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Humans have the unique ability to decode the rapid stream of language elements that constitute speech, even
when it is contaminated by noise. Two reliable observations about noisy speech perception are that seeing the
face of the talker improves intelligibility and the existence of individual differences in the ability to perceive
noisy speech. We introduce a multivariate BOLD fMRI measure that explains both observations. In two inde-
pendent fMRI studies, clear and noisy speech was presented in visual, auditory and audiovisual formats to thirty-
seven participants who rated intelligibility. An event-related design was used to sort noisy speech trials by their
intelligibility. Individual-differences multidimensional scaling was applied to fMRI response patterns in superior
temporal cortex and the dissimilarity between responses to clear speech and noisy (but intelligible) speech was
measured. Neural dissimilarity was less for audiovisual speech than auditory-only speech, corresponding to the
greater intelligibility of noisy audiovisual speech. Dissimilarity was less in participants with better noisy speech
perception, corresponding to individual differences. These relationships held for both single word and entire
sentence stimuli, suggesting that they were driven by intelligibility rather than the specific stimuli tested. A
neural measure of perceptual intelligibility may aid in the development of strategies for helping those with
impaired speech perception.

1. Introduction

The most important form of human communication is spoken lan-
guage. Speech is only useful to the extent that it is intelligible, leading to
pioneering studies by scientists at Bell Labs who quantified intelligibility
to improve telephone equipment (French and Steinberg, 1947). Since
then, an enormous literature on speech intelligibility has developed that
spans research, education, and clinical practice in the treatment of
speech and hearing disorders, reviewed in Weismer (2008). Two find-
ings in this literature are of particular interest. The first finding is that
visual information from the talker’s face increases speech intelligibility
under noisy listening conditions (Sumby and Pollack, 1954), reviewed in
Peelle and Sommers (2015a). The second finding is that, even in adults
with normal hearing thresholds, there is large individual variability in
the ability to understand speech under difficult listening conditions such
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as the presence of background noise, reviewed in Shinn-Cunningham
(2017).

The development of non-invasive blood oxygen level dependent
functional magnetic resonance imaging (BOLD fMRI) has spurred
extensive investigations into the functional anatomy of language. An
influential model holds that bilateral superior temporal cortex (STC)
transforms incoming auditory information into speech representations
(Hickok and Poeppel, 2004). Consistent with this model, many neuro-
imaging studies have found increased STC activity for intelligible
speech, reviewed in Abrams et al. (2013), Davis and Johnsrude (2007),
DeWitt and Rauschecker (2012), Evans (2017), Evans et al. (2014). The
STC is also strongly implicated in audiovisual speech processing,
reviewed in Bernstein and Liebenthal (2014), Ozker et al. (2018).

A major advance in fMRI was the development of multivariate
analysis techniques to reveal information hidden from univariate
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analyses (Haynes and Rees, 2006; Kriegeskorte et al., 2006; Norman
et al., 2006). Previous multivariate studies of auditory-only speech
demonstrated that response patterns in STC are related to speech
intelligibility (Abrams et al., 2013; Evans et al., 2014; Evans and Davis,
2015; McGettigan et al., 2012a; Okada et al., 2010). A limitation of these
studies was that intelligibility was usually manipulated in an all-or-none
fashion by comparing across two conditions, one in which speech was
always intelligible (such as clear speech) and one in which speech was
never intelligible (such as spectrally-rotated speech). In a recent study,
we took a different approach by post hoc sorting fMRI trials based on
participant responses (Rennig et al., 2020) an approach first used to
study memory (Brewer et al., 1998; Wagner et al., 1998). This allowed
for a comparison of the multivariate pattern of fMRI activity evoked by
intelligible compared with unintelligible trials, within a single noisy
speech condition.

Multivariate dissimilarity between fMRI response patterns has a
close relationship with perception (Kriegeskorte and Kievit, 2013),
suggesting that it could be a useful tool for interrogating visual contri-
butions to, and individual differences in, noisy speech perception.
However, previous studies on individual differences tested only uni-
variate analyses, with conflicting results. An fMRI study of young adults
conducted at 1.5 T identified three single voxels, in frontal cortex and
temporal cortex, with a significant univariate BOLD signal correlation
with intelligibility, as measured with a post-test conducted after the MRI
session (McGettigan et al., 2012b). An fMRI study of young and old
adults conducted at 3 T found no voxels with a significant univariate
BOLD signal correlation with intelligibility in young adults, while old
adults showed significant correlations in two brain locations in frontal
cortex and sensorimotor cortex (Du et al., 2016). A scalp EEG study
found that the amplitude of the event-related potential in supramarginal
gyrus showed a correlation with individual differences (Kim et al.,
2021).

To examine whether multivariate analysis could resolve these con-
flicting results, we developed a multivariate neural dissimilarity mea-
sure. The measure used post hoc trial sorting to measure the fMRI
response to noisy but intelligible speech. The dissimilarity between the
response patterns to clear speech and noisy but intelligible speech was
measured separately for each participant, using an individual-
differences multidimensional scaling approach applied to fMRI data
collected from 37 young adults. To establish generalizability, the neural-
perceptual relationship was assessed for both noisy auditory-only and
audiovisual speech and for single words and complete sentences.

2. Methods
2.1. Overview

Two datasets were analyzed, both consisting of fMRI and behavioral
data collected from healthy human participants presented with speech
in five different formats: clear auditory speech paired with a video of a
talking face (AcV), noisy auditory speech paired with a video of a talking
face (AnV), clear auditory speech without a talking face/black screen
(Ac), noisy auditory speech without a talking face/black screen (An),
and a video of a talking face without audio (V). As described below,
stimuli in the AnV and An conditions were sorted by perceptual ratings
into trials that were intelligible ("-Y") or not intelligible ("-N"), producing
a total of seven conditions (AcV, AnV-Y, AnV-N, Ac, An-Y, An-N, V). The
speech stimuli were either single words or sentences. The fMRI dataset
for the word study has not been previously published. The fMRI dataset
for the sentence study is a re-analysis of published data (Rennig and
Beauchamp, 2022).

2.2. Reliability and reproducibility

To promote reliability and reproducibility, the analysis code and
data and additional stimulus information may be found in the attached

files, Supplementary_ Analysis.html and SummaryData.xIsx. The files are
organized by manuscript order.

2.3. Human subjects

All experiments were approved by the Committee for the Protection
of Human Subjects at Baylor College of Medicine, Houston, TX. For the
word study, fifteen healthy right-handed participants (5 males, mean
age 22 yrs, range 18 — 37 yrs) with normal or corrected-to-normal vision
and normal hearing provided written informed consent. For the sentence
study, twenty-two healthy right-handed participants (14 females, mean
age 25, range 18 - 34) with normal or corrected to normal vision and
normal hearing were consented. There was no overlap between the
participant groups, for a total n of 37 participants.

2.4. Speech stimuli

For the word study, the stimuli consisted of 297 single English words
recorded from 12 talkers (6 males). For the sentence study, the stimuli
consisted of 80 sentences recorded from a single male talker and
generously shared by Van Engen et al. (2017). All stimuli are listed in
SummaryData.xIsx. The visual angle subtended by the face videos in the
MR scanner was approximately 20° and the sound pressure level was
approximately 80 dB SPL.

To create auditory noisy speech, the original audio recordings were
combined with pink noise. Pink noise is commonly used in studies of
auditory function because it contains decreasing energy at increasing
frequency, making it less aversive than white noise. Pink noise and the
stimulus audio track were normalized by the absolute value of the
respective maximum, audio trackpormalized = audio trackpative/max(abs
(audio trackpative)). The power of the signal in the sentence audio track
and the pink noise were determined and the signal-to-noise ratio (SNR)
calculated as loglO(powersignal/POWernoise). The volume of the pink
noise was increased or decreased iteratively to reach an SNR of —8 dB
SPL for words and —16 dB SPL for sentences. The audio track and pink
noise were then summed and then re-normalized to equalize the volume
across stimuli. The original clear auditory recordings were normalized
to equate root-mean-square amplitude across stimuli, but no compres-
sion or normalization was done within each stimulus.

Videos were edited using Adobe Premiere Pro. For auditory-only
stimuli (Ac, An) the visual component of the stimulus consisted of a
fixation crosshair in the center of a gray screen of the approximate same
luminance as the face stimulus.

Acoustic noise induces different consequences on intelligibility not
only according to the signal-to-noise ratio (SNR) but also according to
the linguistic element (syllable, word or sentence). For a given SNR, the
intelligibility of a word varies according to its phonetic and phonotactic
structure. For a sentence, the misperception of some linguistic elements
does not prevent a substantial understanding of the sentence.

2.5. Perceptual task

Perceptual data was collected in the MR scanner with no feedback.
Participants rated their understanding of each stimulus with a button
press. For word stimuli, the task instruction was “are you sure what the
word was” and participants pressed one of two button to signal “I am
sure of the word” or “I am not sure of the word”. For sentence stimuli,
participants pressed one of three buttons to signal “understood every-
thing” (all words in the sentence understood); “understood something”
(at least one word in the sentence); “understood nothing” (no words in
the sentence). There were very few "understood everything" responses,
so "understood everything" and "understood something" responses were
grouped for analysis.

This resulted in two types of post hoc perceptually-sorted trials for
both studies: "intelligible" (participant sure of word, or understood some
or everything for sentences) and 'unintelligible" (unsure of word,
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nothing understood for sentences). Here we use "intelligible" in the
colloquial sense of "comprehensible" or "able to be understood".

To minimize perceptual learning, stimuli were never repeated within
participants. The order and format of each stimulus was randomized
across participants to counterbalance any stimulus effects. For the word
stimuli, this was accomplished by dividing the words into five groups.
Participants were randomized into one of five batches. Each batch was
presented with each word group in a different format (Ac, An, AnV, AcV,
V) so that, across participants, each word was presented in every
different format an equal number of times.

2.6. Experimental design

For both studies, a rapid event-related fMRI design was used. The
trial (event) duration was 3.04 s for the word study and 6.0 s for the
sentence study. In the word study, there was a silent period of 2 s within
each trial. Words were presented during this silent period to avoid
auditory contamination by the loud echo-planar pulse sequence.
Following word presentation, participants responded when MR acqui-
sition commenced, resulting in one MR acquisition per trial. In the
sentence study, stimuli were presented simultaneous with the MR
acquisition without a silent period, resulting in two MR acquisitions per
trial. Participants in the word study were presented with a total of 297
word trials and sentence participants were presented with a total of 160
sentence trials. However, the amount of fMRI data collected and total
time in the scanner was comparable between studies since sentence
trials were twice as long but contained two MR acquisitions instead of
one.

Trials were ordered in a pseudo-random optimal sequence generated
by the program optseq2 (Dale et al., 1999; https://surfer.nmr.mgh.
harvard.edu/optseq). For the word study, six scan series with 65 trials
each (390 total trials) were collected from each participant. To present
each of the 297 words exactly once, three series contained 49 trials and
three contained 50. Each scan series also contained 15 or 16 trials of
fixation baseline to permit estimation of the amplitude of the stimulus
evoked hemodynamic response relative to fixation. For the sentence
study, four scan series (300 s long each) were acquired, each contained
40 trials interspersed with a total of 60 s of fixation baseline. For the
word study, the efficiency after post-hoc sorting of trials was 0.0015.

2.7. fMRI acquisition and stimulus presentation

Both word and sentence studies used a Siemens 3 tesla MR scanner in
Baylor College of Medicine’s Core for Advanced MRI (CAMRI). The
sentence study used a TRIO with a 32-channel head coil. Prior to initi-
ation of the word study, the TRIO was upgraded to a PRISMA FIT with a
64-channel head coil. The sentence study used a TR of 1.5 s (TE = 30 ms,
flip angle = 72°, in-plane resolution of 2 x 2 mm, 69 2 mm axial slices,
multiband factor: 3, GRAPPA factor: 2). The word study used a TR of
3.04 s (TE = 38 ms, flip angle = 78°, in-plane resolution of 2 x 2 mm, 65
2 mm axial slices, multiband acceleration factor: 6). The multiband
acquisition permitted data collection in 1.04 s. In combination with a TR
of 3.04 s and clustered/sparse acquisition (Edmister et al., 1999; Hall
et al., 1999) this provided a silent window of 2 s between acquisitions.

For both studies, stimuli were presented and synchronized with MR
data acquisition in Matlab (The Mathworks, Inc., Natick, MA, USA)
using the Psychophysics Toolbox extensions (Brainard, 1997). Visual
stimuli were presented on a 32-inch (1920 pixels by 1080 pixels)
MR-compatible BOLDview LCD screen placed behind the bore of the MR
scanner and viewed through a mirror attached to the head coil. Auditory
stimuli were played via MR-compatible noisy reduction headphones.
Behavioral responses were collected using a fiber-optic button response
pad (Current Designs, Haverford, PA, USA).

2.8. Structural MRI acquisition and analysis

The anatomical scan series consisted of two T1-weighted MPRAGE
anatomical volumes. Functional data was collected using a multi-slice
echo planar imaging sequence (Perrachione and Ghosh, 2013): TR =
3040 ms, TE = 38 ms, flip angle = 78°, in-plane resolution of 2 x 2 mm,
65 2 mm axial slices, multiband accelerate factor: 6, phase encoding
direction: Anterior-to-Posterior. Alternate EPI scans were collected
using the opposing phase encoding direction (Posterior-to-Anterior).

The second anatomical volume was aligned to the first using a 6-
parameter affine transformation with a mutual information cost func-
tion using the AFNI program 3dAllineate. The aligned volumes were
averaged to improve gray-white contrast and FreeSurfer was used to
construct a cortical surface model (Dale et al., 1999a) which was visu-
alized with the AFNI program SUMA (Argall et al., 2006).

To minimize patient fatigue, total scan time including all functional
and structural acquisitions was approximately 30 min.

2.9. fMRI analysis

fMRI analysis was conducted using the Analysis of Functional Neu-
rolmages (AFNI) package (Cox, 1996). Preprocessing consisted of sus-
ceptibility distortion correction; slice-time correction; and motion
correction by aligning the EPIs to the average anatomical image. The
time series of each voxel was scaled to have a mean of 100 so that all
signal changes were automatically in units of percent difference from the
mean.

A generalized linear model (GLM) was applied to the MR time series
in each voxel using 3dDeconvolve. To estimate the amplitude of the
activation in each voxel, the time of each stimulus event was convolved
with a gamma-variate hemodynamic response function. Stimuli in the
AnV and An conditions were post-hoc sorted by perceptual ratings into
trials that were intelligible ("-Y") or not intelligible ("-N"), producing a
GLM with seven regressors of interest (AcV, AnV-Y, AnV-N, Ac, An-Y,
An-N, V). Regressors of no interest consisted of a polynomial to model
baseline fluctuations and six mean-subtracted motion estimates from
motion correction.

2.10. ROI construction

Regions of interest (ROIs) were defined individually for each hemi-
sphere based on the automated parcellation of the cortical surface
(Destrieux et al., 2010). For the main analysis, five relevant FreeSurfer
atlas labels per hemisphere (10 total labels per participant) were com-
bined into a single temporal cortex ROI: superior temporal gyrus (STG);
superior temporal sulcus (STS); transverse superior temporal gyrus (also
known as Heschl’s Gyrus, HG); transverse superior temporal sulcus (also
known as Heschl’s sulcus, HS); planum temporale (PT). For one hemi-
sphere in one participant (right hemisphere of participant QP) Free-
Surfer parcellation failed to identify two atlas labels in the right
hemisphere, resulting in a total of 8 total labels for this participant. For
the secondary analysis, six subregions of the superior temporal cortex
ROI were analyzed separately, consisting of three subregions in the left
hemisphere and three in the right hemisphere. The subregions were the
STG; the STS; and the combination of HG, HS, and PT (HG-+).

The STC (and STC subregions) were defined solely using the
anatomical FreeSurfer parcellation, without any additional functional
thresholding. Therefore, for each participant, the fMRI pattern com-
parisons were always conducted within ROIs of exactly the same size.

Voxels with absolute percent signal change exceeding 2.5% over the
course of an MR scan series were excluded from the mask (<1% of
voxels); most of these extreme-valued voxels were at the very edge of the
brain, making their high signal change likely a result of motion or
vascular artifacts.
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2.11. Multivariate fMRI analysis

For multivariate fMRI analysis, the mean percentage signal change
across conditions in each surface node was calculated and subtracted
from the response to each individual condition. This increases the dy-
namic range of the fMRI pattern correlation (Haxby et al., 2001) and is
especially important in superior temporal cortex where many nodes
show a positive response to all speech stimuli (Rennig and Beauchamp,
2022). To compute the fMRI pattern similarity between each pair of
conditions, the mean-centered percentage signal change across the ROI
for the first condition was correlated with the mean-centered percentage
signal change in the second condition, resulting in a single correlation
value for each pair of conditions for each hemisphere. There were 7
conditions, resulting in 21 pairwise correlation per hemisphere. The
correlations were converted into dissimilarities using the formula sqrt
(1-r). Next, individual-differences multidimensional scaling (MDS) was
used to decompose the dissimilarity matrices from each participant into
two dimensions. This was performed using the Carroll-Chang
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decomposition (Carroll and Chang, 1970) also known as IDIOSCAL
(Individual DIfferences in Orientation SCALing) as implemented in the
smacof package (Leeuw and Mair, 2009). IDIOSCAL provides an
advantage over simple averaging correlation matrices across partici-
pants because it simultaneously estimates individual representational
spaces and the group space (analogous to treating participants as a
random factor rather than a fixed factor). The group MDS revealed two
separate drivers of the fMRI response patterns. For visualization in
Fig. 1, the MDS space was rotated so that these two drivers lay along the
x-axis and the y-axis (distances are invariant to rotation).

2.12. Neural-perceptual correlations

To create a neural measure of intelligibility, the Euclidean distance
in MDS space between clear and noisy speech was measured in each
participant, separately for audiovisual speech (distance between AcV
and AnV-Y) and auditory-only speech (distance between Ac and An-Y).

The neural-perceptual relationship was modeled using generalized

Fig. 1. A. Brain responses to seven kinds of
speech were measured with BOLD fMRI:
visual-only speech (V); audiovisual speech
with added auditory noise, sorted by whether
participants rated it as unintelligible (AnV-N)
or intelligible (AnV-Y); clear audiovisual
speech (AcV); noisy auditory-only speech
sorted by intelligibility (An-N, An-Y); clear
auditory-only  speech  (Ac). Individual-
differences multidimensional scaling (MDS)
was used to decompose the fMRI response
patterns in superior temporal cortex (STC).
Each colored symbol shows the location of one
speech condition in MDS space. The MDS axis
labels are descriptive, highlighting the sepa-
ration by stimulus modality (colors: blue for
auditory-only, green for audiovisual, black for
visual-only) and intelligibility (more intelli-
gible stimuli at the right of the space). Green
dashed line shows the dissimilarity between
clear and noisy but intelligible audiovisual
speech, the two most similar patterns (number
shows distance in MDS space). Blue dashed
line shows the dissimilarity between clear and
noisy but intelligible auditory-only speech.

B. fMRI response patterns to the different
speech conditions in individual participant RX
(stimulus material consisted of single words).
Left panel shows the MDS decomposition,
right panel shows the fMRI response patterns.
At each STC location, the mean response
across speech conditions was calculated and
subtracted from the response, so that cool
colors indicate responses below the mean
speech response (rather than below fixation
baseline).

C. Individual-differences MDS decomposition
of fMRI response patterns to the different
speech conditions in individual participant QX
(stimulus material consisted of entire senten-
ces). .

-_— +
ean-centered
% signal change
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mixed-effects models (Yu et al., 2022), equivalent to logistic regression
with a random effect of participant as implemented in Ime4 (Bates et al.,
2015). The dependent measure was the count of intelligible trials vs.
unintelligible trials. The fixed effect was the neural distance between
clear and intelligible noisy speech. The random factor was participant.
To assess the predictive accuracy of the model, we correlated the
intelligibility rating predicted by the model (without the random effect
term) with each participant’s actual intelligibility rating.

Effect of hemisphere. To determine the statistical significance of the
differences between left and right hemisphere STC, we fit separate
representational spaces for each hemisphere in each subject and esti-
mated generalized mixed-effects models for each hemisphere. We used a
paired t-test on the squared residuals from each model (actual intelli-
gibility — predicted intelligibility) to assess their relative goodness of fit.

Effect of STC subregion. To compare neural-perceptual correlations
across STC subregions, in each hemisphere of each participant a control
ROI of the same size as the average subregion was created from random
nodes within the STC. An MDS space was created across participants, the
dissimilarity measured, and the neural-perceptual correlation calcu-
lated. This process was repeated 1000 times to create an empirical null
distribution for each hemisphere. A p-value was calculated by finding
the number of simulation runs in which the correlation from a subregion
exceeded the simulated values from the same hemisphere.

Effect of study. The main analysis combined data from a study which
used words as stimulus material and a study which used sentences as a
stimulus material. To compare the studies, separate MDS spaces were
constructed for each study. The accuracy of the neural-perceptual
models from each study were compared using a resampling procedure.
In each simulation, participants were randomly assigned to one study or
another (maintaining the different number of participants in each
study). Neural-perceptual correlations were calculated for each shuffle
and the model accuracies compared (difference of neural-perceptual
correlations). The actual words vs. sentences correlation difference
was compared to the distribution of correlation differences from the
shuffled data to assess statistical significance.

2.13. Univariate analysis

For univariate analyses, beta coefficients were averaged across all
voxels in an ROI to produce a single value per stimulus condition.

3. Results

Participants rated the intelligibility of speech presented in the MR
scanner. As expected, seeing the face of the talker provided a perceptual
benefit: for every participant, the intelligibility of noisy audiovisual
speech was equal to or greater than the intelligibility of noisy auditory-
only speech (76% vs. 47% trials rated intelligible, paired t3g = 12.8,p =
10°1.

The fMRI response patterns evoked in superior temporal cortex by
the different speech conditions were analyzed using individual-
differences multidimensional scaling (MDS). This produced both a
group MDS space (showing consistencies in the response patterns across
participants) and an MDS space for each participant (showing individual
differences).

The group MDS revealed two separate drivers of the fMRI response
patterns (Fig. 1A). The first axis corresponded to stimulus modality:
along this axis, auditory-only speech conditions clustered in one half of
MDS space while conditions that included the face of the talker clustered
in the other. The second axis corresponded to speech intelligibility:
along this axis, conditions with intelligible speech were found in one half
of the MDS space while unintelligible speech conditions were in the
other.

The most similar fMRI response patterns were evoked by clear au-
diovisual speech and noisy (but intelligible) audiovisual speech
(consistent with the response drivers identified in MDS space, these

conditions had the same similar stimulus modality and intelligibility).
The patterns evoked by clear auditory-only speech and noisy (but
intelligible) auditory-only speech were also similar, but less so than the
clear and noisy audiovisual patterns. We tested the idea that the greater
fMRI pattern similarity between clear and noisy audiovisual speech
(compared with clear and noisy auditory-only speech) could underlie
the perceptual advantage of audiovisual over auditory-only speech. In
each individual participant’s MDS space, the pattern similarity between
clear and noisy speech was measured, separately for audiovisual and
auditory-only speech; results for two sample participants are shown in
Fig. 1B and C. For 36/37 participants, the audiovisual patterns were
more similar than the auditory-only patterns (paired t3g = —14.9, p <
10716; Fig. 2A).

3.1. Individual differences

Within participants, there was a consistent pattern of greater intel-
ligibility and more similar fMRI response patterns for audiovisual
compared with auditory-only speech, prompting an exploration of
whether this relationship also held true for individual differences in
noisy speech perception. fMRI dissimilarity was plotted against
perceptual intelligibility (Fig. 2C). As the similarity decreased, predicted
intelligibility also decreased (generalized mixed-effect model, x3 = 293,
p < 10716). The goodness of fit was quantified by correlating the pre-
dicted intelligibility for each participant with reported intelligibility.

A. B

0.6 - : 100 . ;‘, °
L ]
Neural auditory-only % Trials 2 %° :
Dissimilarity ¢ Rated oo <3
"# Intelligible ¢ *\
10& : -' 2
054 “q® 501 % ‘
- ®
@ :c. .‘ ‘ ° :
"’ g
ok :
0.4 audiovisual 0-
100 4
*
_ e % r=0.55
% Trials
Rated
Intelligible
50 4
0 ; .
0.4 0.5 0.6

Neural Dissimilarity

Fig. 2. A. The neural dissimilarity (distance in MDS space; dashed line in Fig. 1)
was calculated between the fMRI response patterns in bilateral superior tem-
poral cortex to clear speech and noisy (but intelligible) speech, separately for
auditory-only speech (blue symbols) and audiovisual speech (green symbols).
One pair of connected symbols for each participant.

B. The percent of noisy speech trials rated intelligible for noisy auditory-only
speech (blue symbols) and noisy audiovisual speech (green symbols). One
pair of connected symbols for each participant.

C. A generalized mixed-effects model was constructed to predict perceptual
intelligibility (Fig. 2B) from neural dissimilarity (Fig. 2A). As dissimilarity
increased, predicted intelligibility decreased (generalized mixed-effect model,
¥3 = 293, p < 107'%). The goodness of fit was quantified by correlating the
predicted intelligibility for each participant with reported intelligibility (r =
0.55). One blue symbol and one green symbol per participant. Black line shows
mean fit, shaded error shows SEM.
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The predictive accuracy of the model was r = 0.55.
3.2. Effect of hemisphere

Our initial analysis showed that fMRI response patterns, measured in
an ROI consisting of left and right superior temporal cortex, predicted
individual differences in noisy speech perception. Predictive accuracy
was similar when MDS spaces and predictive models were created
separately for each hemisphere (r = 0.52 for left hemisphere vs. r = 0.56
for right hemisphere, t;3 = 0.18, p = 0.85).

3.3. Effect of subregion

Next, we examined whether different subregions of superior tem-
poral cortex differed in their predictive accuracy. Six subregions were
examined, three in each hemisphere: superior temporal sulcus (STS);
superior temporal gyrus (STG); and the combination of Heschl’s gyrus
and sulcus, and planum temporale (HG+). Individual-differences MDS
was conducted separately for each subregion in each hemisphere and the
neural-perceptual correlation calculated (Fig. 3). Within the left hemi-
sphere, the STG had the highest neural-perceptual correlation, signifi-
cantly different from the left hemisphere null distribution (STG: r =
0.65, p < 0.001; HG+: r = 0.53, p = 0.06; STS: r = 0.51, p = 0.29).
Within the right hemisphere, all subregions had correlations that were
not significantly different from the right hemisphere null distribution
(HG+:r = 0.65, p = 0.28; STG: r = 0.62, p = 0.41; STS: r = 0.56, p =
0.63).

3.4. Effect of study

The main analysis combined data from two studies that used similar
experimental designs, except that one used sentences as stimulus ma-
terial and another that used single words, with no overlapping partici-
pants (Fig. 1B and C show single participants from each study). Given
the differences in lexical-semantic processing between sentences and
words, we examined differences between the studies.

For the perceptual data, a generalized linear-mixed effects model
was constructed with participant as random factor; dependent variable
of count of trials rated intelligible vs. unintelligible; and fixed factors of
study (words vs. sentences), modality (auditory vs. audiovisual), and
noise (clear vs. noisy). For noisy speech, there was a significant benefit of
seeing the face of the talker for words (odds ratio of 4.6, AnV vs. An) and
for sentences (odds ratio of 4.0) but the two odds ratios were not
significantly different (p = 0.40; complete model results in Supple-
mentary_Analysis.html.)

Separate MDS spaces were constructed for the word and sentence
studies, and generalized mixed-effect models of the neural-perceptual
relationship were constructed. Both models explained significant vari-
ance (X% =183,p < 1071® for words and X% =94,p < 1071 for sen-
tences). The predictive accuracy for the word study was greater but not
significantly so (r = 0.72 for words vs. r = 0.52 for sentence, p = 0.09).
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Fig. 3. The neural-perceptual correlation (shown in Fig. 2C) was calculated
separately for left hemisphere (LH) and right hemisphere (RH) STC and for
subregions of the STC consisting of superior temporal sulcus (STS); superior
temporal gyrus (STG); and HG+, the combination of planum temporale (PT),
transverse superior temporal gyrus (also known as Heschl’s Gyrus, HG), and
transverse superior temporal sulcus (also known as Heschl’s sulcus, HS). Sub-
regions ordered from largest to smallest.

3.5. Other analyses

The response pattern to intelligible noisy speech was measured by
post hoc sorting the fMRI data, with the unavoidable consequence that
different participants had different numbers of intelligible trials. This
raises the concern that measurement of the response pattern could be
unreliable in participants with fewer trials. To assess this possibility, we
removed the 10% of participants (n = 4) with the fewest intelligible
trials. This changed the neural-perceptual correlation only slightly
(from r = 0.55 to r = 0.56) demonstrating that the correlation was not
driven by participants with low trial counts.

3.6. Univariate fMRI results

The preponderance of previous fMRI studies of speech perception
have applied univariate fMRI analyses, prompting us to examine our
data through a univariate lens. The univariate response was calculated
by averaging the response across each ROI, instead of the multivariate
approach of correlating patterns of activity.

Speech stimuli evoked a robust hemodynamic response in the su-
perior temporal cortex, peaking 4 to 6 s after stimulus onset (Fig. 4). To
quantify the effects of intelligibility on the univariate response, the
amplitude of the BOLD signal change was entered into an LME with
stimulus modality (noisy auditory vs. noisy audiovisual), intelligibility
(Y vs. N), study (words vs. sentences) and STC subregion (STS, STG, HG+
in each hemisphere) as fixed factors and participant as a random factor.

There was a significant main effect of STC subregion (yZ = 368, p <
1071) driven by a smaller overall response in the STS than in the other
ROIs. The main effect of modality (x? = 20, p = 10~>) was driven by a
larger response to noisy audiovisual speech compared to auditory-only
speech. The main effect of study (37 = 10, p = 0.001) was driven by a
larger response to sentences than words. There was no main effect of
intelligibility (x> = 0, p = 0.92) and none of the interactions were
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Fig. 4. A. In the word study, single words were presented at the beginning of
each trial (black square). The impulse response function across the superior
temporal cortex ROI was estimated in each of seven conditions and averaged
across participants (lines separated by gaps). A clustered acquisition was used
so that the words were always presented in a 2 s silent period between MR
acquisitions. The effective TR was 3.04 s.

B. In the sentence study, entire sentences were presented at the beginning of
each trial (black square). Continuous acquisition was used, so that the impulse
response function was estimated at the TR of 1.5 s.
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significant (Fig. 5; complete model output in Supplementary Analysis.
html).

4. Discussion
4.1. Summary of main finding

The main finding was of a relationship between the multivariate
pattern of fMRI activity in superior temporal cortex (STC) and the
intelligibility of noisy speech. The neural dissimilarity between the
response patterns to clear and noisy (but intelligible) speech was
calculated. When the neural patterns were more similar, noisy speech
was more intelligible. This relationship was consistent across several
manipulations. Perceptually, noisy audiovisual speech was more intel-
ligible than noisy auditory-only speech, while neurally, fMRI response
patterns were more similar for audiovisual than for auditory-only
speech. Across individuals, participants with more similar neural pat-
terns for clear and noisy speech were better able to understand noisy
speech. Across stimulus material (words and sentences), the same rela-
tionship was observed. This consistency suggests that the neural-
perceptual relationship was driven by intelligibility, rather than the
precise sensory content of the speech stimulus.

4.2. Possible neural mechanisms

Measures of neural dissimilarity made with fMRI have a close cor-
respondence with perception, especially at higher levels of sensory
processing (Kriegeskorte and Kievit, 2013). In STC, pattern dissimilarity
between perceptually different speech sounds emerges rapidly following
speech onset (Chang et al., 2010). The neural similarity between clear
speech and noisy (but intelligible) speech in the present study was
measured across the average fMRI response pattern evoked by many
different words. One possible mechanism for this could be a neural
ignition process, in which neural responses to perceived stimuli spread
throughout association cortex, while responses to meaningless stimuli
remain confined to early sensory areas (Beauchamp et al., 2012; Fisch
et al., 2009).

4.3. Limitations of the present study

Two major limitations of the present study are methodological. As in
previous fMRI studies of noisy speech perception, participants respon-
ded with a button press. While spoken responses are possible in the MR
scanner, they introduce large imaging artifacts (Birn et al., 1998). In
addition, BOLD fMRI does not directly measure neural activity, but
rather its downstream effects on the cerebral vasculature (Aubert et al.,
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Fig. 5. The mean BOLD signal change was calculated for four conditions: noisy
auditory-only sentences (light blue); noisy audiovisual sentences (light green);
noisy auditory-only words (dark blue) and noisy audiovisual words (dark
green). All nodes within each ROI were averaged, and then averaged across
participants (error bar shows SEM across participants).

2007). In future studies, it would be important to replicate these results
using other methods (such as intracranial EEG) that do not share these
limitations.

4.4. Comparison with previous studies

At least three previous studies have reported individual differences
in the neural processing of noisy speech, with conflicting results (Du
et al., 2016; Kim et al., 2021; McGettigan et al., 2012b). Our study
differed from these studies in several respects, most importantly in post
hoc sorting of trials and multivariate instead of univariate analysis.

4.5. Post hoc sorting

Previous neuroimaging studies of individual differences in noisy
speech perception compared conditions in which intelligibility was low
with conditions in which intelligibility was high. McGettigan and col-
leagues compared conditions with different levels of auditory vocoding
(McGettigan et al., 2012b); Du and colleagues compared conditions with
different levels of white noise added (Du et al., 2016); and Kim and
colleagues added multi-talker babble at different signal-to-noise ratios
(Kim et al., 2021). However, this design introduces a confound: in
addition to the intelligibility differences between conditions, there are
also physical (low-level sensory) differences in the stimulus. An alter-
native approach was first described in the memory literature (Brewer
et al., 1998; Wagner et al., 1998). Event-related fMRI was used to
measure the response to individual items at encoding. A subsequent test
determined which items were accurately remembered, and the response
to correct vs. incorrectly encoded items (that were otherwise very
similar) were post hoc sorted into separate bins. This experimental
design has been successfully applied in studies of noisy speech percep-
tion (Bishop and Miller, 2009; Rennig and Beauchamp, 2022) and was
used in the present study. Noisy speech stimuli were presented and
participants reported their perception. For each participant, the BOLD
fMRI responses to the noisy stimuli that were intelligible or not were
sorted and analyzed separately.

4.6. Multivariate analysis

Using univariate analyses in which one brain location was analyzed
at a time, previous neuroimaging studies of individual differences in
noisy speech perception found conflicting results (Du et al., 2016; Kim
et al., 2021; McGettigan et al., 2012b). One reason may be that uni-
variate measures have limited power; in a direct comparison within
individuals, Rennig and Beauchamp (2022) found that neural differ-
ences between intelligible and unintelligible speech were much larger
for multivariate (Xz = 102) than univariate (Xz = 11) analyses.

A key property of the multivariate analysis is that it compares the
response to clear speech with the response to noisy (but intelligible)
speech. Conceptually, the pattern of response to clear speech can be
thought of as a reference, corresponding to a neural template or proto-
type; the more closely the response pattern evoked by noisy speech
approximates the clear speech pattern, the more intelligible the noisy
speech will be.

Previous multivariate studies contrasted clear speech (always intel-
ligible) with spectrally rotated speech (never intelligible); or noise-
vocoded speech (sometimes intelligible) with spectrally-rotated noise
vocoded speech (never intelligible) (Abrams et al., 2013; Evans et al.,
2014; Evans and Davis, 2015; McGettigan et al., 2012a; Okada et al.,
2010). Spectral rotation is very different from the noise encountered in
natural listening conditions, so that differences in brain responses be-
tween clear speech and spectrally rotated speech would not necessarily
be expected to correlate with the ability to understand speech-in-noise
across participants. In contrast, neural responses to noisy (but intelli-
gible) speech may be more likely (with the proper measurement and
analysis techniques) to be related to perceptual differences in the ability
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to perceive noisy speech.

The sentence and word studies were each conducted at a single, fixed
noise level (—8 dB SPL for words and —16 dB SPL for sentences). It
would be interesting to test the neural intelligibility index on fMRI
datasets containing a variety of noise levels (Davis and Johnsrude, 2003;
Du et al., 2014; Golestani et al., 2013). The prediction is that at
increasing noise levels, the pattern difference between noisy speech and
clear speech would become greater and greater, corresponding to the
decrease in perceptual intelligibility. The relationship between physical
signal to noise ratio and perceptual intelligibility follows a typically
S-shaped psychometric function (Ross et al., 2021) and it would be
interesting to ascertain if the multivariate metric took a similar form
with increasing noise levels.

4.7. Region of interest

There are a number of statistical pitfalls in identifying brain-behavior
relationships using MRI (Marek et al., 2022; Vul et al., 2009). The most
serious problem involves the dimensional mismatch inherent in most
MRI studies between the number of brain measurements (up to a million
voxels) and the number of participants (typically ten to twenty). Across a
multitude of brain voxels, some will show a high value for the
brain-behavior correlation. Selecting for significant correlations results
in false positives and effect-size inflation (Palmer and Pe’er, 2017;
Vasishth et al., 2018). To avoid this "winner’s curse", in the current study
the neural-perceptual relationship across individuals was examined
within STC and component subregions, the brain area identified as the
most consistent neural correlate of speech intelligibility within in-
dividuals across many previous neuroimaging studies (Abrams et al.,
2013; Davis and Johnsrude, 2007; DeWitt and Rauschecker, 2012;
Eckert et al., 2016; Evans, 2017; Evans et al., 2014; Hakonen et al.,
2017; Holmes et al., 2021; Johnsrude et al., 2002; Wong et al., 2008).

4.8. Individual differences in speech perception

For any measurable trait, physical or psychological, there is enor-
mous variability across individuals, reflecting an interaction between
the environment and the genetic and epigenetic makeup of each indi-
vidual. This interaction is particularly pronounced for language: while
humans are genetically endowed with the ability the acquire language,
the specific language(s) learned by a person is determined by their
environment (Wong et al., 2022). Individual differences are pervasive
across the language system and are related to environmental variables
(such as the quantity and quality of the language that an individual is
exposed to) and to individual differences in other cognitive functions,
such as working memory, executive function, and statistical learning,
reviewed in (Kidd et al., 2018; Shinn-Cunningham, 2017).

4.9. Anatomical subregions

Superior temporal cortex (STC) was used as the region of interest in
our study because of the consensus in the neuroimaging literature that it
is a key site for within-subject intelligibility effects, reviewed in Abrams
et al. (2013), Davis and Johnsrude (2007), DeWitt and Rauschecker
(2012), Evans (2017), Evans et al. (2014). Invasive recordings in pa-
tients with epilepsy have found that larger responses to noisy speech in
STC in patients with better task performance (Nourski et al., 2019); that
STC restores missing acoustic content from the incoming speech signal
(Leonard et al., 2016); and that STC responses to visual speech corre-
spond to its perceptual benefit for noisy auditory speech (Karas et al.,
2019). Magnetoencephalographic recordings track the maintenance of
online speech representations in STC for the resolution of ambiguous
speech tokens (Gwilliams et al., 2018) and electrical stimulation of STC
results in improved speech-in-noise perception (Patel et al., 2022).

In the multivariate analysis, only modest differences between STC
subregions were observed in our study. It may be that with the improved

temporal resolution of iEEG, MEG or EEG, it would be possible to
identify the early emergence of neural differences between intelligible
speech in one anatomical subregion, which then spread to other sub-
regions. Minimal differences in neural-perceptual correlation were
observed between hemisphere, consistent with a recent neuroimaging
study (Wehbe et al., 2021).

The neural intelligibility metric in the present study was the
Euclidean distance between clear and noisy speech response patterns.
This approach is relatively simple, with no free parameters: each loca-
tion in STC contributes equally to the pattern difference. A more com-
plex approach would be to differentially weight different locations in
STC using a machine learning approach (Kaniuth and Hebart, 2022).
This would likely increase neural-perceptual correlations, at the risk of
overfitting a dataset with many more brain locations (neural measures)
than participants (perceptual measures).

With the appropriate statistical precautions, the neural dissimilarity
measure could be adapted for use in a brain-behavior searchlight anal-
ysis (Emmerling et al., 2016). This would permit identification of all
brain areas with significant neural-perceptual correlations. In cortex,
frontal, parietal, cingular-opercular, and insular regions have all been
implicated in speech perception under difficult conditions and would be
important to investigate for their contributions to individual differences
(Alain et al., 2018; Chevillet et al., 2013; Du et al., 2014; Vaden et al.,
2015, 2013). Subcortically, the medial geniculate nucleus has been
identified as a site for group differences in speech perception (Mihai
et al., 2021; Schelinski et al., 2022). Stimulus-response mapping on
whole-head scalp EEG data shows that there are widespread cortical
signals related to perception of noisy auditory and audiovisual speech
(Di Liberto et al., 2018; O’Sullivan et al., 2021).

Univariate and multivariate analyses provide complementary win-
dows into BOLD datasets (Davis et al., 2014). In the univariate analysis,
there was a significant main effect of STC subregion, driven by a low
mean response in the STS. In large ROIs such as the STS, some voxels are
activated (response above fixation baseline) and others that show little
activity or are deactivated (response below fixation baseline). Averaging
them in a univariate analysis results in low mean signal change. In
contrast, in the multivariate analysis, both activations and deactivations
at individual brain locations convey information.

The univariate analysis showed a significant main effect for stimulus
material, driven by a larger response in trials containing entire sentences
than trials containing single words. This is to be expected, as a sentence
containing many words (as well as additional linguistic and semantic
information) should drive more neural activity than an isolated, out-of-
context word. In addition to the stimulus material difference, the sen-
tence and word studies were each conducted at a single, fixed noise level
that differed between studies (—8 SPL for words and —16 dB SPL for
sentences); and sparse sampling MR acquisition was used in the word
study but not the sentence study.

Finally, there was a main effect for the modality contrast, driven by a
larger response for audiovisual than auditory trials. This replicates many
previous findings of a larger STC response to multisensory audiovisual
stimuli compared with unisensory stimuli, such as (Beauchamp et al.,
2004; van Atteveldt et al., 2004).

4.10. Benefits of visual speech

The perceptual results of the present study replicate one of the most
reliable findings in the language literature, that visual information from
the talker’s face increases the intelligibility of noisy speech (Peelle and
Sommers, 2015b; Sumby and Pollack, 1954). Multisensory integration is
beneficial because the external sources of noise in different sensory
modalities are largely independent: the presence of loud background
music in a restaurant does not interfere with seeing our tablemate’s face
(Stein and Meredith, 1993). The face of the talker provides multiple
sources of information about speech. First, it provides temporal infor-
mation about the occurrence of speech, because of the high correlation
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between the visual speech envelope and the auditory speech envelope
(Ghazanfar and Takahashi, 2014). Seeing the talker’s mouth open is a
reliable cue that auditory speech is expected soon. Secondly, it provides
information about the content of speech. While there is not a one-to-one
correspondence between particular auditory and visual speech tokens,
the facial configuration of the talker is highly informative (Cappelletta
and Harte, 2012). Most auditory phonemes are incompatible with any
given mouth shape adopted by the talker. Since the visual mouth shape
is adopted before vocalization begins, visual speech can provide a head
start on processing the content of forthcoming auditory speech (Karas
et al., 2019). The powerful influence of the face of the talker on auditory
speech perception is illustrated by the McGurk effect, a well-known
speech illusion (McGurk and MacDonald, 1976).

4.11. Contributors to the neural dissimilarity measure

Activity patterns in superior temporal cortex represent a readout of
many factors that contribute to speech perception. Peripheral differ-
ences could contribute to individual differences in brain activity. In the
present study, the healthy adulty participants reported normal (or
corrected-to-normal) vision and normal hearing, but no objective tests of
hearing were reported. Similarly large individual differences in noisy
audiovisual and auditory-only speech perception have also been
observed in participants with normal hearing thresholds, as measured
with a standard audiometric exam (Kim et al., 2021; Van Engen et al.,
2017). However, college students at high risk for hearing damage (due
to exposure to loud sounds without hearing protection) were found to
have impaired cochlear function and worse speech-in-noise under-
standing than students at low risk, even though both groups had normal
hearing thresholds when tested at standard audiometric frequencies
(Liberman et al., 2016). These peripheral differences could reduce the
fidelity of inputs into superior temporal cortex, changing the neural
intelligibility index.

Kim et al. (2021) used EEG to measure two different processes
contributing to individual differences in speech in noise, a lower-level
process that separates the speech signal from the noise, and a
higher-level process that converts the speech into meaningful tokens.
Both processes would be expected to alter patterns of activity in superior
temporal cortex. Individual differences in audiovisual speech perception
are linked to face viewing behavior. Human naturally fixate the mouth
of the talker when noise is added to auditory speech. However, partic-
ipants who fixate the mouth of the talker even when it is not required,
during presentation of clear speech, receive more benefit from seeing the
face during presentation of noisy speech, possibly due to their greater
experience and expertise with face-voice correspondence (Rennig et al.,
2020; Wegner-Clemens et al., 2020). Through this route, the complex
networks of brain areas linked to eye movement control and face
perception could indirectly influence in the intelligibility index
computed from superior temporal cortex.

4.12. Applications

The results of the present study suggest that if the pattern of brain
response evoked in the superior temporal cortex by noise speech could
somehow be made more similar to the pattern evoked by clear speech,
the result could be enhanced intelligibility. One obvious possibility for
this would be real-time neurofeedback. It has been shown that providing
participants with feedback about their brain response, especially posi-
tive feedback when the brain pattern becomes more similar to a desired
pattern, can learn to modulate their own brain responses, resulting in
enhanced perception (Ramot et al., 2017; Watanabe et al., 2017). To
improve noisy speech perception, the response pattern to clear speech
would be measured; then noisy speech would be presented, and par-
ticipants would receive feedback about the similarity of the evoked fMRI
pattern in superior temporal cortex with the reference clear speech
pattern.

More invasively, there is great interest in implanted brain-computer
interfaces as remedies for communication deficits and to compensate for
lost peripheral sensory function (Beauchamp et al., 2020; Moses et al.,
2021; Vansteensel and Jarosiewicz, 2020). Electrical stimulation of
intracranial electrodes implanted in superior temporal cortex of a single
patient resulted in improved speech-in-noise perception (Patel et al.,
2022). A neural prosthetic implanted in superior temporal cortex could
help normalize the pattern of activity to make it easier for patients to
understand speech. In the event that the evoked response to clear speech
could not be measured in an individual, a template "clear speech"
pattern derived from the group average of many participants could be
used (Kragel et al., 2018).

Data code availability
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