Hurst LD. Metabolic network analysis of the causes and
evolution of enzyme dispensability in yeast.

Nature. 2004 Jun 10;429(6992):661-4.

PMID: 15190353

Blank LM, Kuepfer L, Sauer U. Large-scale 13C-flux analysis reveals
mechanistic principles of metabolic network robustness to null mutations
in yeast.

Genome Biol. 2005;6(6):R49.

PMID: 15960801

Segre D, Deluna A, Church GM, Kishony R. Modular epistasis in yeast
metabolism.

Nat Genet. 2005 Jan;37(1):77-83.

PMID: 15592468

Pal C, Papp B, Lercher MJ, Csermely P, Oliver SG, Hurst LD. Chance
and necessity in the evolution of minimal metabolic networks.

Nature. 2006 Mar 30;440(7084):667-70.

PMID: 16572170
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Applications of FBA II. Network evolution

Hypothesis: enzymes acquired via HGT enable adaptation to

new environments (i.e. not housekeeping)

Prediction: HGT enzymes should have environment-specific

growth contributions

Test: use FBA to simulate the growth effects of gene deletions

in E. coli under a large number of environments

Pal et al . (2005) Nat Genet 37: 1372

Adaptive evolution of bacterial metabolic
networks by horizontal gene transfer.
Nat Genet. 2005 Dec;37(12):1372-5.

PMID: 16311593
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Horizontally transferred enzymes have growth contributions
only under a small number of environments

O Mean [ ] +SE [ #2*SE
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Number of gene transfers and losses on the phylogenetic tree

Pal C, Papp B, Lercher MJ. Adaptive evolution of bacterial metabolic
networks by horizontal gene transfer.
Nat Genet. 2005 Dec;37(12):1372-5.

PMID: 16311593
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Optimisation and Mathematical Programming

* optimisation problem or mathematical programming problem: a

formulation in which a function is minimised by systematically
choosing the values of variables from within an allowed set

Given a function f: 4 2 R (e.g. min x°+1)

Find an element x, in 4 such that f{x,) < f(x) for all x in 4

The domain 4 of fis called the search space, while the
elements of 4 are called feasible solutions

A 1s specified by a set of constraints (equalities or inequalities)

function f'is called an objective function

A feasible solution that minimizes the objective function is
called an optimal solution
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Subfields

» Linear programming studies the case in which the objective
function f'is linear and the constraints linear equalities and
inequalities

 Integer linear programming studies linear programs in which
some or all variables take on integer values

* Nonlinear programming studies the general case in which the
objective function or the constraints or both are nonlinear

35



Techniques for solving
mathematical programming problems

» There exist robust, fast numerical techniques for optimising
mathematical programming problems

Gradient descent (steepest descent)
Nelder-Mead method

Simplex method

Ellipsoid method

Newton's method

Quasi-Newton methods

Interior point methods

Conjugate gradient method

36



Alternatives for optimisation

* Mathematical programming and its techniques for solving of
optimisation problems are powerful tools, but are not the only
solutions available. Other approaches (that usually apply numerical

analysis approximations) are:

Hill climbing

Simulated annealing
Quantum annealing
Tabu search

Beam search

Genetic algorithms

Ant colony optimization
Evolution strategy
Stochastic tunneling
Particle swarm optimization
Differential evolution




Linear Programming (LP)

LP model >

objective function + linear constraints

extensively used optimisation
technique

allocation of limited resources to
competing activities in the optimal
way

examples of application: graphs,
network flows, plant management,
economics, business management

most prominent method for solving:

simplex method

Prominent solver: CPLEX

minimise c¢;x;+ ¢, x,+ ... +c,x,
subject to:

linear constraints

Xt agx,t . ta,x, = ay
nonlinear constraints

bix;+ byx,t+ ... +b,x,< by,

in”
or in matrix form:
min cTx

subject to:

Ax=a

Bx<b
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Integer Programming

If variables are required to be integer, then the problem is an integer
programming (IP) or mixed integer programming (MIP) problem

In contrast to linear programming, which can be solved efficiently in
the worst case, integer programming problems are in the worst case
undecidable, and in many practical situations NP-hard

MIP problems are solved using advanced algorithms such as branch
and bound or branch and cut

LP and MILP solvers are in widespread use for optimization of various
problems in industry, such as optimization of flow in transportation
networks

CPLEX Xpress-MP
MINTO GNU Linear Programming Kit

AIMMS Qoca
SYMPHONY Cassowary constraint solver

39



Software Applications

* General Algebraic Modelling System (GAMNS)

— consists of a language compiler and a number of integrated high-
performance solvers for mathematical programming models

— tailored for complex, large-scale modelling applications

* CPLEX solver (standalone)

* Simpheny (http://genomatica.com/solutions simpheny.shtml)

40



Optimisation in FBA

* optimisation is used to predict metabolic flux distributions at
steady state based on the assumption of maximised growth

performance along evolution
* only stoichiometric data and cellular composition required

« valuable for identifying flux distribution boundaries for the

metabolic function of cellular systems

 Linear Programming may be used to study the

stoichiometric constraints on metabolic networks

41



Application

FBA involves carrying out a steady state analysis, using the
stoichiometric matrix (S) for the system in question

The system is assumed to be optimised with respect to objectives such
as maximisation of biomass production or minimisation of nutrient
utilisation

dx

At steady state: - — S = O
dt

The required flux distribution is the null space of S. Since the number
of fluxes typically exceeds the number of metabolites, the system is
under-determined and may be solved by selecting an optimisation
criterion, following which, the system translates into an LP problem

42



Mathematical Model

max ; Cj' vj

s.t. Z Sij- v, = 0 Vi
J

<y.<U,
LJ_v]_(]]

V] reversible

0 =< vj =< U] V] irreversible
i: metabolites

J: reactions _ '

§;;: stoichiometric matrix

v;: reaction fluxes (mmol / gDW hr)

¢;: weight

L;, U;: bounds

43



Small example for § matrix construction

A <> B, which is equivalent to:
A—>BandB—> A

A+B—>C

B+C—>2A

* Maximise the sum of a particular reaction flux, or some
combination of fluxes in order to accomplish a goal

44
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Model Network

» Simplified model of E. coli metabolic network

Varma and Palsson, J. Theor.Biol. (1993) 165, 477

» Reactions: 35

— 17 reversible
— 18 irreversible

* Metabolites: 30

46



ATP . H, o  QH,

b

NADH FADH

Fum Suce

-

SuccCoA
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Single metabolite production maximisation

Maximum stoichiometric yields (mmol/mmol Glc)

SuccCoA

48



ATP . H, o  QH,

b

NADH FADH

Fum Suce

-

SuccCoA
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Flux distribution map for maximal ATP production

H

—— Tep 4—— QH2

>

NADPH > NADH FADH

Fum Succ

/ N

SuccCoA

| |

OA aKG

A Cit —* ICit
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ATP . H, o  QH,

b

NADH FADH

Fum Suce

-

SuccCoA
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Flux distribution map for maximal PEP
production

Hexp 4+— QHZ

>

NADPH — > NADH

<«
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Biomass production maximisation

Metabolic Demands for 1g of biomass yield (mmo/)

41.2570 0.1290
1.4960
18.2250
0.2050

0.0709

0.3610 aK 1.0789

Maximum biomass yield:
0.589 g DW /g Glc
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ATP . H, o  QH,

b

NADH FADH

Fum Suce

-

SuccCoA
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Optimal flux distribution for
aerobic growth on glucose

¢ H

exp 4—— QHZ

NADH FADH
E4P

Fum Succ

ya
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Finding minimal reaction sets

What is the smallest gene set capable
l of maximising biomass?

What is the maximum number of gene
enzyme deletions that still main.tains biomass
production above certain levels?

l MILP problem

reaction

56



Mathematical model

min ; Vi

Zj‘.s,,j-vj=0 Vi

Lj'%“'k')’kSVjSUj'§ G Vi V]
>V

Vbiomass = target

A 1 if gene k codes for an enzyme catalysing reaction j, 0 otherwise

k: genes
v,: 1 if gene k is present and functional, 0 otherwise

Lj, U/ bounds
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% max biomass

removals

Results

» 23 out of 35 reactions are
required to sustain optimal
growth

Small tolerance, albeit
lessened biomass demands

25 removals render the
network incapable of
biomass formation
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Simple, no kinetic information needed

Can be applied to large networks

In accordance with experimental results

Can be used for defining wider limits of metabolic

behaviour
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Further reading

Bernhard O. Palsson: Systems Biology: Properties of reconstructed
networks, Cambridge University Press, 2006

Metabolic network reconstruction:
Nature Reviews Genetics (2006) 7:130-141.

Metabolic modelling approaches:
Journal of Biotechnology (2002) 94: 37-63.
Biotechnology and Bioengineering (2003) 84: 763-772

Flux Balance Analysis:
Current Opinion in Biotechnology (2003) 14: 491-496.
Nature Reviews Microbiology (2004) 2: 886-897

Mathematical programming:
Paul Williams: Model Building in Mathematical Programming
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