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Outline

• Why are electrons quantum?

• Born-Oppenheimer approximation                
and the energy surface

• Hartree-Fock and density functional theory

• Interatomic potentials
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The electron problem:  basic facts 

• Electrons {xi}, i=1..n:  me = 9.1×10-31 kg  

• Nuclei {XI }, I=1..N:   MI ≈ AIMp, Mp ≈ 2000me

• They interact electrostatically as
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Why electrons must be considered quantum, while 
ions are often considered classical, objects? 

34
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Plugging in the numbers, we get de Broglie wavelength of

electron:  3.3 Å

hydrogen:  0.08 Å

carbon:  0.02 Å

• electron’s wavelength permeates through
several structural units (bonds) and so 
must be treated quantum mechanically

• carbon’s wavelength is well-localized

• hydrogen is a borderline case.

Note these are
quantum, not

thermal, 
fluctuations
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Born-Oppenheimer approximation

Max Born J. Robert Oppenheimer

The electrons minimize their quantum 
mechanical energy as if the ions are 
immobile; the resulting total energy 
(electrons + ions) is VBO({XI}), the Born-Oppenheimer 
energy surface, aka energy landscape, interatomic potential.
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B-O approximation is also called the adiabatic approximation.  
The idea is that electrons “move” so much faster than the ions, 
that they are at their ground state ΨG({xi}) for a given 
ionic configuration {XI}.

Addendum:   The ions move classically on the BO 
energy surface according to Newton’s 2nd law:
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BO approximation breaks down when
1. The molecule is optically excited (electronic excited states)
2. During diabatic electron transfer process (Marcus theory)

Addendum breaks down when
1. For light-mass ions like hydrogen, or at low temperature kBT<<ħωD

(Then, even the ions need to be treated quantum mechanically.)
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The quantum mechanical life of electrons 
l

G 1 2 BO G 1 2( , ,..., ) ( , ,..., )N NH VΨ = Ψx x x x x x

l
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In the non-relativistic limit:
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If one attempts to get at VBO by solving the above equation under 
rational and non-material-specific approximations, without using 

any experimental input, the result should then depend on and 
only depend on numerical values of ħ, me, e, {ZI}.   

This is called ab initio calculation.
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The problem of information explosion
To store a single-variable function f(x), 0<x<1:

use 10 spline points, each spline data 
(in double precision) is 8 bytes:  80 bytes

We have 20 electrons in a box,  0<x<1, 0<y<1, 0<z<1
ΨG(x1, x2 ,…, x20)  =  ΨG( x1, y1, z1, x2, y2, z2, …, x20, y20, z20)

A 60-dimensional function:  needs 1060 spline data points
total storage required:  8×1060 bytes

A CD can store 6×108 bytes:  needs 1052 CD’s
Say each CD is one gram, 1052 gram

Mass of the sun:  2 × 1033 gram
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There are some symmetry relations:
the electrons are indistinguishable Fermions:
1 2 1 2( , ,..., ,..., ,..., ) ( , ,..., ,..., ,..., )i j n j i nΨ = −Ψx x x x x x x x x x

but that does not solve the explosion fundamentally.

1998 Nobel Prize in Chemistry

John A. Pople Walter Kohn

quantum chemistry density-functional theory (DFT)

Progress in the last 50 years has been tremendous.
Significant number of researchers “most cited chemists”, 

“most cited physicists”.
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from Thom H. Dunning, Jr.
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MP2: Møller-Plesset perturbation theory 2nd order
CCSD:  Coupled cluster with single- and double-excitations 
CCSD(T): plus triple excitations calculated by perturbation theory
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Hartree-Fock Theory
Assume Ψ(x1, x2 ,…, xn)  can be well-approximated 

by a single Slater determinant:
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3n-dimensional function → n 3-dimensional functions:

If n=20, 20×103 ×8 = 160 kilobytes
8×1060 bytes   → 160 kilobytes compression
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Each trial wave function also contains spin information:
( ) ( ) |   or  ( ) | :   just 1-bit extraψ ψ ψ= ↑〉 ↓〉x x x�
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Hartree[ , ] > 0  does not care if ,  have the same spini j i jE ψ ψ ψ ψ� � � �

Hartree Exchange

Hartree Exchange

An occupied wavefunction does not see 
itself in Hartree-Fock theory:
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Exchange interaction stabilizes occupation of same-spin 
wavefunction with large spatial overlap.



17

Due to the structure of the Slater determinant, two electrons 
of the same spin “automatically” avoid each other, creating 
so-called “exchange-hole” in their pair-correlation function.

Hartree-Fock is beautiful.  But in reality:

G 1 1 2 2 3 3 ...a S a S a SΨ = + + +

each Sµ is a Slater determinant

By optimizing the coefficients a1, a2, a3, … and also the Slater
determinants, one can further reduce the energy beyond the 

best single-determinant (Hartree-Fock) energy.
This energy reduction is called correlation energy.

The brute-force way of doing above is called 
configuration interaction (CI).
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Both exchange and correlation energies stablize a many-
electron system beyond naïve Coulomb interactions.   

Exchange energy tends to be larger in magnitude (10×) 
than correlation energy.

Full CI is formally exact, but it has very bad scaling, 
something like O(n10) 

The present “gold standard”, CCSD(T), maintains most of the 
accuracy and has better scaling.  But it is still expensive, 

something like O(n7), so still limited to small molecules, say 
~20 atoms.

In this sense, density functional theory (DFT) is a “poor man’s 
way” of taking account of both exchange and correlation.

It tends to be cheaper than even Hartree-Fock.
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DFT is the technology that underlies most of the condensed-
matter research, as well as a very significant part of 

biomolecular modeling.

Hohenberg and Kohn, Phys. Rev. 136 (1964) B864:

VBO({XI}) = VBO[ρ(x)]

ρ(x):  single-electron density at ground state 
↔ v(x):  ion-electron (external) potential

↔ ΨG(x1, x2 ,…, xn) 

So from informatics point of view, instead of treating 
n 3-dimensional functions, one formally only needs to treat 

one 3-dimensional function.       8×1060 bytes ↔ 8 kbyte
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Kohn and Sham, Phys. Rev. 140 (1965) A1133:

It is still exact, and physically expedient, to decompose

VBO[ρ(x)] = VIndependent[ρ(x)] + Ve-e Hartree[ρ(x)] + 
VExchange-correlation[ρ(x)] 

where VIndependent[ρ(x)] is the energy of a fictitious, 
independent-electrons system having the same ρ(x), where 
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kinetic energy:
difficult to express well
(either in fictitious- or 
real-electrons system) as 
a local functional of ρ(x).



21

1 2
60

( ), ( ),..., ( ) are called Kohn-Sham wave 
functions.    8 10  bytes  160 kbyte.

In appearance, they look similar to Hartree-Fock 
trial wave functions. But their interpretations are 

shadowy, and 

nψ ψ ψ
× ↔

x x x

it would be inappropriate to call DFT
a "single configuration" (single determinant) method.

Exchange-correlation XC

Local density approximation (LDA):

V [ ( )] ( ) ( ( ))d vρ ρ ρ≈ ∫x x x x

Perdew and Zunger parameterized vXC(ρ) using the 
Quantum Monte Carlo data by Ceperley and Alder (1980) 

for homogeneous electron gas.
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By definition, LDA works well when the electron density is 
nearly uniform, for instance inside a simple metal.

But when the electron density varies violently, for instance
in gas-phase molecules,  LDA could fail.

Various attempts of Generalized Gradient Approximation 
(GGA), such as PW91 and PBE96, improve results 

somewhat in condensed phases such as water,  
but serious problems remain for molecules.

An important reason is LDA/GGA sometimes underestimates 
exchange energy → self-interaction.

Comes in hybrid functionals (Becke, J. Chem. Phys. 98 (1993) 
5648):   The DFT exchange energy is mixed with 

Hartree-Fock exact exchange (nonlocal).
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Hybrid functionals such as B3LYP work well for 
biomolecular systems,  but because of the mixing parameter,

many people do not consider them true ab initio methods.

DFT typically treat hundreds of atoms with good basis.

Currently very active developments:
orbital-dependent density functionals, LDA+U, 

self-interaction correction (SIC), 
time-dependent DFT (TDDFT), …

Planewave codes:  VASP, PWSCF, CPMD, ABINIT, 
DACAPO, CASTEP…

Local orbital basis:   Gaussian, NWChem, GAMESS, 
DMol, SIESTA, …
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Semi-Empirical Electronic-Structure Methods
(Hückel Theory, Linear Combination of Atomic Orbitals, 

Molecular Orbital Theory, Empirical Valence Bond, 
Tight-Binding, …)

Typically treat thousands of atoms with minimal basis.

Experimental or ab initio information used to fit intrinsic 
electronic quantities: orbital overlap, hopping integral, etc. 

For a given ion configuration {XI}:  an electronic Hamiltonian
is first assembled, and then diagonalized, in usage.

Parameter sets:  AM1, PM3, PM5
codes:  MOPAC 

Also implemented in:  Gaussian, GAMESS, CAChe …
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Interatomic Potential / Force Field

Direct parameterization of VBO({XI}) without 
touching the electronic degrees of freedom, in usage.

I = 1..N:     typically N=104-108

Leach, Molecular modelling: 
principles and applications 

(Prentice-Hall, New York, 2001).

l
θ ω
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A typical Force Field for macromolecules looks like:
bond stretch: pair bending: triplet

0 2 0 2
BO

bonds angles

torsion: quartet

0 2

dihedral angles
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Dispersive / van der Waals interaction:
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-r-6:  dipole-dipole 
polarization fluctuations
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Treatment of Long-Range Electrostatic Interactions:
Ewald sum:    Decompose 1/r into 

Long-range smooth +  Short-range sharp  contributions
Long-range smooth part is summed in reciprocal (k-) space

Short-range sharp part is summed in real space

Modern techniques such as  Fast Multipole, Particle Mesh 
Ewald methods further enhance the efficiency to nearly O(N).

Further Readings:
Leach, Molecular modelling: principles and applications 

(Prentice-Hall, New York, 2001).
Jensen,  Introduction to computational chemistry

(Wiley, New York, 1999).
Schlick, Molecular Modeling and Simulation

(Springer-Verlag, Berlin, 2002).


