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A B S T R A C T   

Humans have the unique ability to decode the rapid stream of language elements that constitute speech, even 
when it is contaminated by noise. Two reliable observations about noisy speech perception are that seeing the 
face of the talker improves intelligibility and the existence of individual differences in the ability to perceive 
noisy speech. We introduce a multivariate BOLD fMRI measure that explains both observations. In two inde
pendent fMRI studies, clear and noisy speech was presented in visual, auditory and audiovisual formats to thirty- 
seven participants who rated intelligibility. An event-related design was used to sort noisy speech trials by their 
intelligibility. Individual-differences multidimensional scaling was applied to fMRI response patterns in superior 
temporal cortex and the dissimilarity between responses to clear speech and noisy (but intelligible) speech was 
measured. Neural dissimilarity was less for audiovisual speech than auditory-only speech, corresponding to the 
greater intelligibility of noisy audiovisual speech. Dissimilarity was less in participants with better noisy speech 
perception, corresponding to individual differences. These relationships held for both single word and entire 
sentence stimuli, suggesting that they were driven by intelligibility rather than the specific stimuli tested. A 
neural measure of perceptual intelligibility may aid in the development of strategies for helping those with 
impaired speech perception.   

1. Introduction 

The most important form of human communication is spoken lan
guage. Speech is only useful to the extent that it is intelligible, leading to 
pioneering studies by scientists at Bell Labs who quantified intelligibility 
to improve telephone equipment (French and Steinberg, 1947). Since 
then, an enormous literature on speech intelligibility has developed that 
spans research, education, and clinical practice in the treatment of 
speech and hearing disorders, reviewed in Weismer (2008). Two find
ings in this literature are of particular interest. The first finding is that 
visual information from the talker’s face increases speech intelligibility 
under noisy listening conditions (Sumby and Pollack, 1954), reviewed in 
Peelle and Sommers (2015a). The second finding is that, even in adults 
with normal hearing thresholds, there is large individual variability in 
the ability to understand speech under difficult listening conditions such 

as the presence of background noise, reviewed in Shinn-Cunningham 
(2017). 

The development of non-invasive blood oxygen level dependent 
functional magnetic resonance imaging (BOLD fMRI) has spurred 
extensive investigations into the functional anatomy of language. An 
influential model holds that bilateral superior temporal cortex (STC) 
transforms incoming auditory information into speech representations 
(Hickok and Poeppel, 2004). Consistent with this model, many neuro
imaging studies have found increased STC activity for intelligible 
speech, reviewed in Abrams et al. (2013), Davis and Johnsrude (2007), 
DeWitt and Rauschecker (2012), Evans (2017), Evans et al. (2014). The 
STC is also strongly implicated in audiovisual speech processing, 
reviewed in Bernstein and Liebenthal (2014), Ozker et al. (2018). 

A major advance in fMRI was the development of multivariate 
analysis techniques to reveal information hidden from univariate 
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analyses (Haynes and Rees, 2006; Kriegeskorte et al., 2006; Norman 
et al., 2006). Previous multivariate studies of auditory-only speech 
demonstrated that response patterns in STC are related to speech 
intelligibility (Abrams et al., 2013; Evans et al., 2014; Evans and Davis, 
2015; McGettigan et al., 2012a; Okada et al., 2010). A limitation of these 
studies was that intelligibility was usually manipulated in an all-or-none 
fashion by comparing across two conditions, one in which speech was 
always intelligible (such as clear speech) and one in which speech was 
never intelligible (such as spectrally-rotated speech). In a recent study, 
we took a different approach by post hoc sorting fMRI trials based on 
participant responses (Rennig et al., 2020) an approach first used to 
study memory (Brewer et al., 1998; Wagner et al., 1998). This allowed 
for a comparison of the multivariate pattern of fMRI activity evoked by 
intelligible compared with unintelligible trials, within a single noisy 
speech condition. 

Multivariate dissimilarity between fMRI response patterns has a 
close relationship with perception (Kriegeskorte and Kievit, 2013), 
suggesting that it could be a useful tool for interrogating visual contri
butions to, and individual differences in, noisy speech perception. 
However, previous studies on individual differences tested only uni
variate analyses, with conflicting results. An fMRI study of young adults 
conducted at 1.5 T identified three single voxels, in frontal cortex and 
temporal cortex, with a significant univariate BOLD signal correlation 
with intelligibility, as measured with a post-test conducted after the MRI 
session (McGettigan et al., 2012b). An fMRI study of young and old 
adults conducted at 3 T found no voxels with a significant univariate 
BOLD signal correlation with intelligibility in young adults, while old 
adults showed significant correlations in two brain locations in frontal 
cortex and sensorimotor cortex (Du et al., 2016). A scalp EEG study 
found that the amplitude of the event-related potential in supramarginal 
gyrus showed a correlation with individual differences (Kim et al., 
2021). 

To examine whether multivariate analysis could resolve these con
flicting results, we developed a multivariate neural dissimilarity mea
sure. The measure used post hoc trial sorting to measure the fMRI 
response to noisy but intelligible speech. The dissimilarity between the 
response patterns to clear speech and noisy but intelligible speech was 
measured separately for each participant, using an individual- 
differences multidimensional scaling approach applied to fMRI data 
collected from 37 young adults. To establish generalizability, the neural- 
perceptual relationship was assessed for both noisy auditory-only and 
audiovisual speech and for single words and complete sentences. 

2. Methods 

2.1. Overview 

Two datasets were analyzed, both consisting of fMRI and behavioral 
data collected from healthy human participants presented with speech 
in five different formats: clear auditory speech paired with a video of a 
talking face (AcV), noisy auditory speech paired with a video of a talking 
face (AnV), clear auditory speech without a talking face/black screen 
(Ac), noisy auditory speech without a talking face/black screen (An), 
and a video of a talking face without audio (V). As described below, 
stimuli in the AnV and An conditions were sorted by perceptual ratings 
into trials that were intelligible ("-Y") or not intelligible ("-N"), producing 
a total of seven conditions (AcV, AnV-Y, AnV-N, Ac, An-Y, An-N, V). The 
speech stimuli were either single words or sentences. The fMRI dataset 
for the word study has not been previously published. The fMRI dataset 
for the sentence study is a re-analysis of published data (Rennig and 
Beauchamp, 2022). 

2.2. Reliability and reproducibility 

To promote reliability and reproducibility, the analysis code and 
data and additional stimulus information may be found in the attached 

files, Supplementary_Analysis.html and SummaryData.xlsx. The files are 
organized by manuscript order. 

2.3. Human subjects 

All experiments were approved by the Committee for the Protection 
of Human Subjects at Baylor College of Medicine, Houston, TX. For the 
word study, fifteen healthy right-handed participants (5 males, mean 
age 22 yrs, range 18 – 37 yrs) with normal or corrected-to-normal vision 
and normal hearing provided written informed consent. For the sentence 
study, twenty-two healthy right-handed participants (14 females, mean 
age 25, range 18 - 34) with normal or corrected to normal vision and 
normal hearing were consented. There was no overlap between the 
participant groups, for a total n of 37 participants. 

2.4. Speech stimuli 

For the word study, the stimuli consisted of 297 single English words 
recorded from 12 talkers (6 males). For the sentence study, the stimuli 
consisted of 80 sentences recorded from a single male talker and 
generously shared by Van Engen et al. (2017). All stimuli are listed in 
SummaryData.xlsx. The visual angle subtended by the face videos in the 
MR scanner was approximately 20◦ and the sound pressure level was 
approximately 80 dB SPL. 

To create auditory noisy speech, the original audio recordings were 
combined with pink noise. Pink noise is commonly used in studies of 
auditory function because it contains decreasing energy at increasing 
frequency, making it less aversive than white noise. Pink noise and the 
stimulus audio track were normalized by the absolute value of the 
respective maximum, audio tracknormalized = audio tracknative/max(abs 
(audio tracknative)). The power of the signal in the sentence audio track 
and the pink noise were determined and the signal-to-noise ratio (SNR) 
calculated as log10(powersignal/powernoise). The volume of the pink 
noise was increased or decreased iteratively to reach an SNR of − 8 dB 
SPL for words and − 16 dB SPL for sentences. The audio track and pink 
noise were then summed and then re-normalized to equalize the volume 
across stimuli. The original clear auditory recordings were normalized 
to equate root-mean-square amplitude across stimuli, but no compres
sion or normalization was done within each stimulus. 

Videos were edited using Adobe Premiere Pro. For auditory-only 
stimuli (Ac, An) the visual component of the stimulus consisted of a 
fixation crosshair in the center of a gray screen of the approximate same 
luminance as the face stimulus. 

Acoustic noise induces different consequences on intelligibility not 
only according to the signal-to-noise ratio (SNR) but also according to 
the linguistic element (syllable, word or sentence). For a given SNR, the 
intelligibility of a word varies according to its phonetic and phonotactic 
structure. For a sentence, the misperception of some linguistic elements 
does not prevent a substantial understanding of the sentence. 

2.5. Perceptual task 

Perceptual data was collected in the MR scanner with no feedback. 
Participants rated their understanding of each stimulus with a button 
press. For word stimuli, the task instruction was “are you sure what the 
word was” and participants pressed one of two button to signal “I am 
sure of the word” or “I am not sure of the word”. For sentence stimuli, 
participants pressed one of three buttons to signal “understood every
thing” (all words in the sentence understood); “understood something” 
(at least one word in the sentence); “understood nothing” (no words in 
the sentence). There were very few "understood everything" responses, 
so "understood everything" and "understood something" responses were 
grouped for analysis. 

This resulted in two types of post hoc perceptually-sorted trials for 
both studies: "intelligible" (participant sure of word, or understood some 
or everything for sentences) and "unintelligible" (unsure of word, 
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nothing understood for sentences). Here we use "intelligible" in the 
colloquial sense of "comprehensible" or "able to be understood". 

To minimize perceptual learning, stimuli were never repeated within 
participants. The order and format of each stimulus was randomized 
across participants to counterbalance any stimulus effects. For the word 
stimuli, this was accomplished by dividing the words into five groups. 
Participants were randomized into one of five batches. Each batch was 
presented with each word group in a different format (Ac, An, AnV, AcV, 
V) so that, across participants, each word was presented in every 
different format an equal number of times. 

2.6. Experimental design 

For both studies, a rapid event-related fMRI design was used. The 
trial (event) duration was 3.04 s for the word study and 6.0 s for the 
sentence study. In the word study, there was a silent period of 2 s within 
each trial. Words were presented during this silent period to avoid 
auditory contamination by the loud echo-planar pulse sequence. 
Following word presentation, participants responded when MR acqui
sition commenced, resulting in one MR acquisition per trial. In the 
sentence study, stimuli were presented simultaneous with the MR 
acquisition without a silent period, resulting in two MR acquisitions per 
trial. Participants in the word study were presented with a total of 297 
word trials and sentence participants were presented with a total of 160 
sentence trials. However, the amount of fMRI data collected and total 
time in the scanner was comparable between studies since sentence 
trials were twice as long but contained two MR acquisitions instead of 
one. 

Trials were ordered in a pseudo-random optimal sequence generated 
by the program optseq2 (Dale et al., 1999; https://surfer.nmr.mgh. 
harvard.edu/optseq). For the word study, six scan series with 65 trials 
each (390 total trials) were collected from each participant. To present 
each of the 297 words exactly once, three series contained 49 trials and 
three contained 50. Each scan series also contained 15 or 16 trials of 
fixation baseline to permit estimation of the amplitude of the stimulus 
evoked hemodynamic response relative to fixation. For the sentence 
study, four scan series (300 s long each) were acquired, each contained 
40 trials interspersed with a total of 60 s of fixation baseline. For the 
word study, the efficiency after post-hoc sorting of trials was 0.0015. 

2.7. fMRI acquisition and stimulus presentation 

Both word and sentence studies used a Siemens 3 tesla MR scanner in 
Baylor College of Medicine’s Core for Advanced MRI (CAMRI). The 
sentence study used a TRIO with a 32-channel head coil. Prior to initi
ation of the word study, the TRIO was upgraded to a PRISMA FIT with a 
64-channel head coil. The sentence study used a TR of 1.5 s (TE = 30 ms, 
flip angle = 72◦, in-plane resolution of 2 × 2 mm, 69 2 mm axial slices, 
multiband factor: 3, GRAPPA factor: 2). The word study used a TR of 
3.04 s (TE = 38 ms, flip angle = 78◦, in-plane resolution of 2 × 2 mm, 65 
2 mm axial slices, multiband acceleration factor: 6). The multiband 
acquisition permitted data collection in 1.04 s. In combination with a TR 
of 3.04 s and clustered/sparse acquisition (Edmister et al., 1999; Hall 
et al., 1999) this provided a silent window of 2 s between acquisitions. 

For both studies, stimuli were presented and synchronized with MR 
data acquisition in Matlab (The Mathworks, Inc., Natick, MA, USA) 
using the Psychophysics Toolbox extensions (Brainard, 1997). Visual 
stimuli were presented on a 32-inch (1920 pixels by 1080 pixels) 
MR-compatible BOLDview LCD screen placed behind the bore of the MR 
scanner and viewed through a mirror attached to the head coil. Auditory 
stimuli were played via MR-compatible noisy reduction headphones. 
Behavioral responses were collected using a fiber-optic button response 
pad (Current Designs, Haverford, PA, USA). 

2.8. Structural MRI acquisition and analysis 

The anatomical scan series consisted of two T1-weighted MPRAGE 
anatomical volumes. Functional data was collected using a multi-slice 
echo planar imaging sequence (Perrachione and Ghosh, 2013): TR =
3040 ms, TE = 38 ms, flip angle = 78◦, in-plane resolution of 2 × 2 mm, 
65 2 mm axial slices, multiband accelerate factor: 6, phase encoding 
direction: Anterior-to-Posterior. Alternate EPI scans were collected 
using the opposing phase encoding direction (Posterior-to-Anterior). 

The second anatomical volume was aligned to the first using a 6- 
parameter affine transformation with a mutual information cost func
tion using the AFNI program 3dAllineate. The aligned volumes were 
averaged to improve gray-white contrast and FreeSurfer was used to 
construct a cortical surface model (Dale et al., 1999a) which was visu
alized with the AFNI program SUMA (Argall et al., 2006). 

To minimize patient fatigue, total scan time including all functional 
and structural acquisitions was approximately 30 min. 

2.9. fMRI analysis 

fMRI analysis was conducted using the Analysis of Functional Neu
roImages (AFNI) package (Cox, 1996). Preprocessing consisted of sus
ceptibility distortion correction; slice-time correction; and motion 
correction by aligning the EPIs to the average anatomical image. The 
time series of each voxel was scaled to have a mean of 100 so that all 
signal changes were automatically in units of percent difference from the 
mean. 

A generalized linear model (GLM) was applied to the MR time series 
in each voxel using 3dDeconvolve. To estimate the amplitude of the 
activation in each voxel, the time of each stimulus event was convolved 
with a gamma-variate hemodynamic response function. Stimuli in the 
AnV and An conditions were post-hoc sorted by perceptual ratings into 
trials that were intelligible ("-Y") or not intelligible ("-N"), producing a 
GLM with seven regressors of interest (AcV, AnV-Y, AnV-N, Ac, An-Y, 
An-N, V). Regressors of no interest consisted of a polynomial to model 
baseline fluctuations and six mean-subtracted motion estimates from 
motion correction. 

2.10. ROI construction 

Regions of interest (ROIs) were defined individually for each hemi
sphere based on the automated parcellation of the cortical surface 
(Destrieux et al., 2010). For the main analysis, five relevant FreeSurfer 
atlas labels per hemisphere (10 total labels per participant) were com
bined into a single temporal cortex ROI: superior temporal gyrus (STG); 
superior temporal sulcus (STS); transverse superior temporal gyrus (also 
known as Heschl’s Gyrus, HG); transverse superior temporal sulcus (also 
known as Heschl’s sulcus, HS); planum temporale (PT). For one hemi
sphere in one participant (right hemisphere of participant QP) Free
Surfer parcellation failed to identify two atlas labels in the right 
hemisphere, resulting in a total of 8 total labels for this participant. For 
the secondary analysis, six subregions of the superior temporal cortex 
ROI were analyzed separately, consisting of three subregions in the left 
hemisphere and three in the right hemisphere. The subregions were the 
STG; the STS; and the combination of HG, HS, and PT (HG+). 

The STC (and STC subregions) were defined solely using the 
anatomical FreeSurfer parcellation, without any additional functional 
thresholding. Therefore, for each participant, the fMRI pattern com
parisons were always conducted within ROIs of exactly the same size. 

Voxels with absolute percent signal change exceeding 2.5% over the 
course of an MR scan series were excluded from the mask (<1% of 
voxels); most of these extreme-valued voxels were at the very edge of the 
brain, making their high signal change likely a result of motion or 
vascular artifacts. 
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2.11. Multivariate fMRI analysis 

For multivariate fMRI analysis, the mean percentage signal change 
across conditions in each surface node was calculated and subtracted 
from the response to each individual condition. This increases the dy
namic range of the fMRI pattern correlation (Haxby et al., 2001) and is 
especially important in superior temporal cortex where many nodes 
show a positive response to all speech stimuli (Rennig and Beauchamp, 
2022). To compute the fMRI pattern similarity between each pair of 
conditions, the mean-centered percentage signal change across the ROI 
for the first condition was correlated with the mean-centered percentage 
signal change in the second condition, resulting in a single correlation 
value for each pair of conditions for each hemisphere. There were 7 
conditions, resulting in 21 pairwise correlation per hemisphere. The 
correlations were converted into dissimilarities using the formula sqrt 
(1-r). Next, individual-differences multidimensional scaling (MDS) was 
used to decompose the dissimilarity matrices from each participant into 
two dimensions. This was performed using the Carroll-Chang 

decomposition (Carroll and Chang, 1970) also known as IDIOSCAL 
(Individual DIfferences in Orientation SCALing) as implemented in the 
smacof package (Leeuw and Mair, 2009). IDIOSCAL provides an 
advantage over simple averaging correlation matrices across partici
pants because it simultaneously estimates individual representational 
spaces and the group space (analogous to treating participants as a 
random factor rather than a fixed factor). The group MDS revealed two 
separate drivers of the fMRI response patterns. For visualization in 
Fig. 1, the MDS space was rotated so that these two drivers lay along the 
x-axis and the y-axis (distances are invariant to rotation). 

2.12. Neural-perceptual correlations 

To create a neural measure of intelligibility, the Euclidean distance 
in MDS space between clear and noisy speech was measured in each 
participant, separately for audiovisual speech (distance between AcV 
and AnV-Y) and auditory-only speech (distance between Ac and An-Y). 

The neural-perceptual relationship was modeled using generalized 

Fig. 1. A. Brain responses to seven kinds of 
speech were measured with BOLD fMRI: 
visual-only speech (V); audiovisual speech 
with added auditory noise, sorted by whether 
participants rated it as unintelligible (AnV-N) 
or intelligible (AnV-Y); clear audiovisual 
speech (AcV); noisy auditory-only speech 
sorted by intelligibility (An-N, An-Y); clear 
auditory-only speech (Ac). Individual- 
differences multidimensional scaling (MDS) 
was used to decompose the fMRI response 
patterns in superior temporal cortex (STC). 
Each colored symbol shows the location of one 
speech condition in MDS space. The MDS axis 
labels are descriptive, highlighting the sepa
ration by stimulus modality (colors: blue for 
auditory-only, green for audiovisual, black for 
visual-only) and intelligibility (more intelli
gible stimuli at the right of the space). Green 
dashed line shows the dissimilarity between 
clear and noisy but intelligible audiovisual 
speech, the two most similar patterns (number 
shows distance in MDS space). Blue dashed 
line shows the dissimilarity between clear and 
noisy but intelligible auditory-only speech. 
B. fMRI response patterns to the different 
speech conditions in individual participant RX 
(stimulus material consisted of single words). 
Left panel shows the MDS decomposition, 
right panel shows the fMRI response patterns. 
At each STC location, the mean response 
across speech conditions was calculated and 
subtracted from the response, so that cool 
colors indicate responses below the mean 
speech response (rather than below fixation 
baseline). 
C. Individual-differences MDS decomposition 
of fMRI response patterns to the different 
speech conditions in individual participant QX 
(stimulus material consisted of entire senten
ces). .   
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mixed-effects models (Yu et al., 2022), equivalent to logistic regression 
with a random effect of participant as implemented in lme4 (Bates et al., 
2015). The dependent measure was the count of intelligible trials vs. 
unintelligible trials. The fixed effect was the neural distance between 
clear and intelligible noisy speech. The random factor was participant. 
To assess the predictive accuracy of the model, we correlated the 
intelligibility rating predicted by the model (without the random effect 
term) with each participant’s actual intelligibility rating. 

Effect of hemisphere. To determine the statistical significance of the 
differences between left and right hemisphere STC, we fit separate 
representational spaces for each hemisphere in each subject and esti
mated generalized mixed-effects models for each hemisphere. We used a 
paired t-test on the squared residuals from each model (actual intelli
gibility – predicted intelligibility) to assess their relative goodness of fit. 

Effect of STC subregion. To compare neural-perceptual correlations 
across STC subregions, in each hemisphere of each participant a control 
ROI of the same size as the average subregion was created from random 
nodes within the STC. An MDS space was created across participants, the 
dissimilarity measured, and the neural-perceptual correlation calcu
lated. This process was repeated 1000 times to create an empirical null 
distribution for each hemisphere. A p-value was calculated by finding 
the number of simulation runs in which the correlation from a subregion 
exceeded the simulated values from the same hemisphere. 

Effect of study. The main analysis combined data from a study which 
used words as stimulus material and a study which used sentences as a 
stimulus material. To compare the studies, separate MDS spaces were 
constructed for each study. The accuracy of the neural-perceptual 
models from each study were compared using a resampling procedure. 
In each simulation, participants were randomly assigned to one study or 
another (maintaining the different number of participants in each 
study). Neural-perceptual correlations were calculated for each shuffle 
and the model accuracies compared (difference of neural-perceptual 
correlations). The actual words vs. sentences correlation difference 
was compared to the distribution of correlation differences from the 
shuffled data to assess statistical significance. 

2.13. Univariate analysis 

For univariate analyses, beta coefficients were averaged across all 
voxels in an ROI to produce a single value per stimulus condition. 

3. Results 

Participants rated the intelligibility of speech presented in the MR 
scanner. As expected, seeing the face of the talker provided a perceptual 
benefit: for every participant, the intelligibility of noisy audiovisual 
speech was equal to or greater than the intelligibility of noisy auditory- 
only speech (76% vs. 47% trials rated intelligible, paired t36 = 12.8, p =
10− 14). 

The fMRI response patterns evoked in superior temporal cortex by 
the different speech conditions were analyzed using individual- 
differences multidimensional scaling (MDS). This produced both a 
group MDS space (showing consistencies in the response patterns across 
participants) and an MDS space for each participant (showing individual 
differences). 

The group MDS revealed two separate drivers of the fMRI response 
patterns (Fig. 1A). The first axis corresponded to stimulus modality: 
along this axis, auditory-only speech conditions clustered in one half of 
MDS space while conditions that included the face of the talker clustered 
in the other. The second axis corresponded to speech intelligibility: 
along this axis, conditions with intelligible speech were found in one half 
of the MDS space while unintelligible speech conditions were in the 
other. 

The most similar fMRI response patterns were evoked by clear au
diovisual speech and noisy (but intelligible) audiovisual speech 
(consistent with the response drivers identified in MDS space, these 

conditions had the same similar stimulus modality and intelligibility). 
The patterns evoked by clear auditory-only speech and noisy (but 
intelligible) auditory-only speech were also similar, but less so than the 
clear and noisy audiovisual patterns. We tested the idea that the greater 
fMRI pattern similarity between clear and noisy audiovisual speech 
(compared with clear and noisy auditory-only speech) could underlie 
the perceptual advantage of audiovisual over auditory-only speech. In 
each individual participant’s MDS space, the pattern similarity between 
clear and noisy speech was measured, separately for audiovisual and 
auditory-only speech; results for two sample participants are shown in 
Fig. 1B and C. For 36/37 participants, the audiovisual patterns were 
more similar than the auditory-only patterns (paired t36 = − 14.9, p <
10− 16; Fig. 2A). 

3.1. Individual differences 

Within participants, there was a consistent pattern of greater intel
ligibility and more similar fMRI response patterns for audiovisual 
compared with auditory-only speech, prompting an exploration of 
whether this relationship also held true for individual differences in 
noisy speech perception. fMRI dissimilarity was plotted against 
perceptual intelligibility (Fig. 2C). As the similarity decreased, predicted 
intelligibility also decreased (generalized mixed-effect model, χ2

1 = 293, 
p < 10− 16). The goodness of fit was quantified by correlating the pre
dicted intelligibility for each participant with reported intelligibility. 

Fig. 2. A. The neural dissimilarity (distance in MDS space; dashed line in Fig. 1) 
was calculated between the fMRI response patterns in bilateral superior tem
poral cortex to clear speech and noisy (but intelligible) speech, separately for 
auditory-only speech (blue symbols) and audiovisual speech (green symbols). 
One pair of connected symbols for each participant. 
B. The percent of noisy speech trials rated intelligible for noisy auditory-only 
speech (blue symbols) and noisy audiovisual speech (green symbols). One 
pair of connected symbols for each participant. 
C. A generalized mixed-effects model was constructed to predict perceptual 
intelligibility (Fig. 2B) from neural dissimilarity (Fig. 2A). As dissimilarity 
increased, predicted intelligibility decreased (generalized mixed-effect model, 
χ2

1 = 293, p < 10− 16). The goodness of fit was quantified by correlating the 
predicted intelligibility for each participant with reported intelligibility (r =
0.55). One blue symbol and one green symbol per participant. Black line shows 
mean fit, shaded error shows SEM. 
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The predictive accuracy of the model was r = 0.55. 

3.2. Effect of hemisphere 

Our initial analysis showed that fMRI response patterns, measured in 
an ROI consisting of left and right superior temporal cortex, predicted 
individual differences in noisy speech perception. Predictive accuracy 
was similar when MDS spaces and predictive models were created 
separately for each hemisphere (r = 0.52 for left hemisphere vs. r = 0.56 
for right hemisphere, t73 = 0.18, p = 0.85). 

3.3. Effect of subregion 

Next, we examined whether different subregions of superior tem
poral cortex differed in their predictive accuracy. Six subregions were 
examined, three in each hemisphere: superior temporal sulcus (STS); 
superior temporal gyrus (STG); and the combination of Heschl’s gyrus 
and sulcus, and planum temporale (HG+). Individual-differences MDS 
was conducted separately for each subregion in each hemisphere and the 
neural-perceptual correlation calculated (Fig. 3). Within the left hemi
sphere, the STG had the highest neural-perceptual correlation, signifi
cantly different from the left hemisphere null distribution (STG: r =
0.65, p < 0.001; HG+: r = 0.53, p = 0.06; STS: r = 0.51, p = 0.29). 
Within the right hemisphere, all subregions had correlations that were 
not significantly different from the right hemisphere null distribution 
(HG+: r = 0.65, p = 0.28; STG: r = 0.62, p = 0.41; STS: r = 0.56, p =
0.63). 

3.4. Effect of study 

The main analysis combined data from two studies that used similar 
experimental designs, except that one used sentences as stimulus ma
terial and another that used single words, with no overlapping partici
pants (Fig. 1B and C show single participants from each study). Given 
the differences in lexical-semantic processing between sentences and 
words, we examined differences between the studies. 

For the perceptual data, a generalized linear-mixed effects model 
was constructed with participant as random factor; dependent variable 
of count of trials rated intelligible vs. unintelligible; and fixed factors of 
study (words vs. sentences), modality (auditory vs. audiovisual), and 
noise (clear vs. noisy). For noisy speech, there was a significant benefit of 
seeing the face of the talker for words (odds ratio of 4.6, AnV vs. An) and 
for sentences (odds ratio of 4.0) but the two odds ratios were not 
significantly different (p = 0.40; complete model results in Supple
mentary_Analysis.html.) 

Separate MDS spaces were constructed for the word and sentence 
studies, and generalized mixed-effect models of the neural-perceptual 
relationship were constructed. Both models explained significant vari
ance (χ2

1 = 183, p < 10− 16 for words and χ2
1 = 94, p < 10− 16 for sen

tences). The predictive accuracy for the word study was greater but not 
significantly so (r = 0.72 for words vs. r = 0.52 for sentence, p = 0.09). 

3.5. Other analyses 

The response pattern to intelligible noisy speech was measured by 
post hoc sorting the fMRI data, with the unavoidable consequence that 
different participants had different numbers of intelligible trials. This 
raises the concern that measurement of the response pattern could be 
unreliable in participants with fewer trials. To assess this possibility, we 
removed the 10% of participants (n = 4) with the fewest intelligible 
trials. This changed the neural-perceptual correlation only slightly 
(from r = 0.55 to r = 0.56) demonstrating that the correlation was not 
driven by participants with low trial counts. 

3.6. Univariate fMRI results 

The preponderance of previous fMRI studies of speech perception 
have applied univariate fMRI analyses, prompting us to examine our 
data through a univariate lens. The univariate response was calculated 
by averaging the response across each ROI, instead of the multivariate 
approach of correlating patterns of activity. 

Speech stimuli evoked a robust hemodynamic response in the su
perior temporal cortex, peaking 4 to 6 s after stimulus onset (Fig. 4). To 
quantify the effects of intelligibility on the univariate response, the 
amplitude of the BOLD signal change was entered into an LME with 
stimulus modality (noisy auditory vs. noisy audiovisual), intelligibility 
(Y vs. N), study (words vs. sentences) and STC subregion (STS, STG, HG+
in each hemisphere) as fixed factors and participant as a random factor. 

There was a significant main effect of STC subregion (χ2
5 = 368, p <

10− 16) driven by a smaller overall response in the STS than in the other 
ROIs. The main effect of modality (χ2

1 = 20, p = 10− 5) was driven by a 
larger response to noisy audiovisual speech compared to auditory-only 
speech. The main effect of study (χ2

1 = 10, p = 0.001) was driven by a 
larger response to sentences than words. There was no main effect of 
intelligibility (χ2

1 = 0, p = 0.92) and none of the interactions were 

Fig. 3. The neural-perceptual correlation (shown in Fig. 2C) was calculated 
separately for left hemisphere (LH) and right hemisphere (RH) STC and for 
subregions of the STC consisting of superior temporal sulcus (STS); superior 
temporal gyrus (STG); and HG+, the combination of planum temporale (PT), 
transverse superior temporal gyrus (also known as Heschl’s Gyrus, HG), and 
transverse superior temporal sulcus (also known as Heschl’s sulcus, HS). Sub
regions ordered from largest to smallest. 

Fig. 4. A. In the word study, single words were presented at the beginning of 
each trial (black square). The impulse response function across the superior 
temporal cortex ROI was estimated in each of seven conditions and averaged 
across participants (lines separated by gaps). A clustered acquisition was used 
so that the words were always presented in a 2 s silent period between MR 
acquisitions. The effective TR was 3.04 s. 
B. In the sentence study, entire sentences were presented at the beginning of 
each trial (black square). Continuous acquisition was used, so that the impulse 
response function was estimated at the TR of 1.5 s. 
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significant (Fig. 5; complete model output in Supplementary_Analysis. 
html). 

4. Discussion 

4.1. Summary of main finding 

The main finding was of a relationship between the multivariate 
pattern of fMRI activity in superior temporal cortex (STC) and the 
intelligibility of noisy speech. The neural dissimilarity between the 
response patterns to clear and noisy (but intelligible) speech was 
calculated. When the neural patterns were more similar, noisy speech 
was more intelligible. This relationship was consistent across several 
manipulations. Perceptually, noisy audiovisual speech was more intel
ligible than noisy auditory-only speech, while neurally, fMRI response 
patterns were more similar for audiovisual than for auditory-only 
speech. Across individuals, participants with more similar neural pat
terns for clear and noisy speech were better able to understand noisy 
speech. Across stimulus material (words and sentences), the same rela
tionship was observed. This consistency suggests that the neural- 
perceptual relationship was driven by intelligibility, rather than the 
precise sensory content of the speech stimulus. 

4.2. Possible neural mechanisms 

Measures of neural dissimilarity made with fMRI have a close cor
respondence with perception, especially at higher levels of sensory 
processing (Kriegeskorte and Kievit, 2013). In STC, pattern dissimilarity 
between perceptually different speech sounds emerges rapidly following 
speech onset (Chang et al., 2010). The neural similarity between clear 
speech and noisy (but intelligible) speech in the present study was 
measured across the average fMRI response pattern evoked by many 
different words. One possible mechanism for this could be a neural 
ignition process, in which neural responses to perceived stimuli spread 
throughout association cortex, while responses to meaningless stimuli 
remain confined to early sensory areas (Beauchamp et al., 2012; Fisch 
et al., 2009). 

4.3. Limitations of the present study 

Two major limitations of the present study are methodological. As in 
previous fMRI studies of noisy speech perception, participants respon
ded with a button press. While spoken responses are possible in the MR 
scanner, they introduce large imaging artifacts (Birn et al., 1998). In 
addition, BOLD fMRI does not directly measure neural activity, but 
rather its downstream effects on the cerebral vasculature (Aubert et al., 

2007). In future studies, it would be important to replicate these results 
using other methods (such as intracranial EEG) that do not share these 
limitations. 

4.4. Comparison with previous studies 

At least three previous studies have reported individual differences 
in the neural processing of noisy speech, with conflicting results (Du 
et al., 2016; Kim et al., 2021; McGettigan et al., 2012b). Our study 
differed from these studies in several respects, most importantly in post 
hoc sorting of trials and multivariate instead of univariate analysis. 

4.5. Post hoc sorting 

Previous neuroimaging studies of individual differences in noisy 
speech perception compared conditions in which intelligibility was low 
with conditions in which intelligibility was high. McGettigan and col
leagues compared conditions with different levels of auditory vocoding 
(McGettigan et al., 2012b); Du and colleagues compared conditions with 
different levels of white noise added (Du et al., 2016); and Kim and 
colleagues added multi-talker babble at different signal-to-noise ratios 
(Kim et al., 2021). However, this design introduces a confound: in 
addition to the intelligibility differences between conditions, there are 
also physical (low-level sensory) differences in the stimulus. An alter
native approach was first described in the memory literature (Brewer 
et al., 1998; Wagner et al., 1998). Event-related fMRI was used to 
measure the response to individual items at encoding. A subsequent test 
determined which items were accurately remembered, and the response 
to correct vs. incorrectly encoded items (that were otherwise very 
similar) were post hoc sorted into separate bins. This experimental 
design has been successfully applied in studies of noisy speech percep
tion (Bishop and Miller, 2009; Rennig and Beauchamp, 2022) and was 
used in the present study. Noisy speech stimuli were presented and 
participants reported their perception. For each participant, the BOLD 
fMRI responses to the noisy stimuli that were intelligible or not were 
sorted and analyzed separately. 

4.6. Multivariate analysis 

Using univariate analyses in which one brain location was analyzed 
at a time, previous neuroimaging studies of individual differences in 
noisy speech perception found conflicting results (Du et al., 2016; Kim 
et al., 2021; McGettigan et al., 2012b). One reason may be that uni
variate measures have limited power; in a direct comparison within 
individuals, Rennig and Beauchamp (2022) found that neural differ
ences between intelligible and unintelligible speech were much larger 
for multivariate (χ2 = 102) than univariate (χ2 = 11) analyses. 

A key property of the multivariate analysis is that it compares the 
response to clear speech with the response to noisy (but intelligible) 
speech. Conceptually, the pattern of response to clear speech can be 
thought of as a reference, corresponding to a neural template or proto
type; the more closely the response pattern evoked by noisy speech 
approximates the clear speech pattern, the more intelligible the noisy 
speech will be. 

Previous multivariate studies contrasted clear speech (always intel
ligible) with spectrally rotated speech (never intelligible); or noise- 
vocoded speech (sometimes intelligible) with spectrally-rotated noise 
vocoded speech (never intelligible) (Abrams et al., 2013; Evans et al., 
2014; Evans and Davis, 2015; McGettigan et al., 2012a; Okada et al., 
2010). Spectral rotation is very different from the noise encountered in 
natural listening conditions, so that differences in brain responses be
tween clear speech and spectrally rotated speech would not necessarily 
be expected to correlate with the ability to understand speech-in-noise 
across participants. In contrast, neural responses to noisy (but intelli
gible) speech may be more likely (with the proper measurement and 
analysis techniques) to be related to perceptual differences in the ability 

Fig. 5. The mean BOLD signal change was calculated for four conditions: noisy 
auditory-only sentences (light blue); noisy audiovisual sentences (light green); 
noisy auditory-only words (dark blue) and noisy audiovisual words (dark 
green). All nodes within each ROI were averaged, and then averaged across 
participants (error bar shows SEM across participants). 
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to perceive noisy speech. 
The sentence and word studies were each conducted at a single, fixed 

noise level (− 8 dB SPL for words and − 16 dB SPL for sentences). It 
would be interesting to test the neural intelligibility index on fMRI 
datasets containing a variety of noise levels (Davis and Johnsrude, 2003; 
Du et al., 2014; Golestani et al., 2013). The prediction is that at 
increasing noise levels, the pattern difference between noisy speech and 
clear speech would become greater and greater, corresponding to the 
decrease in perceptual intelligibility. The relationship between physical 
signal to noise ratio and perceptual intelligibility follows a typically 
S-shaped psychometric function (Ross et al., 2021) and it would be 
interesting to ascertain if the multivariate metric took a similar form 
with increasing noise levels. 

4.7. Region of interest 

There are a number of statistical pitfalls in identifying brain-behavior 
relationships using MRI (Marek et al., 2022; Vul et al., 2009). The most 
serious problem involves the dimensional mismatch inherent in most 
MRI studies between the number of brain measurements (up to a million 
voxels) and the number of participants (typically ten to twenty). Across a 
multitude of brain voxels, some will show a high value for the 
brain-behavior correlation. Selecting for significant correlations results 
in false positives and effect-size inflation (Palmer and Pe’er, 2017; 
Vasishth et al., 2018). To avoid this "winner’s curse", in the current study 
the neural-perceptual relationship across individuals was examined 
within STC and component subregions, the brain area identified as the 
most consistent neural correlate of speech intelligibility within in
dividuals across many previous neuroimaging studies (Abrams et al., 
2013; Davis and Johnsrude, 2007; DeWitt and Rauschecker, 2012; 
Eckert et al., 2016; Evans, 2017; Evans et al., 2014; Hakonen et al., 
2017; Holmes et al., 2021; Johnsrude et al., 2002; Wong et al., 2008). 

4.8. Individual differences in speech perception 

For any measurable trait, physical or psychological, there is enor
mous variability across individuals, reflecting an interaction between 
the environment and the genetic and epigenetic makeup of each indi
vidual. This interaction is particularly pronounced for language: while 
humans are genetically endowed with the ability the acquire language, 
the specific language(s) learned by a person is determined by their 
environment (Wong et al., 2022). Individual differences are pervasive 
across the language system and are related to environmental variables 
(such as the quantity and quality of the language that an individual is 
exposed to) and to individual differences in other cognitive functions, 
such as working memory, executive function, and statistical learning, 
reviewed in (Kidd et al., 2018; Shinn-Cunningham, 2017). 

4.9. Anatomical subregions 

Superior temporal cortex (STC) was used as the region of interest in 
our study because of the consensus in the neuroimaging literature that it 
is a key site for within-subject intelligibility effects, reviewed in Abrams 
et al. (2013), Davis and Johnsrude (2007), DeWitt and Rauschecker 
(2012), Evans (2017), Evans et al. (2014). Invasive recordings in pa
tients with epilepsy have found that larger responses to noisy speech in 
STC in patients with better task performance (Nourski et al., 2019); that 
STC restores missing acoustic content from the incoming speech signal 
(Leonard et al., 2016); and that STC responses to visual speech corre
spond to its perceptual benefit for noisy auditory speech (Karas et al., 
2019). Magnetoencephalographic recordings track the maintenance of 
online speech representations in STC for the resolution of ambiguous 
speech tokens (Gwilliams et al., 2018) and electrical stimulation of STC 
results in improved speech-in-noise perception (Patel et al., 2022). 

In the multivariate analysis, only modest differences between STC 
subregions were observed in our study. It may be that with the improved 

temporal resolution of iEEG, MEG or EEG, it would be possible to 
identify the early emergence of neural differences between intelligible 
speech in one anatomical subregion, which then spread to other sub
regions. Minimal differences in neural-perceptual correlation were 
observed between hemisphere, consistent with a recent neuroimaging 
study (Wehbe et al., 2021). 

The neural intelligibility metric in the present study was the 
Euclidean distance between clear and noisy speech response patterns. 
This approach is relatively simple, with no free parameters: each loca
tion in STC contributes equally to the pattern difference. A more com
plex approach would be to differentially weight different locations in 
STC using a machine learning approach (Kaniuth and Hebart, 2022). 
This would likely increase neural-perceptual correlations, at the risk of 
overfitting a dataset with many more brain locations (neural measures) 
than participants (perceptual measures). 

With the appropriate statistical precautions, the neural dissimilarity 
measure could be adapted for use in a brain-behavior searchlight anal
ysis (Emmerling et al., 2016). This would permit identification of all 
brain areas with significant neural-perceptual correlations. In cortex, 
frontal, parietal, cingular-opercular, and insular regions have all been 
implicated in speech perception under difficult conditions and would be 
important to investigate for their contributions to individual differences 
(Alain et al., 2018; Chevillet et al., 2013; Du et al., 2014; Vaden et al., 
2015, 2013). Subcortically, the medial geniculate nucleus has been 
identified as a site for group differences in speech perception (Mihai 
et al., 2021; Schelinski et al., 2022). Stimulus-response mapping on 
whole-head scalp EEG data shows that there are widespread cortical 
signals related to perception of noisy auditory and audiovisual speech 
(Di Liberto et al., 2018; O’Sullivan et al., 2021). 

Univariate and multivariate analyses provide complementary win
dows into BOLD datasets (Davis et al., 2014). In the univariate analysis, 
there was a significant main effect of STC subregion, driven by a low 
mean response in the STS. In large ROIs such as the STS, some voxels are 
activated (response above fixation baseline) and others that show little 
activity or are deactivated (response below fixation baseline). Averaging 
them in a univariate analysis results in low mean signal change. In 
contrast, in the multivariate analysis, both activations and deactivations 
at individual brain locations convey information. 

The univariate analysis showed a significant main effect for stimulus 
material, driven by a larger response in trials containing entire sentences 
than trials containing single words. This is to be expected, as a sentence 
containing many words (as well as additional linguistic and semantic 
information) should drive more neural activity than an isolated, out-of- 
context word. In addition to the stimulus material difference, the sen
tence and word studies were each conducted at a single, fixed noise level 
that differed between studies (− 8 SPL for words and − 16 dB SPL for 
sentences); and sparse sampling MR acquisition was used in the word 
study but not the sentence study. 

Finally, there was a main effect for the modality contrast, driven by a 
larger response for audiovisual than auditory trials. This replicates many 
previous findings of a larger STC response to multisensory audiovisual 
stimuli compared with unisensory stimuli, such as (Beauchamp et al., 
2004; van Atteveldt et al., 2004). 

4.10. Benefits of visual speech 

The perceptual results of the present study replicate one of the most 
reliable findings in the language literature, that visual information from 
the talker’s face increases the intelligibility of noisy speech (Peelle and 
Sommers, 2015b; Sumby and Pollack, 1954). Multisensory integration is 
beneficial because the external sources of noise in different sensory 
modalities are largely independent: the presence of loud background 
music in a restaurant does not interfere with seeing our tablemate’s face 
(Stein and Meredith, 1993). The face of the talker provides multiple 
sources of information about speech. First, it provides temporal infor
mation about the occurrence of speech, because of the high correlation 
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between the visual speech envelope and the auditory speech envelope 
(Ghazanfar and Takahashi, 2014). Seeing the talker’s mouth open is a 
reliable cue that auditory speech is expected soon. Secondly, it provides 
information about the content of speech. While there is not a one-to-one 
correspondence between particular auditory and visual speech tokens, 
the facial configuration of the talker is highly informative (Cappelletta 
and Harte, 2012). Most auditory phonemes are incompatible with any 
given mouth shape adopted by the talker. Since the visual mouth shape 
is adopted before vocalization begins, visual speech can provide a head 
start on processing the content of forthcoming auditory speech (Karas 
et al., 2019). The powerful influence of the face of the talker on auditory 
speech perception is illustrated by the McGurk effect, a well-known 
speech illusion (McGurk and MacDonald, 1976). 

4.11. Contributors to the neural dissimilarity measure 

Activity patterns in superior temporal cortex represent a readout of 
many factors that contribute to speech perception. Peripheral differ
ences could contribute to individual differences in brain activity. In the 
present study, the healthy adulty participants reported normal (or 
corrected-to-normal) vision and normal hearing, but no objective tests of 
hearing were reported. Similarly large individual differences in noisy 
audiovisual and auditory-only speech perception have also been 
observed in participants with normal hearing thresholds, as measured 
with a standard audiometric exam (Kim et al., 2021; Van Engen et al., 
2017). However, college students at high risk for hearing damage (due 
to exposure to loud sounds without hearing protection) were found to 
have impaired cochlear function and worse speech-in-noise under
standing than students at low risk, even though both groups had normal 
hearing thresholds when tested at standard audiometric frequencies 
(Liberman et al., 2016). These peripheral differences could reduce the 
fidelity of inputs into superior temporal cortex, changing the neural 
intelligibility index. 

Kim et al. (2021) used EEG to measure two different processes 
contributing to individual differences in speech in noise, a lower-level 
process that separates the speech signal from the noise, and a 
higher-level process that converts the speech into meaningful tokens. 
Both processes would be expected to alter patterns of activity in superior 
temporal cortex. Individual differences in audiovisual speech perception 
are linked to face viewing behavior. Human naturally fixate the mouth 
of the talker when noise is added to auditory speech. However, partic
ipants who fixate the mouth of the talker even when it is not required, 
during presentation of clear speech, receive more benefit from seeing the 
face during presentation of noisy speech, possibly due to their greater 
experience and expertise with face-voice correspondence (Rennig et al., 
2020; Wegner-Clemens et al., 2020). Through this route, the complex 
networks of brain areas linked to eye movement control and face 
perception could indirectly influence in the intelligibility index 
computed from superior temporal cortex. 

4.12. Applications 

The results of the present study suggest that if the pattern of brain 
response evoked in the superior temporal cortex by noise speech could 
somehow be made more similar to the pattern evoked by clear speech, 
the result could be enhanced intelligibility. One obvious possibility for 
this would be real-time neurofeedback. It has been shown that providing 
participants with feedback about their brain response, especially posi
tive feedback when the brain pattern becomes more similar to a desired 
pattern, can learn to modulate their own brain responses, resulting in 
enhanced perception (Ramot et al., 2017; Watanabe et al., 2017). To 
improve noisy speech perception, the response pattern to clear speech 
would be measured; then noisy speech would be presented, and par
ticipants would receive feedback about the similarity of the evoked fMRI 
pattern in superior temporal cortex with the reference clear speech 
pattern. 

More invasively, there is great interest in implanted brain-computer 
interfaces as remedies for communication deficits and to compensate for 
lost peripheral sensory function (Beauchamp et al., 2020; Moses et al., 
2021; Vansteensel and Jarosiewicz, 2020). Electrical stimulation of 
intracranial electrodes implanted in superior temporal cortex of a single 
patient resulted in improved speech-in-noise perception (Patel et al., 
2022). A neural prosthetic implanted in superior temporal cortex could 
help normalize the pattern of activity to make it easier for patients to 
understand speech. In the event that the evoked response to clear speech 
could not be measured in an individual, a template "clear speech" 
pattern derived from the group average of many participants could be 
used (Kragel et al., 2018). 

Data code availability 

To ensure reliability and reproducibility, the analysis code and data 
used for all analyses and figures presented in the manuscript may be 
found in the attached files, Supplementary_Analysis.html and Summar
yData.xlsx. The files are organized by manuscript section and figure 
number. 
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