Modelling in Biology
2007 Examination Answers

Question 1

A fractal object is ageometric shape that can be subdivided into parts, each of whichisa
reduced copy of the whole. One mathematical example of afractal isthe cantor set where
has an infinite number of points but zero length. Such a cantor set is the ternary cantor set
generated by continually removing the middle third of a set of line segments. What isleftis
an infinite number of small points but with zero length. A biological example of fractals can
be found in plants such as ferns and broccoli as well as snowflakes.

If the dynamics of a system are chaotic and the system is bounded in three dimensional space,
then the attractor of the system must be afractal. For example, the Lorentz systemisa
bounded system whose trgjectories must continue forever but never cross each other. For this
to occur, the trgjectories must organize itself such that it takes up zero volume, the main
characteristic of afractal geometry. Thereis no other possible method to enclose an infinite
extending line within abounded space. The fractal geometry of the Lorentz system can be
easily visualized by considering the Poincareé section of the 3D trgjectory phase portrait. The
points at which the trgjectory intersect the plane for afractal.

Question 2

A limit cycleis an attracting periodic solution and is represented in the phase plane by a
closed line as shown in the figure below. A limit cycle can only occur in systems of more
than one dimension.

Considering the system X+ kx =0, this cannot have alimit cycle asthere is no attractor in the
solution. It can be shown that the fixed point at (0,0) when plot on the xvs y phase planeis
acenter. However, with every initial condition, this would produce another center and a
different radius, so thereis no overall attractor of the system. Hence, the system does not
have alimit cycle even though there are periodic solutions.



Question 3

Part @)

Consider the following system:
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2 4

Finding the fixed points, we set x=0 and solvefor X .
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Stability of the fixed points can be found by differentiating the equation and substituting our
fixed points. Let x= f (x) :—%—%+(1+ F)X— X2
f'(X)=Q+r)—2x
1
f'(=)=r
(2)

1+ 2r
f' =—I
)

We can see from the above that the bifurcation occurs when r = 0 and that the fixed point at
%2 becomes unstable when r is positive and vice versa for the other fixed point.

The bifurcation diagram is shown below. Thisisatranscritical bifurcation where the two
fixed points collide and exchange stabilities.
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Part b)
Consider the system
x = tanh(x) —rx

Since thisis aone-dimensional system, we can plot the two parts separately and come up
with the flows of the problem
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We know that at 0, the slope of tanh(x) = 1, so the bifurcation occurswhenr =1. Anyr
value below that will only have 1 fixed point and any r value above that will have three fixed
points.

The bifurcation diagram is shown below. Below O, only the O fixed point is present and will
be unstable. Thisisapitchfork bifurcation.
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Question 4

A monte carlo method is a stochastic algorithm which incorporate a degree of uncertainty
into the differential equation. A model incorporating a monte carlo simulation will usually
contain a deterministic portion and a stochastic portion which includes the generation of a
random number that is attenuated by the mean and standard deviation of the noise that needs
to be modeled. These are usually used to model real world examples such as variability in
the stock market as well as kinetic reactions involving only afew molecules and cannot be
accurately described by continuum models.

In the code, three variables are defined and random numbers assigned to them. To see this
more simply, we'll define them as follows:

X =pp(1)
y=pp(2)
z=pp(3)

From the code we can aso see that we are using the rand() function which can only take
valuesfrom 0 to 1. Hence, our variablesare also bounded: 0<x<1,0<y<2,and0<z<1.
The total volume of our box ishencelx2x1=2.

The conditional statement implements the following:

If x2 + iyz + z% < 1, then Qisincremented by 2. If not, then Q is not incremented.

The code in effect performs a volume integration of the function. By setting each variable to
0 inturn, we can see that the shape of the graph isan ellipsoid. However, due to our
constraints, we will only be taking half of the volume. We can do this integration by the disc
method by ignoring the variable z for the moment.
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Volume = nfxzdy = fl —sz dy
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4r
Volume = 3

However, we notice that the final value P is actual the proportion of pointsthat hit inside the
volume and not the actual volume of the half-ellipsoid. The volume which we are “throwing
dartsat” isactually 2 x (1 x 2x 1) = 4, so the value of P as Nfinal approach infinity is:

m
Nfinal-»o 3



Question 5

Consider the following system:

x=1—(b+ Dx+ ax?y
y = bx — ax?y

Find all the fixed pointsin the system and classify their stability as a function of the
parameters a and b.

The fixed pointsin the system aregivenby x = y = 0.

0=1—(b+ Dx + ax?y
0 = bx — ax?y

Adding the two equations:

0=1—(b+ 1x+bx
1—-x=0
x=1

0=b(1)—a(l)y
b
y=—

a
Hence, only one fixed point at (1,%).

To evaluate the stability, we turn to the Jacobian

_ (—(b+1)+2ay ax? )
Jac = ( b —2ay —ax?

Evaluated at the fixed point

Jac = (b__bl —aa)

To obtain stability, we look at the tau and delta values

T=b—-1—aqa
A= —a(b—1)+4+ab=a

Since a> 0, then deltawill always be positive, ruling out a saddle node. Whether the fixed
point is stable or unstable depends on the value of tau. Where it changes stability is when tau
=0,orwhenb=1+a. Hence, if b> 1 + a, tau isgreater than zero, and hence the fixed point
isunstable. Likewise, if b <1+ a, thentau islessthan zero, and hence the fixed point is
stable.

The Hopf bifurcation occurs when there is a change in behavior of the fixed point such that it
goes from a stable fixed point to an unstabl e fixed point with the emergence of alimit cycle.



Thisvalue, as calculated above by setting tau = 0, iswhenb =1+ a. Here, we must assume
that with the emergence of the unstable fixed point, that the system has alimit cycle attractor
and does not just go to infinity. Asthe value of b increases, we still remain in the unstable
region and the limit cycle continuesto increase. If b continues to increase such that 72 > 4A,
then the fixed point becomes an unstable node. This does not exclude the function from not
having alimit cycle, it's only that local stability analysis around the fixed point is such that it
looks like an unstable node. Global stability analysis would be required to determine the
presence of alimit cycle as b continues to increase.

Proving the existence of the limit cycle depends on us first finding a boundary region such
that it contains no fixed points, that x and y are continuously differentiable everywhere in the
region, and that all trajectories enter the bounded region and do not exit (Poincaré-Bendixson
Theorem). If theseal hold true, then there must be alimit cycle within the bounded region.
How does the amplitude and shape of the limit cycle change as b becomes larger? To answer
this question, we can look at the eigenvalues of the system when the limit cycle first appears.
The eigenvalues are cal culated from the Jacobian matrix evaluated at the fixed point such that:

b—1—-21 a _
—b —a—/l_o

0=Mb-1-2)(—a—2A)+ab
0=A2+(a-b+Di+a

A_—(a+1—b)i\/(a—b+1)2—4a
B 2

At the Hopf bifurcation, b = a+ 1 and our eigenvalues reduce to:

= tiva=+ivhb -1

N

We can clearly see here that for the existence of alimit cycle, b> 1. The size of the limit
cycle depends upon the magnitude of the imaginary part of the eigenvalue, and from the

above equation, we can see that the size scaleswith Vb — 1. When b is close to the Hopf
bifurcation, the limit cycleiscircular in shape. Aswe increase b further, we can no longer
look at the local stability analysis we have just performed and we can no longer justify
whether or not the limit cycleiscircular in shape or not. More likely than not, the limit cycle
will being to deform as b increases since it is bounded by the a and b axes on the phase plane.



Question 6

The biophysical explanation of the variables:

Cn = the membrane capacitance generated by the buildup of ions on both sides of the plasma
membrane

Vm = membrane potential, the potential difference between the inside of the cell and the
outside bulk fluid

Gna = conductance of the sodium ions which is dependent upon voltage-gated ion channels
(which is hence dependent upon the voltage)

Gk = conductance of the potassium ions which is also dependent upon voltage-gated ion
channels

Ena, Ex = membrane potentials generated by the barrier membrane for each ion

G, = conductance to take into account the leaky membrane. This does not depend on the
voltage and is modelled as a fixed value resistor and not a potentiometer

E. = the leaky voltage, generated by the movement of ions by diffusion across the membrane
Inak L = the current that flow through the membrane due to all the phenomenon listed above

Thetotal equation for the circuit is shown below:

dv
Cmd_tm:GNa(V - ENa)+GK(\/ - EK)+GL(V - EL)

The variables m, n, and h are non-measurabl e voltage dependent parameters that were
included to fit the observed data. These are internal variables that cannot be modified but are
needed to explain the behaviour of the system. Although these three variables were initially
shown to be “good fits” for the observed data, they were subsequently explained by the
voltage gated ion channel phenomena.
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What do the phase portraits of these two series look like?



Freq Freq

We noticethat in series A, the limit cycle is more gentle since the gradient is not very large
relative to series B. In series B, we notice that the gradient becomes almost infinity and then
reverts to almost negative infinity very quickly leading to what looks like the asymptote.
Also, we notice that right after the gradient turns, series B quickly return back to the zero
value with little change in the gradient, explaining the flat bottom section in the phase plane.

With respect to the power spectrum, both spectrawill have asimilar large peak at the
dominant frequency seen in both series. However, it is the presence of higher frequencies
that sets series B apart from series A. These frequencies are there because of the spikes. In
effect, the power spectralooks at the fourier transform of the function. Recall that for adelta
function, the fourier transform is a uniform distribution of all frequencies. We can relate
series B to almost being a delta function, and hence, we'll see the presence of higher
frequencies than series A.



