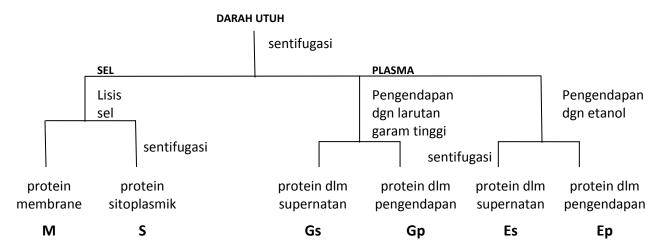
PRAKTIUM ISOLASI PROTEIN DARI DARAH

Tujuan: i) mengerti teknik sentrifugasi untuk pemisahan bagian-bagian sel


ii) mengerti teknik biokimia umum lain yang penting dalam proses isolasi protein

*Kegiatan praktikum ini diadaptasi dari bahan:

- Mordacq, J.C. & Ellington R.W. 1994. Polyacrylamide gel electrophoresis (PAGE) of blood proteins. *Tested Studies For Laboratory Teaching* 15:15-44
- Bagian Biokimia FKUI, 2000. Isolasi dan Pemisahan Protein. *Biokimia Eksperimen Laboratorium* Jakarta: Widya Medika, pp13-34

Pendahuluan: Setiap sel kita berisi dengan ribuan macam protein. Ada protein yang berada di cairan intraselular (protein sitoplasmik) dan ada yang berkaitan dengan membran sel (membran ekstraselular maupun membran-membran organel). Cara-cara yang boleh digunakan untuk meneliti protein strukur dan fungsi memang banyak. Pada praktikum hari ini kita menggunakan beberapa teknik biokimia yang sering dipakai untuk mengisolasi protein dari molekul/ bahan sel yang lain,

Jaringan yang akan kita gunakan adalah darah. Seperti kita ketahui, darah kita terdiri dari plasma serta sel-sel darah. Kita akan mencoba memisahkan protein plasma dari protein intraselular dan protein membran, maupun dari bagian sel lain dengan teknik sentrifugasi serta pengendapan protein dengan larutan garam konsentrasi tinggi (*salting out*) dan pengendapan protein dengan etanol (*alcohol precipitation*). Pada akhirnya diharapkan ada 6 sampel protein yang dapat dianalisa lanjut dengan SDS-PAGE minggu depan (yaitu M, S, Gs, Gp, Es, Ep). Schema (*flow-chart*) bagi kegiatan praktikum ini digambarkan di bawah.

Cara Kerja:

Alat dan Bahan:

jarum steril	tabung steril utk darah	14 ml tabung sentrifuse klinik (3 buah)
sentrifus klinik	pipet otomatik	2 ml tabung mikrosentrifus (2 buah)
mikrosentrifus	pipet tetes	1,5 ml tabung mikrosentrifus
es	water bath	larutan (NH ₄) ₂ SO ₄ yang jenuh
pH meter	vorteks	larutan 50% (NH ₄) ₂ SO ₄
tabung reaksi dan rak	NaCl	tempat membuang cairan biologis
pipet Mohr	Na ₂ PO ₄	etanol absolut, dingin
tisu	EDTA	spidol

Larutan-larutan yang perlu disiapkan:

Buffer Cuci: siapkan 100ml buffer yang berisi 150mM NaCl, 5mM Na₂PO₄, 0,1mM EDTA. Tentukan pH =7,4. Simpan di kulkas atau di dalam es.

Buffer Hemolisis: siapkan 100ml buffer yang berisi 5mM Na₂PO₄, 0,1mM EDTA. Tentukan pH =8. Simpan di kulkas atau di dalam es.

Bagian A: Sel-sel Darah dan Plasma dipisahkan

- 1) Pakailah sarung tangan dan teknik keselamatan di laboratorium yang benar.
- 2) Kira-kira 5 ml darah diambil dari seorang dari grup meja Anda.
- 3) Transfer darah ke tabung sentrifus klinik. Pakai tabung sentrifus klinik yang lain, agar seimbang (misalnya dari grup meja lain) dan masukkan ke dalam alat sentrifus klinik. Putar selama 5 menit.
- 4) Transfer kira-kira 1,5 ml supernatan ke tabung mikrosentrifuse (2ml) yang bersih dan kering. Tandai tabungnya dan letak di dalam es. Inilah merupakan sampel plasma.
- 5) Dengan hati-hati buang sisa supernatan ke dalam tempat buangan cairan biologis dengan pipet tetes.
- 6) Tambah 6 ml buffer cuci yang dingin ke tabung sentrifus klinik tersebut. Tutup dan vorteks pelan-pelan supaya sel-sel bercampur rata dengan buffer.
- 7) Pakai tabung sentrifus klinik yang lain, agar seimbang (misalnya dari grup meja lain) dan masukkan ke dalam alat sentrifus klinik. Putar selama 5 menit.
- 8) Dengan hati-hati buang supernatan ke dalam tempat buangan cairan biologis dengan pipet tetes.
- 9) Ulangi langkah 6-8 sekali lagi. Endapan ini merupakan sel-sel darah

Bagian B: Isolasi Protein-protein dari Sel-sel

- 1) Pada tabung sentrifus klinik yang berisi sel-sel darah, tambahkan 6 ml buffer hemolisis yang dingin.
- 2) Tutup dan vorteks kuat.
- 3) Pakai tabung sentrifus klinik yang lain, agar seimbang (misalnya dari grup meja lain) dan masukkan ke dalam alat sentrifus klinik. Putar selama 10 menit.
- 4) Dengan hati-hati ambil 1 ml supernatan dari atas tabung sentrifus klinik dan masukan ke dalam tabung reaksi mikrosentrifus yang 2 ml. Tandai tabungnya dan letak di dalam es. Inilah merupakan sampel protein sitoplasmik (S).
- 5) Buang +/- 5 ml supernatan lagi ke dalam tempat buangan cairan biologis dengan pipet tetes.
- 6) Tambahkan 7 ml buffer hemolisis yang dingin. Vortex dengan kuat.
- 7) Pakai tabung sentrifus klinik yang lain, agar seimbang (misalnya dari grup meja lain) dan masukkan ke dalam alat sentrifus klinik. Putar selama 10 menit.
- 8) Buanglah supernatant ke dalam tempat buangan cairan biologis dengan hati-hati. 2ml yang paling bawah (termasuk pengendapan kalau ada) ditransfer ke tabung mikrosentrifus yang 2ml yang sudah ditandai. Inilah merupakan sampel protein membran (**M**).
- 9) Pakai tabung mikrosentrifus yang lain, agar seimbang (misalnya dari grup meja lain) dan masukkan ke dalam alat mikrosentrifus supaya *hinge* ke tengah alatnya . Putar selama 30 menit pada kecepatan 14.000 rpm. ***Tunggu sampai semua grup lain sudah siap sebelum alat mikrosentifus dihidupkan.***
- 10) Selama Anda tunggu hasil langkah "9", teruskan dengan bagian C.
- 11) Ketika periode mikrosentrifus sudah siap, keluarkan tabung mikrosentrifus dengan hati-hati. Mudah-mudahan Anda akan melihat pengendapan yang agak halus. Buang supernatan ke tempat buangan cairan biologis. Tutup tabung kembali dan simpan di atas es.

Bagian C Pengendapan Protein Plasma dengan Larutan Garam Berkonsentrasi Tinggi

- 1) Pada tabung mikrosentrifus 1,5ml tambahkan 250μl larutan (NH₄)₂SO₄ yang jenuh. Tambahkan 500μl sampel plasma dari tabung yang disimpan tadi.
- 2) Tutup dan vorteks kuat sebentar. Biarkan diam selama 5 menit di temperatur ruangan.
- 3) Pakai tabung mikrosentrifus yang lain, agar seimbang (misalnya dari grup meja lain) dan masukkan ke dalam alat mikrosentrifus. Putar selama 3 menit pada kecepatan tinggi.

- 4) Dengan hati-hati transfer supernatan ke tabung reaksi mikrosentrifus lain yang sudah ditandai. Letakkan di atas es. Inilah merupakan sampel protein supernatan garam tinggi (G_s) .
- 5) Pakailah tisu untuk mengeringkan bagian atas endapannya. Tambah 1ml larutan 50% (NH₄)₂SO₄ (yang tak jenuh) dan campur baik dengan pipet tetes.
- 6) Pakai tabung mikrosentrifus yang lain, agar seimbang (misalnya dari grup meja lain) dan masukkan ke dalam alat mikrosentrifus. Putar selama 3 menit pada kecepatan tinggi.
- 7) Buanglah supernatan dan keringkan bagian di atas endapannya dengan tisu. Inilah merupakan sampel protein pengendapan garam tinggi (G_P).

Bagian D Pengendapan Protein Plasma dengan Etanol

- 8) Pada tabung mikrosentrifus 1,5ml tambahkan 250µl etanol absolut yang dingin. Tambahkan 500µl sampel plasma dari tabung yang disimpan tadi.
- 9) Tutup dan vorteks kuat sebentar. Biar diam selama 5 menit di atas es.
- 10) Pakai tabung mikrosentrifus yang lain, agar seimbang (misalnya dari grup meja lain) dan masukkan ke dalam alat mikrosentrifus. Putar selama 3 menit pada kecepatan tinggi.
- 11) Dengan hati-hati transfer supernatan ke tabung reaksi mikrosentrifus lain yang sudah ditandai. Letakkan di atas es. Inilah merupakan sampel protein supernatan etanol (E_S) .
- 12) Pakailah tisu untuk mengeringkan bagian atas endapannya. Tambah 1ml etanol 50% dan campur baik dengan pipet otomatik jagalah supaya tabung mikrosentrifus sedingin mungkin (yaitu kerjakan dengan cepat dan selalu simpan di atas es)
- 13) Pakai tabung mikrosentrifus yang lain, agar seimbang (misalnya dari grup meja lain) dan masukkan ke dalam alat mikrosentrifus. Putar selama 3 menit pada kecepatan tinggi.
- 14) Buanglah supernatan dan keringkan bagian di atas endapannya dengan tisu. Inilah merupakan sampel protein pengendapan garam tinggi $(\mathbf{E}_{\mathbf{P}})$. Simpan di atas es.

Ketika semua sampel siap, periksalah bahwa semuanya ditandai dengan jelas. Pindahkan ke kulkas, bagian atas untuk disimpan sampai minggu depan.

Catatan Praktikum Isolasi Protein dari Darah

Tidak ada laporan yang perlu disiapkan minggu ini. Catat poin-poin yang Anda amati selama praktikum hari ini biar dimasukan pada laporan yang akan Anda siapkan minggu depan.

Bagian A: Sel-sel Darah dan Plasma dipisahkan

Bagian B: ISOLASI PROTEIN-PROTEIN DARI SEL-SEL

Bagian C: Pengendapan Protein Plasma dengan Larutan Garam Berkonsentrasi Tinggi

Bagian D: PENGENDAPAN PROTEIN PLASMA DENGAN ETANOL