Assessing the Cold Shock Response of AHAP4 and Wild-type Transcription Factor

Lauren Kelly and Cameron Rehmani Seraji

Department of Biology Loyola Marymount University

BIOL 398-05/MATH 388-01 May 4, 2017

Outline

- Background on the cold shock experimental design
- Significant expression levels in various genes were found by doing statistical analysis of microarray data
- YEASTRACT results yielded 12 significant gene profiles
- Profile 45 gene ontology terms indicate a strong effect on tRNA processes
 - Deletions of HAP4 and SWI5 led to changes in production rates, threshold b parameters, and weight parameters of transcription factors
 - Deletions of HAP4 and SWI5 led to changes in expression of MSN2 and SOK2
- Profile 9 gene ontology terms indicate a strong effect on cytoplasm and its components
 - Deletions of GLN3 and SPT23 led to changes in production rates, weight parameters, and threshold b parameters of transcription factors
 - GLN3 and SPT23 are important in regulating the cold shock response
- Tai et al. (2007) and up/down-regulation of transcription factors

Understanding How Cells Respond to Cold Shock

- Cold Shock is the response to a sudden decrease in temperature and it has not been well studied in the past.
- DNA microarray analysis was performed on data for ΔHAP4 that was generated in the Dahlquist Lab.
 - Red spots represent an increase in expression and green spots represent a decrease in expression.
- The experiment was conducted at 13°C for a total of 60 minutes followed by a recovery at 30°C.
- The experiment was run using ANOVA, STEM, YEASTRACT, GRNsight, and GRNmap

Outline

- Background on the cold shock experimental design
- Significant expression levels in various genes were found by doing statistical analysis of microarray data
- YEASTRACT results yielded 12 significant gene profiles
- Profile 45 gene ontology terms indicate a strong effect on tRNA processes
 - Deletions of HAP4 and SWI5 led to changes in production rates, threshold b parameters, and weight parameters of transcription factors
 - Deletions of HAP4 and SWI5 led to changes in expression of MSN2 and SOK2
- Profile 9 gene ontology terms indicate a strong effect on cytoplasm and its components
 - Deletions of GLN3 and SPT23 led to changes in production rates, weight parameters, and threshold b parameters of transcription factors
 - o GLN3 and SPT23 are important in regulating the cold shock response
- Tai et al. (2007) and up/down-regulation of transcription factors

According to the ANOVA Results of ΔHAP4, the Amount of Significant Genes Ranges from 75 to 2,479

ANOVA	dHAP4
p < 0.05	2479 genes
	40.05%
p < 0.01	1583 genes
	25.58%
p < 0.001	739 genes
	11.94%
p < 0.0001	280 genes
	4.52%
B & H p < 0.05	1735 genes
	28.03%
Bonferroni p < 0.05	75 genes
	1.21%

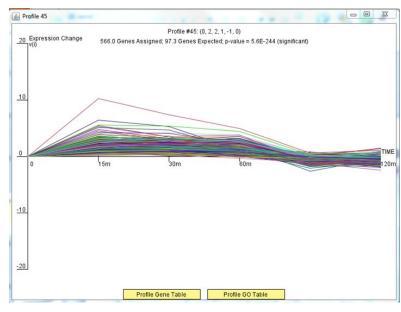
There are More Significant Genes at t30 than Any Other Time Point

	Cold Shock			Recovery	
t test	t ₁₅	t ₃₀	t ₆₀	t ₉₀	t ₁₂₀
Average Log Fold Change > 0.25 and p < 0.05	1182 genes	1242 genes	1207 genes	918 genes	894 genes
	19.10%	20.07%	19.50%	14.83%	14.44%
Average Log Fold Change < -0.25 and p < 0.05	1048 genes	1067 genes	1057 genes	852 genes	1011 genes
	16.93%	17.24%	17.08%	13.77%	16.34%
Total	2479 genes				
p < 0.05	40.05%	40.05%	40.05%	40.05%	40.05%
Total B & H	1735 genes				
p < 0.05	28.03%	28.03%	28.03%	28.03%	28.03%
Total Bonferroni p < 0.05	75 genes 1.21%				

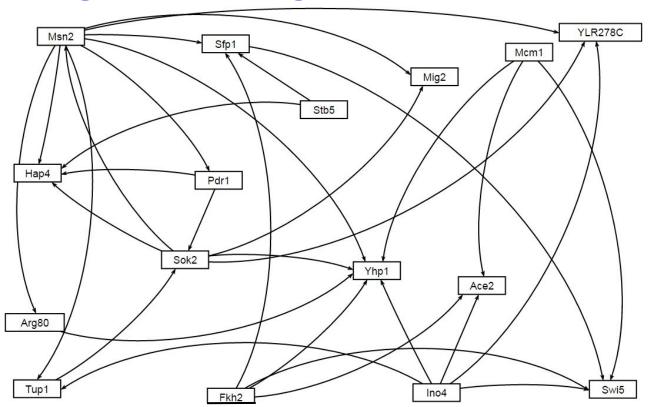
Outline

- Background on the cold shock experimental design
- Significant expression levels in various genes were found by doing statistical analysis of microarray data
- YEASTRACT results yielded 12 significant gene profiles
- Profile 45 gene ontology terms indicate a strong effect on tRNA processes
 - Deletions of HAP4 and SWI5 led to changes in production rates, threshold b parameters, and weight parameters of transcription factors
 - Deletions of HAP4 and SWI5 led to changes in expression of MSN2 and SOK2
- Profile 9 gene ontology terms indicate a strong effect on cytoplasm and its components
 - Deletions of GLN3 and SPT23 led to changes in production rates, weight parameters, and threshold b parameters of transcription factors
 - o GLN3 and SPT23 are important in regulating the cold shock response
- Tai et al. (2007) and up/down-regulation of transcription factors

Profile #9 and #45 Were Chosen for the Analysis of Significant Transcription Factors



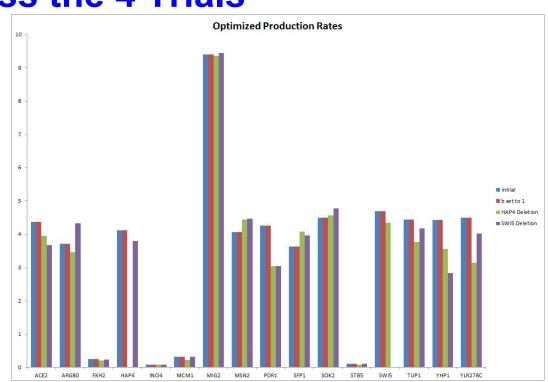
Outline


- Background on the cold shock experimental design
- Significant expression levels in various genes were found by doing statistical analysis of microarray data
- YEASTRACT results yielded 12 significant gene profiles
- Profile 45 gene ontology terms indicate a strong effect on tRNA processes
 - Deletions of HAP4 and SWI5 led to changes in production rates, threshold b parameters, and weight parameters of transcription factors
 - Deletions of HAP4 and SWI5 led to changes in expression of MSN2 and SOK2
- Profile 9 gene ontology terms indicate a strong effect on cytoplasm and its components
 - Deletions of GLN3 and SPT23 led to changes in production rates, weight parameters, and threshold b parameters of transcription factors
 - o GLN3 and SPT23 are important in regulating the cold shock response
- Tai et al. (2007) and up/down-regulation of transcription factors

Gene Ontology Terms of Profile 45 Demonstrate Strong Effect on tRNA Processes

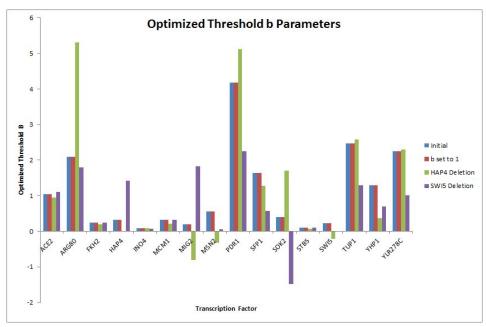
CO number	Catagory Nama	#Conos Assigned	Corrected a value
GO number	Category Name	#Genes Assigned	Corrected p-value
GO:0006400	tRNA modification	22	0.002
GO:0030488	tRNA methylation	11	0.002
GO:0008033	tRNA processing	29	0.004
GO:0008175	tRNA methyltransferase activity	10	0.004
GO:0006399	tRNA metabolic process	41	0.001

Unweighted Transcription Factor Network of 16 Significant Edges and 32 Nodes

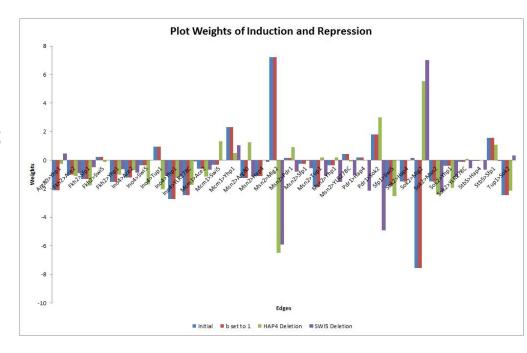

20 Significant Transcription Factors Found in YEASTRACT

- In total, 20 transcription factors were significant.
- Initially deleted all transcription factors that had no regulators or only 1 input.

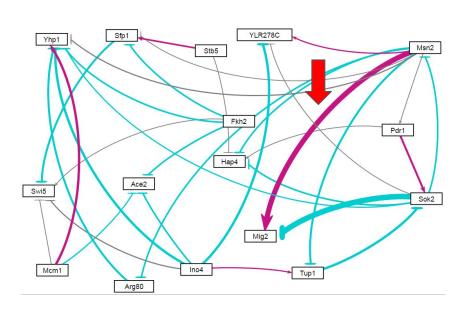
Transcription Factor	p-value from YEASTRACT	Transcription Factor	p-value from YEASTRACT
MSN2	1.78E-08	ARG80	8.58E-06
НАР4	0.998	TUP1	9.1E-13
SFP1	0	PDR1	1.69E-05
SOK2	1.1E-05	FKH2	7.36E10
STB5	1.2E-12	YHP1	0
MIG2	1.85E-07	INO4	4.86E-05
ACE2	5E-15	MCM1	1.88E-05
YLR278C	2.18E-06	SWI5	4.03E-09

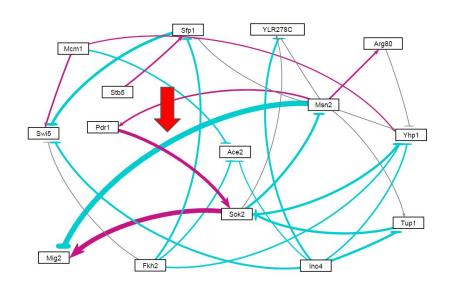

Minor Changes in Optimized Production Rate Across the 4 Trials

- MIG2 had the highest production rate in all 4 trials.
- INO4 had the lowest production rate in all 4 trials.
- The initial trial and trial where b was set to 1 have the same value for all genes.
- Deletions of HAP4 and SWI5 caused the production rates to change in all genes.

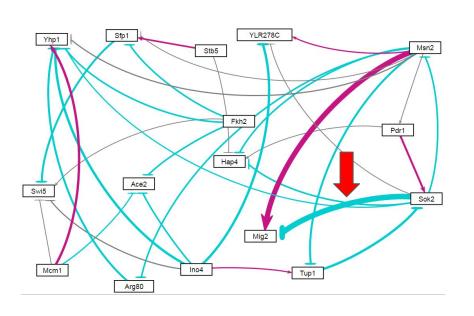

Deletions of HAP4 and SWI5 Affected the Optimized Threshold b Parameters

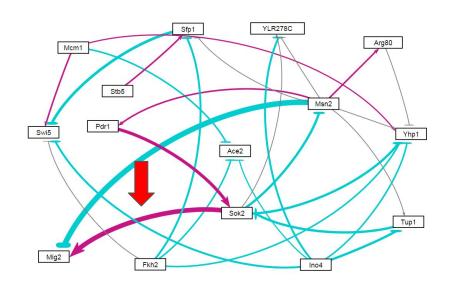
- The initial trial and trial where b was set to 1 have the same value for all genes.
- Large difference between initial trial and HAP4 and SWI5 deletion for 11 different transcription factors.
- INO4 had the lowest optimized threshold b parameters for all trials.

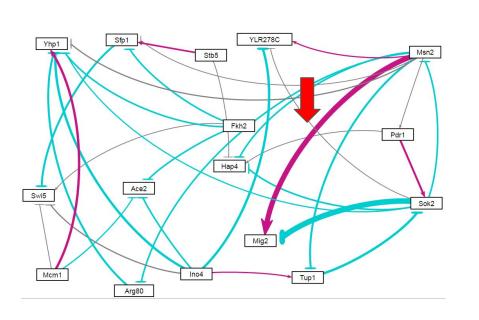


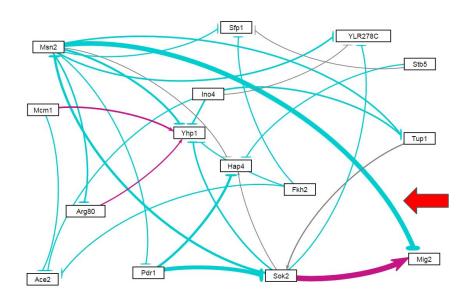

Comparison of Plot Weights Shows Contrasting Values for Multiple Gene Pathways

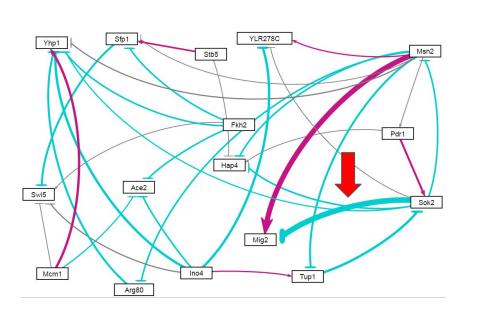
- The initial trial and trial where b was set to 1 have the same value for all genes.
- Two biggest pathways that stand out on the graph are MSN2→MIG2 and SOK2→MIG2.
- MSN2→MIG2 changed from induction to repression when HAP4 and SWI5 were deleted.
- SOK2→ MIG2 changed from repression to induction when HAP4 and SWI5 were deleted.

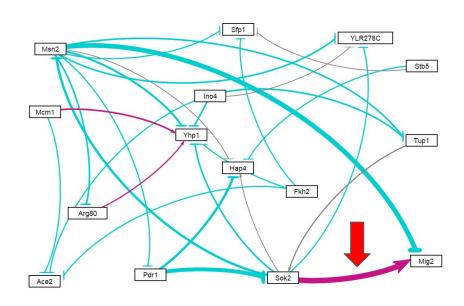


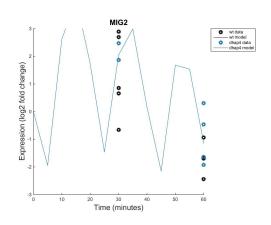

MSN2→MIG2 Plot Weight Changed from 7.202137 to -6.47552 when HAP4 was Deleted

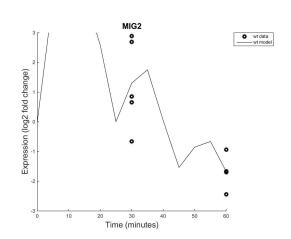



SOK2→MIG2 Plot Weight Changed from -7.55775 to 5.522197 when HAP4 was Deleted

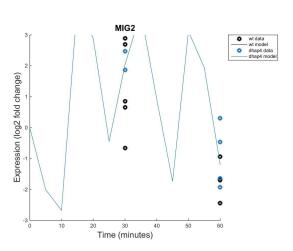



MSN2→MIG2 Plot Weight Changed from 7.202137 to -5.89503 when SWI5 was Deleted

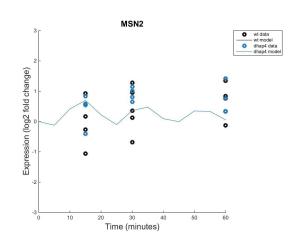

SOK2→MIG2 Plot Weight Changed from -7.55775 to 7.002023 when SWI5 was Deleted

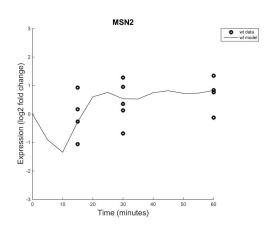


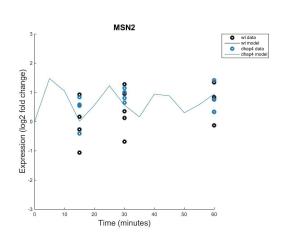
Line of Best Fit Changes from Repression to Induction Multiple Times for MIG2 in All Trials


Initial

HAP4 Deletion

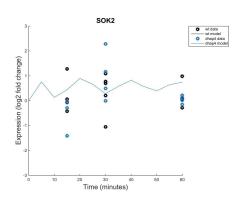


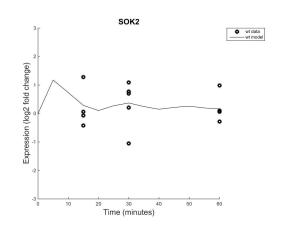

SWI5 Deletion

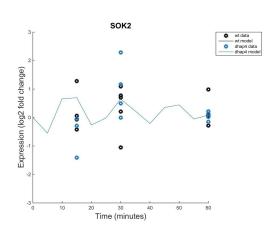


The Expression of MSN2 is Very Similar for the Initial and SWI5 Deletion

Initial HAP4 Deletion SWI5 Deletion



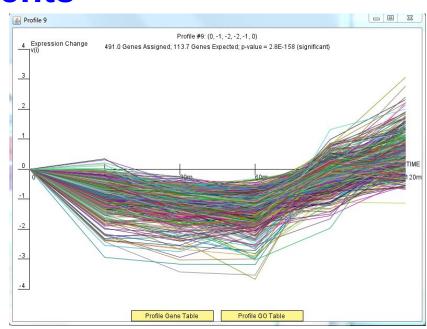




The Expression of SOK2 is Relatively Similar for the Three Trials

Initial HAP4 Deletion SWI5 Deletion

From the Visualized GRN, There are Two Major Regulators in the Network for Profile 45


- The two major regulators are MSN2 and SOK2 and both of these regulators directly regulate MIG2.
- The regulation of MSN2 and SOK2 may be due to the presence of HAP4 and SWI5 in the model.
- Future Studies:
 - Determine why deleting HAP4 and SWI5 causes the regulation of MSN2 and SOK2 to MIG2 to switch to the opposite of its original expression value.
 - Look at the effect of eliminating the transcription factors that have gray arrows from the constructed GRN.

Outline

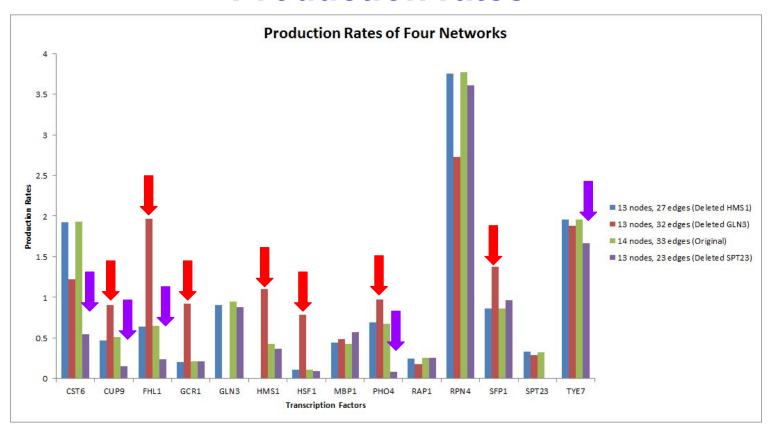
- Background on the cold shock experimental design
- Significant expression levels in various genes were found by doing statistical analysis of microarray data
- YEASTRACT results yielded 12 significant gene profiles
- Profile 45 gene ontology terms indicate a strong effect on tRNA processes
 - Deletions of HAP4 and SWI5 led to changes in production rates, threshold b parameters, and weight parameters of transcription factors
 - Deletions of HAP4 and SWI5 led to changes in expression of MSN2 and SOK2
- Profile 9 gene ontology terms indicate a strong effect on cytoplasm and its components
 - Deletions of GLN3 and SPT23 led to changes in production rates, weight parameters, and threshold b parameters of transcription factors
 - GLN3 and SPT23 are important in regulating the cold shock response
- Tai et al. (2007) and up/down-regulation of transcription factors

Gene Ontology Terms from Profile 9 Suggest Strong Effect on the Cytoplasm and its Components

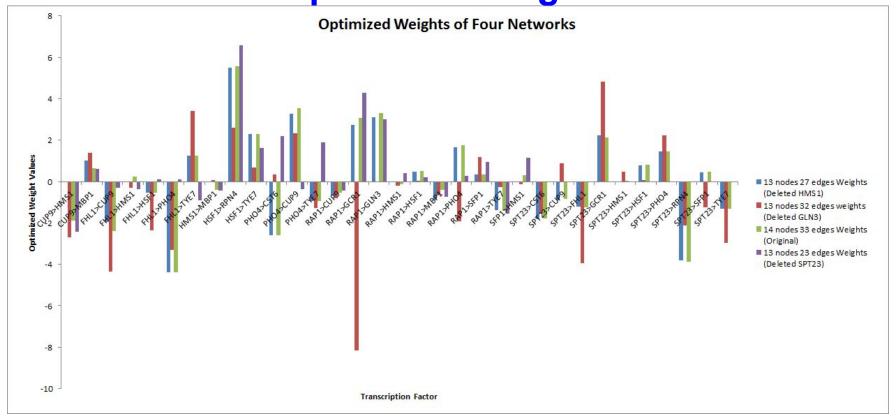
Category ID	Category Name	#Genes Assigned	Corrected p-value
GO:0005737	cytoplasm	393	0.001
GO:0044444	cytoplasmic part	310	0.001
GO:0022626	cytosolic ribosome	36	0.001
GO:0002181	cytoplasmic translation	35	0.002
GO:0044445	cytosolic part	42	0.002
GO:0005829	cytosol	104	0.006

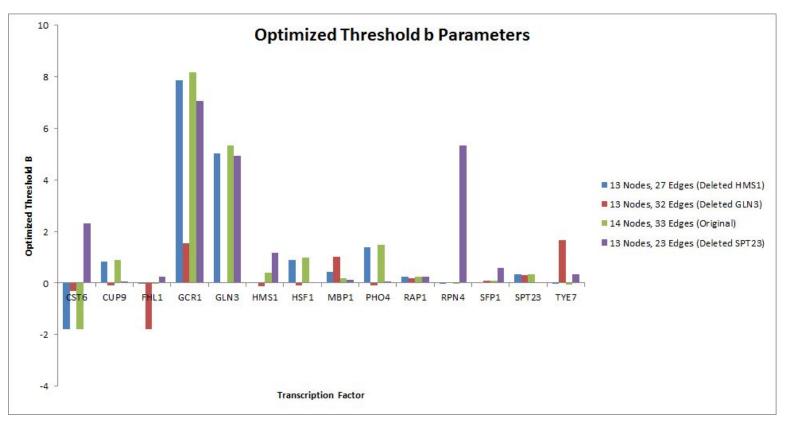

33 Significant Transcription Factors Found in YEASTRACT

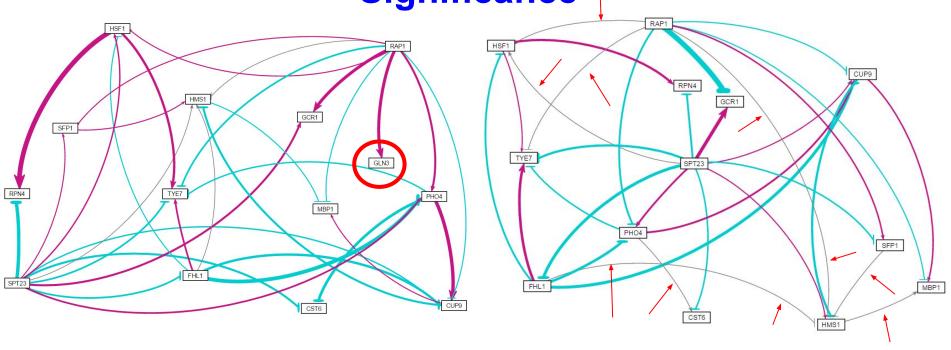
- In total, 33 transcription factors were significant
 - GLN3 and HAP4 showed no significance according to YEASTRACT
- Initially deleted all transcription factors that had no regulators or only one input

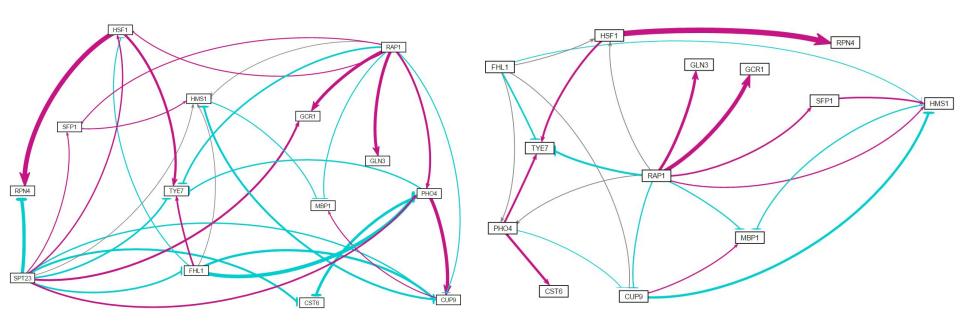

Transcription Factor	p-value from YEASTRACT	Transcription Factor	p-value from YEASTRACT
CST6	2.56441E-05	MBP1	1.20671E-06
CUP9	1.27643E-06	PHO4	1.12068E-05
FHL1	1.23921E-05	RAP1	2.81392E-05
GCR1	1.63413E-05	RPN4	1.96342E-05
GLN3	0.009729	SFP1	4.21512E-05
HMS1	1.84972E-06	SPT23	1.6982E-05
HSF1	2.45662E-05	TYE7	1.02978E-05

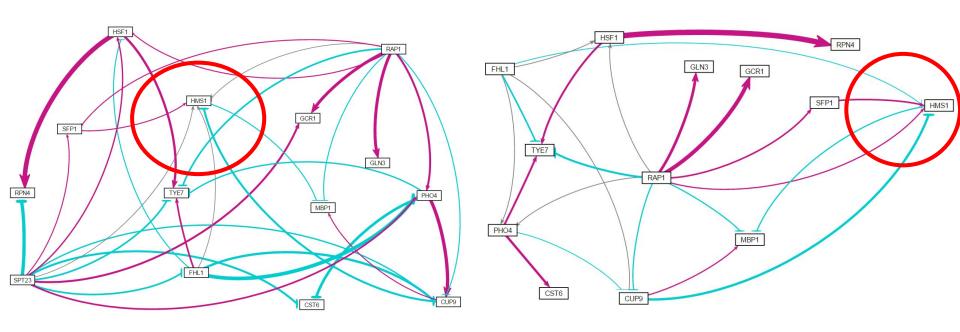
Initial Network Has 14 Nodes and 33 Edges

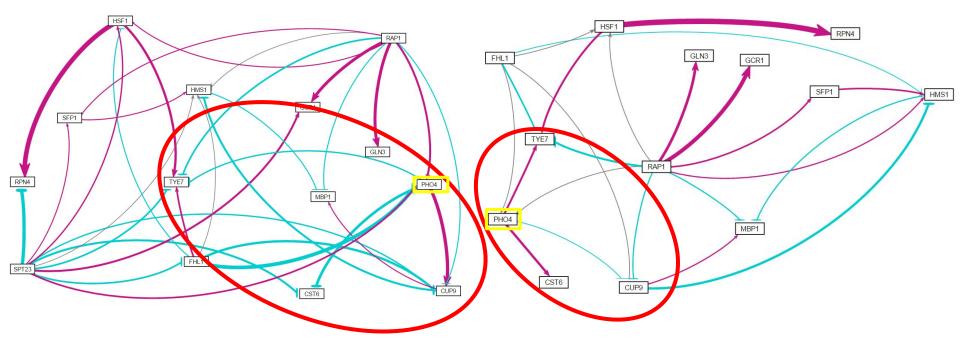

- This network was used as the starting point for future experimental deletions
- 3 additional deletions: GLN3, SPT23, and HMS1


Deletion of GLN3 and SPT23 has Effects on Production rates

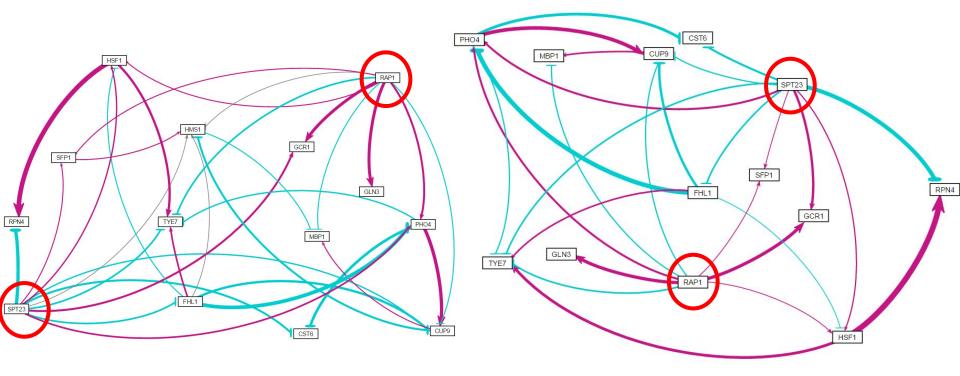

Deletion of GLN3 and SPT23 has Effects on Optimized Weights


Deletions of GLN3 and SPT23 Affected the Optimized Threshold b Parameters


Deletion of GLN3 Changed the Network Significance

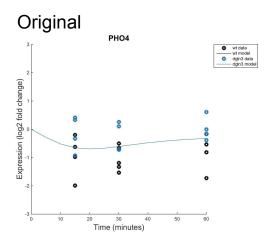

Deletion of SPT23 Led To Various Changes in the Network

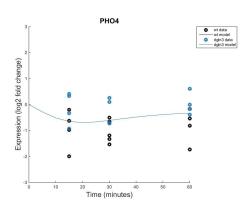
Deletion of SPT23 Led To Various Changes in the Network

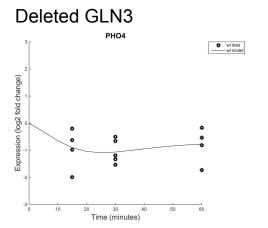

Deletion of SPT23 Led To Various Changes in the Network

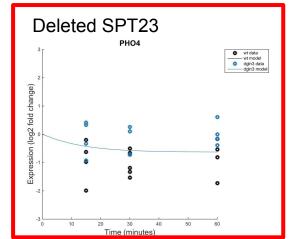
14 nodes, 33 edges

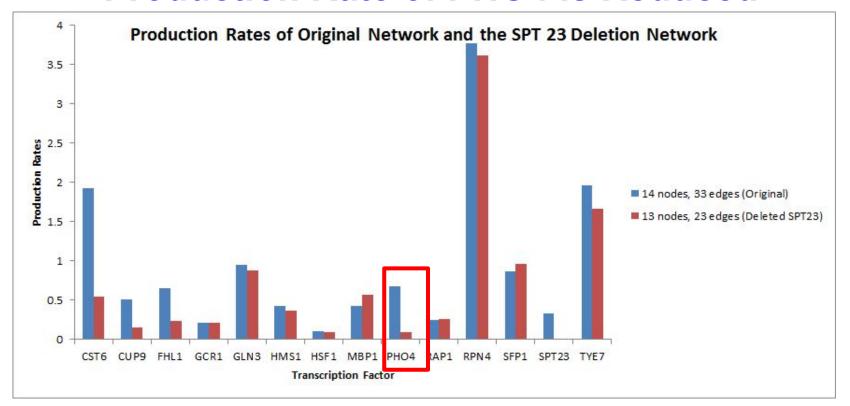
13 nodes 23 edges


Deleting HMS1 Did Not Affect Network

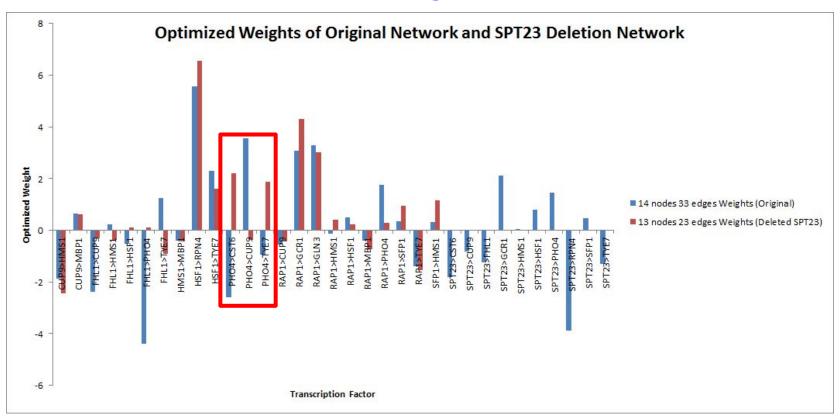

14 nodes 33 edges


13 nodes 27 edges


PHO4 Expression and the SPT23 Deletion

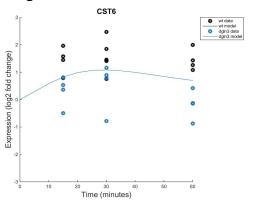

Deleted HMS1

Production Rate of PHO4 is Reduced

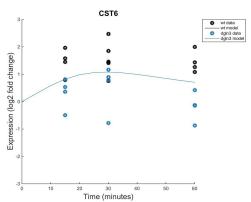


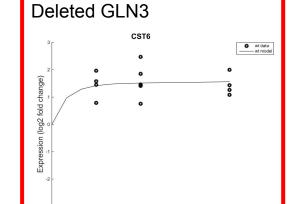
Original Rate: 0.676131091

Rate with SPT23 Deletion: 0.08752916

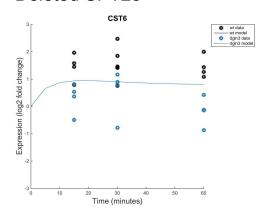


Weights Display the Change of Regulation of PHO4




CST6 Affected By GLN3 Deletion

Deleted HMS1

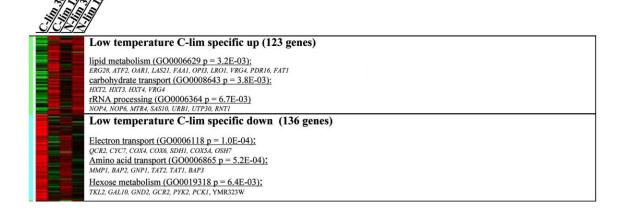


Time (minutes)

50

Deleted SPT23

SPT23 and GLN3 Appear to be Important in Regulating Cold Shock Response


- While GLN3 was not significant according to YEASTRACT, the production rates/optimized weights bar charts and the GRNsight visualizations indicate that removing GLN3 changes the network.
- SPT23 consistently regulated many of the transcription factors and was a central part of the GRNsight visualization
 - The deletion of SPT23 changed various things about the network
- Future studies would include why GLN3 appears to have an effect despite the insignificant p-value from YEASTRACT and continuing to manipulate the model to see if other transcription factors play an important role in cold shock response

Outline

- Background on the cold shock experimental design
- Significant expression levels in various genes were found by doing statistical analysis of microarray data
- YEASTRACT results yielded 12 significant gene profiles
- Profile 45 gene ontology terms indicate a strong effect on tRNA processes
 - Deletions of HAP4 and SWI5 led to changes in production rates, threshold b parameters, and weight parameters of transcription factors
 - Deletions of HAP4 and SWI5 led to changes in expression of MSN2 and SOK2
- Profile 9 gene ontology terms indicate a strong effect on cytoplasm and its components
 - Deletions of GLN3 and SPT23 led to changes in production rates, weight parameters, and threshold b parameters of transcription factors
 - GLN3 and SPT23 are important in regulating the cold shock response
- Tai et al. (2007) and up/down-regulation of transcription factors

Connection to Tai et al. (2007)

- Both Tai et al. (2007) and this project looked at how transcription factors related to specific gene ontology terms react to cold shock.
 - No overlap in transcription factors or GO terms
- Heat maps are another way to visualize the up-regulation and down-regulation that is seen in the GRNsight networks.
- Tai et al. (2007) did not include deletions of transcription factors.

Acknowledgments

Dr. Kam Dahlquist

Dr. Ben Fitzpatrick

LMU Department of Biology

LMU Department of Mathematics

References

- Dahlquist, Kam D. (2017) BIOL398-05/S17:Week 14/15. Retrieved from
 - http://www.openwetware.org/wiki/BIOL398-05/S17:Week_14/5 on 3 May 2017.
- Tai, S. L., Daran-Lapujade, P., Walsh, M. C., Pronk, J. T., & Daran, J. M. (2007). Acclimation of Saccharomyces cerevisiae to low temperature: a chemostat-based transcriptome analysis.
 Molecular biology of the cell, 18(12), 5100-5112.