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Abstract: 
Application of Digital Signal/Image Processing techniques (DSP & DIP) to solve Genomics problems 
initiated the new field Genomics Signal Processing (GSP) which concentrates to encode the Genomics 
signals based on DSP/DIP framework. In this Genomics era, high throughput DNA sequencing and the use 
of DNA microarray to simultaneously conduct huge number of experiments has lead to many signal/image 
processing problems. There is an emergent need to develop signal/image-processing techniques to examine 
data and determine relationship between genes. In this paper, we will focus on application of DSP & DIP in 
Biomolecular Sequence Analysis, Genetic Network Modeling and DNA Microarray Image Analysis. 
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The Genome: 
As we know that genes are physically embodied within complex DNA macromolecules that lie within 
structures called chromosomes that are present in a living cell. Discovery of the structure of DNA by 
Watson and Crick in 1953 showed that a DNA molecule is a double helix consisting of two strands. Each 
helix is a chain of bases, chemical units of four types: thymine (T), cytosine (C), adenine (A), and guanine 
(G). Each base on one strand is joined by hydrogen bonds sto a complementary base on the other strand, 
where A is complementary to T, and C is complementary to G. Thus the two strands contain the same 
information. Certain segments within these chromosomal DNA molecules contain genes, which are the 
carriers of the genetic information and spell the names of the proteins. Thus the genetic information can be 
thought of as being encoded digitally, as strings over the four-letter alphabet {A, C, T, G}, much as 
information is encoded digitally in computers as strings of zeros and ones. In humans there are 23 pairs of 
chromosomes. All but two of these (the sex chromosomes) occur in pairs of “homologous” chromosomes. 
Two homologous chromosomes contain the same genes, but a gene may have several alternate forms called 
alleles, and the alleles of a gene on the two chromosomes may be different. The total content of the DNA 
molecules within the chromosomes is called the genome of an organism. Within an organism, each cell 
contains a copy of the genome. The human genome contains about 3 billion base pairs and about 35,000 
genes. Genome size and no of chromosomes as well as Genomics complexity vary with organism to 
organism. 
Central Dogma- From Genes to Proteins: 
The Central dogma of molecular biology is that DNA codes for RNA and RNA codes for proteins. Thus the 
production of a protein is a two-stage process, with RNA playing a key role in both stages. An RNA 
molecule is a single-stranded chain of chemical bases of four types: A, U, C, and G. In the first stage, called 
transcription, a gene within the chromosomal DNA is copied base by base into RNA according to the 
correspondence A→U, C→G, T→A, G→C. The resulting RNA transcript of the gene is then transported 
within the cell to a molecular machine called the ribosome that has the task of translating the RNA into a 
protein. Translation takes place according to the genetic code, which maps successive triplets of RNA bases 
to amino acids. With minor exceptions, the 64 possible triplets of 4 bases (43) map to 20 amino acids for all 
organisms. 
 

 
Figure1. Central Dogma of Molecular Biology (From Genes to Proteins) 
Regulation of Gene Expression: 
Gene expression can be viewed as a complex network of interactions involving genes, proteins, and RNA, 
as well as other factors such as temperature and the presence or absence of nutrients and drugs within the 
cell. It is clear that the expression of a gene within a cell (as measured by the abundance and level of 
activity of the proteins it produces) is ultimately regulated by the machinery of the cell. The transcription of 
a gene is typically regulated by proteins called transcription factors that bind to the DNA near the gene and 
enhance or inhibit the copying of the gene into RNA. Similarly, translation can be regulated by proteins 
that bind to the ribosome. Certain post-translational processes, such as the chemical modification of the 
protein or the transport of protein to a particular compartment in the cell, can also be regulated so as to 
affect the activity of the protein. 
 
DSP/DIP Techniques in DNA Sequence Analysis 
DSP Techniques in Sequence Comparisons and Classification 
Wavelet analysis provides a useful DSP means for the visual description of inherent structure underlying 
DNA sequences. In, wavelet analysis is used to extract characteristic bands from protein sequences. In this 
research, the sequence-scale analysis with wavelet gave a multiresolution similarity comparison between 
protein sequences. This “similarity” expanded the traditional sequence similarity concept, which took into 
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account only the local pair-wise amino acid and disregarded the information contained in coarser spatial 
resolution. Also, this wavelet based method did not require the complex sequence alignment processing for 
sequences. Therefore, proteins with different sequence lengths could be compared easily. Other than 
sequence comparison, sequence classification is also a major problem in DNA signal analysis. The wavelet 
packet (WP) technique is used in for DNA sequence classification, i.e., to classify exons (a segment of 
DNA that is transcribed to RNA and specifies a portion of a protein) and introns (noncoding subregions in 
genes). After obtaining the energy distribution from WP coefficients, the energy map was used as a 
criterion for sequence classification. Digital signal processing (DSP) techniques offer more efficient ways 
to identify regions of the DNA exhibiting periodic behavior. In some cases, digital filters are employed to 
extract the T-3 component (the protein-coding regions of DNA demonstrate a period-3 (or T-3) 
performance due to codon structure. A codon is a sequence of three adjacent nucleotides constituting the 
genetic code that determines the insertion of a specific amino acid in a polypeptide chain during protein 
synthesis or the signal to stop/start protein synthesis.). In addition, digital filters are used to eliminate the 
background 1/f noise exhibited by nearly all DNA sequences. We will describe few interesting examples in 
details like DNA Spectrograms and Color Maps. 
DNA Spectrograms: 
Spectrograms are powerful visual tools for biomolecular sequence analysis. It is well known that the 
appearance of spectrograms provides significant information about signals, to the extent that trained 
observers can figure out the words uttered in voice signals by simple visual inspection of their 
spectrograms. An important advantage of DSP-based tools is their flexibility. Spectrograms can be defined 
in many ways. For example, depending on the particular features that must be emphasized, we may wish to 
define spectrograms using certain values of parameters. Once a visual pattern appears to exist, we have the 
opportunity to interactively modify the values of these parameters in ways that will enhance the appearance 
of these patterns, thus clarifying their significance. It is hoped that visual inspection of spectrograms will 
establish links between particular visual features (like areas with peculiar texture or color) and certain yet 
undiscovered motifs of biological sequences. Figure 2.a shows a spectrogram using DFTs of length 60 of a 
DNA stretch of 4,000 nucleotides from chromosome III of C. elegans (GenBank Accession number 
NC000967). Figure 2.b shows the texture of a spectrogram coming from a sample of totally random DNA, 
i.e., in which each type of nucleotide appears with probability 0.25 and independent of the other 
nucleotides. 

 
Figure2. (a)Color spectrogram of a DNA stretch (b) Color spectrogram of “totally random” DNA 
Color Maps: 
Color maps are mostly used for Reading Frame Identification and it is an excellent tool for sequence 
feature visualization. Because the number of primary colors (red, green, and blue) is the same as the 
number of possible forward coding reading frames, we can conveniently assign a color-coding scheme and 
based on that one can prepare color maps using Fourier transform. For example consider a DNA stretch 
from chromosome III of S. cerevisiae (GenBank accession number NC 001135).Note that there is no 
overlap with the collected statistics. The DNA stretch consists of 12,000 nucleotides starting from location 
212041. It contains six genes (three forward coding and three reverse coding) at the locations shown in 
Table 1 relative to 212040. 
DSP Techniques in Exploring the Relationship between Sequence Structure and Function: 
Before the wavelet method was applied in exploring the structural features within the sequences, 
conventional Fourier analysis had been used to elucidate the sequence structure information. However, the 
Fourier method could discover only “global” periodicities, and it could not extract hidden localized 
periodicities, which might provide hints about underlying construction rules [13]. A correlation function is 
constructed to compare each DNA base with its various neighbors [14]. After further Fourier or wavelet 
processing applied to the correlation function, their results readily showed some regular features in DNA 
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sequences. Wavelet is also used to search the DNA sequence construction rules. The salient spots in the 
final two-dimensional (2-D) analysis results revealed significant features in the DNA sequence. Their 
results demonstrated that while the noncoding sequences showed spectra similar to those from random 
sequences, coding sequences revealed specific periodicities of variable length and a common periodicity of 
three. Similarly, the method in quantifying symbolic sequence correlation to analyze DNA sequences is 
also used. The spectral density measurements of different base positions demonstrated the ubiquity of low 
frequency noise, long-range fractal correlation, and prominent short range periodicities. The results for 
several categories of DNA sequences also showed systematic changes in spectral exponent. This result 
provides a new technique for quantifying evolutionary changes in the information content of DNA. 
Wavelet transforms modulus maxima (WTMM) are used to analyze the fractal scaling properties in DNA 
sequences. The existence of long-range correlation is demonstrated in genes containing introns and 
noncoding regions, and this correlation is also quantified. The fluctuations in the DNA walk profiles were 
found to be homogeneous with Gaussian statistics. This result reveals useful information about the role of 
introns and noncoding intergenic regions in the nonequilibrium dynamic process that produced DNA 
sequences. Recently, it has been asserted that along with functional information, information about 
molecular evolution and relationships between organisms can also be derived. Since the evolution of 
genetic information and the principles through which nature produced the genetic information and genes 
are still not well understood, wavelet analysis for DNA sequences may provide some insights for these 
problems. 

Table 1. 

 

 
Figure3.Color map after partition for the genes shown in Table 1. (a) For forward coding (b) For reverse 
coding 
DSP Techniques in Sequence Structure Prediction: 
Accurate prediction and detection of DNA regions or their underlying structural patterns is a constant 
source of difficulty for researchers. Traditional structure detection methods were primarily based on the 
average of DNA base contents within a fixed window. Therefore, the location accuracy depended on the 
chosen window length. The multiresolution analysis feature of wavelet transform is excellent in resolving 
this problem, allowing efficient extraction of basic components at different scales. In [24], discrete wavelet 
transform (DWT) is applied to find pathogenicity islands and gene mutation events in genome data. The 
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DWT is used to smooth G + C profiles to locate characteristic patterns in genome sequences, and a wavelet 
scalogram was obtained to compare the sequence profile among genomes and to separate the different 
components within a profile. Further a change-point based wavelet thresholding method (WCP) is used to 
predict transmembrane helix (HTM) locations and the topology of HTM segments in the primary amino 
acid sequences. Wavelet was applied to decompose the propensity profile, which was generated according 
to the frequency of residues in HTM sequences. With the wavelet coefficients, a data-dependent threshold 
was then used to choose the coefficients representing abrupt changes in the profile. The reported prediction 
results were comparable to other methods, such as hidden Markov models. Moreover, the computational 
task is simple. Similarly, a continuous wavelet transform (CWT) is used in [26] to predict the α-helix 
content from the secondary structure of protein using the information from its hydrophobicity profile and 
the amino acid composition. Models are designed to identify gene locations in human DNA, including the 
Markov model, the hidden Markov model, and a wavelet-based hidden Markov tree (HMT). In HMT 
processing, an adaptive wavelet model is designed to match individual CpG islands in a DNA sequence to 
optimize the location identification. A model-based method is introduced (and combined with wavelet) to 
depict the replacement rate variation in genes and proteins, in which the profile of relative replacement 
rates along the length of a sequence was defined as a function of the site number. Besides better 
performance in fitting the data, the model also provided an additional useful method for determining 
regions in genes and proteins that evolved significantly faster than the average sequence. 

Figure4. (a) The G + C profiles of D. radiodurans chromosome I, (b) with its wavelet scalograms,(c) two 
H. pylori sequences, and (d) their relative scalograms. 
 
DSP/DIP Techniques in Genetic Network Modeling 
DSP Techniques in Modeling Genetic Regulatory Networks 
The mathematical and computational modeling of genetic regulatory networks promises to uncover the 
fundamental principles governing biological systems. It also paves the way toward the development of 
systemic approaches for effective therapeutic intervention in disease. In [20], a Boolean formalism is 
presented as a building block to model complex, large-scale, and dynamical networks of genetic 
interactions. The role of Boolean networks is to understand cell differentiation and cellular functional 
states. These Boolean networks can also be related to nonlinear digital-filter design. In addition, the 
inference of Boolean networks from real gene expression data can be modeled using computational 
learning theory combined with nonlinear SP. To handle the uncertainty in Boolean networks, a Markov 
chain model is applied to analyze the probabilistic framework. The potential effect of individual genes on 
the global dynamical network behavior is also considered using stochastic perturbation analysis. This also 
leads to target identification for therapeutic intervention via the development of several computational tools 
based on first-passage times in Markov chains. In [21], DNA transition is modeled utilizing a Markov 
process, specifically Markov chains. If the Markov process does not capture the DNA transition process, 
then CpG “islands” can be used, where “p” simply indicates that “C” and “G” are connected by a 
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phosphodiester bond. (The CpG islands are aggregates of rich C-G pairs that are bunched in several 
hundred to several thousand nucleotides.) The CpG method can construct a rough probability distribution 
model. In [22], a different approach is taken by constructing a finite-state Markov chain whose transitions 
depend on state dependent multivariate conditional probabilities between gene-expression levels, based on 
microarray data. Mathematical modeling tools that allow estimation of steady-state behavior in biological 
systems would be useful for examining two ubiquitous forms of biological system behavior. The first is 
homeostasis, the ability of cells to maintain their ongoing processes within the narrow ranges compatible 
with survival, and the second is a switch-like functionality that allows cells to rapidly transition within 
limited process segments between metastable states.  
 
DSP/DIP Techniques in DNA Microarray Analysis 
DNA Array Technology: 
The principle of a microarray experiment, as opposed to classical analysis, is that mRNA from a given cell 
line or tissue is used to generate a labeled sample, sometimes termed the target, which is hybridized in 
parallel with a large number of DNA sequences, and immobilized on a solid surface in an ordered array. 
Tens of thousands of transcript species can be detected and quantified simultaneously. During recent years, 
DNA microarray technology has been advancing rapidly. The development of more powerful robots for 
arraying, new surface technology for glass slides, and new labeling protocols and dyes, together with 
increasing genome-sequence information for different organisms, including humans, will enable us to 
extend the quality and complexity of microarray experiments. Although academic groups and commercial 
suppliers have developed many different microarray systems, the most commonly used systems today can 
be divided into two groups, according to the arrayed material: 
▲ 1) complementary DNA (cDNA) 
▲ 2) oligonucleotide microarrays 
as shown in Figure 4.  

 
Figure5 Schematic overview of probe array and target preparation for spotted cDNA microarrays and 
high-density oligonucleotide microarrays :(a) cDNA microarrays and (b) high-density oligonucleotide. 
        The fabrication of the DNA microarray can be done with the spotting method or on-chip synthesis. 
The target genes are normally required to be amplified and labeled with fluorescence. Multicolored 
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fluorescent techniques are often used in comparative hybridization detection (Figure 4 gives an example of 
a typical fluorescence image). Fluorescent detection is a conventional method for the detection of 
hybridization results. The most important characteristic to draw from a fluorescence image is the 
assessment of the hybridization degree (e.g., whether or not, and at which quantitative level, they hybridize 
with a given nucleic acid sequence), which is proportional to the intensity of each color spot. Ratios of spot 
intensities in both dyes in comparative hybridization can then be used to compute the differential 
expression of the gene or the expressed sequence tags between the two samples. The analysis of data from 
fluorescence images and the gene expression database is necessary in the treatment of such large amounts 
of information obtained from a DNA microarray. Since the fluorescent image obtained from microarray 
hybridization contains nearly all the gene expression levels for detected DNA or RNA sequences, the 
performance of image-processing methods used for fluorescent images has a potential impact on 
subsequent analysis such as clustering or the identification of differentially expressed genes. Many 
software tools have been developed for microarray image processing. The basic goal is to transform an 
image of spots of varying intensities into a matrix, called a gene expression matrix, with a measure of the 
intensity (or, for multicolored fluorescent images, the ratio of intensities) for each spot. Although it seems 
to be a relatively straightforward goal, the variation, noise, and large number of pixels on a microarray 
image make it a complex process. The major issues these software tools must address are how to reduce 
noise to improve the accuracy and how to realize automation for the processing procedure. Implementing 
real-time processing for a microarray image is becoming increasingly critical because of the increasing 
number of microarrays that must be analyzed. 
DNA Microarray Image Processing: 
DNA microarray image processing is one of the information extraction problems occurring in molecular 
biology and bioinformatics. Molecular biologists and bioinformaticians are using microarray technology 
for identifying a gene in a biological sequence and predicting the function of the identified gene within a 
larger system (although there is still an active debate about how to define the bioinformatics discipline). 
Microarray technology is based on creating DNA microarray that are typically composed of thousands of 
DNA sequences, called probes, fixed to a glass or silicon substrate. Usually, samples from two sources are 
labeled with different fluorescent molecules (emitting at red and green wavelengths) and hybridized 
together on the same array. The array is then scanned by activation with lasers at the appropriate 
wavelength to excite each dye. The relative fluorescence between each dye on each spot is then recorded 
and a composite image may be produced. The relative intensities of each channel represent the relative 
abundance of the RNA or DNA product in each of the two samples. Since the invention of microarray 
technology in 1995, researchers developed several microarray image processing methods, statistical models 
and data mining techniques that are specific to DNA microarray analysis. These analyses are usually part of 
a microarray data processing workflow that includes, grid alignment, spot segmentation, quality assurance, 
data quantification and normalization, identification of differentially expressed genes and their significance 
testing, and data mining. An example of microarray data processing workflow is illustrated in Figure 3. The 
subset of image processing steps is enclosed with a dashed line in Figure 5.  
The major tasks of DNA microarray image processing are to identify the array format including the array 
layout, spot size and shape, spot intensities, distances between spots, and background fluorescence, and to 
extract spot descriptors, as well as the uncertainty of the descriptors that represent the underlying 
microarray experiment. Biological conclusions are then drawn based on the results from data mining and 
statistical analysis of all extracted descriptors. The reliability of spot descriptors depends on many different 
factors. For example, one could list basic factors, such as microarray technology components, and protocols 
for array production, sample labeling, hybridization and image acquisition. Printing parameters, such as pin 
size and shape, printing speed, temperature and humidity, printing buffers and deposition surface, will all 
affect the size and morphology of the individual spots. The type of glass and coating, blocking agents, 
hybridization and wash buffers will affect background fluorescence. Any DNA array image analysis 
programs must be easily adapted to these varying parameters. In order to choose an appropriate image 
processing approach and automate DNA microarray image analysis, one has to understand variations of 
input microarray images in terms of (1) the image content including foreground and background 
morphology (e.g., grid layout, spot location, shape and size), and intensity information (e.g., spot 
descriptors derived from foreground and background intensities), (2) the computer characteristics of input 
digital images (e.g., number of channels, number of bytes per pixel, file format). 
Ideal Microarray Image: 
First, let us define an “ideal” cDNA microarray image in terms of its image content. The image content 
would be characterized by deterministic grid geometry, known background intensity with zero uncertainty, 
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pre-defined spot shape (morphology), and constant spot intensity that (a) is different from the background, 
(b) is directly proportional to the biological phenomenon (up- or -down regulation), and (c) has zero 
uncertainty for all spots. While finding such an ideal cDNA image is probably a pure utopia, it is a good 
starting point for understanding image variations and possibly simulating them.  
Another aspect of an “ideal” cDNA microarray image can be expressed in terms of statistical confidence. If 
one could not possibly acquire an ideal microarray image, then a high statistical confidence in microarray 
measurements would be obtained with a very large number of pixels per spot (theoretically it would reach 
infinity). However, the cost of experiments, the limitations of laser scanners in terms of image resolution, 
storage of extremely high resolution images and other specimen preparation issues are the real world 
constraints that have to be taken into account. 

 
Figure 6.Microarray data processing workflow. The diagram stresses the requirement to archive both raw 
and processed data. 
 
Image-Processing Methods: 
The automation of this process is complicated by the variation of size and position of spots, the relative 
placement of the adjacent grid, and the overall position of the array image. Many existing software 
packages for microarray image analysis require some degree of user intervention in this step. Allowing user 
intervention may increase there liability and ensure accuracy of the whole quantization process; however, 
this may make the process unacceptably slow. Semiautomated packages for grid generation do exist [36], 
but all require some limited degree of user intervention, either in locating spots, setting thresholds, or 
making unrealistic assumptions about the regularity of data (e.g., assuming only circular spots). A novel 
operator independent and reproducible method is proposed for the automated analysis of gene microarray 
images [37] and the algorithm is based on the regular structure of the images and uses Fourier methods to 
extract this periodic structure as an initial approximation of spot locations. This initial addressing is then 
refined by an iterative method that produces accurate locations of all spots on the array. In addition, a 
classifier by spot quality is employed in some software packages to automate detection of spot-finding 
errors and spots of poor quality for further improvement of effectiveness. Many current implementations 
require the user to specify explicit thresholds of various attributes, such as brightness, that separate 
acceptable from unacceptable spots. Choosing good thresholds manually for multiple attributes through an 
extended process of trial and error is time consuming and may not achieve the desired result. In [38], a 
novel example- based classifier is implemented to decide whether candidate spots have been found 
correctly and are usable for further analysis. Machine learning techniques are introduced in the classifier to 
provide a convenient and powerful way for an investigator to specify complex concepts of spots without 
explicitly determining classification thresholds for image attribute values. According to the test, the 
automated classification matched their manual classification for more than 95% of candidate spots [38]. 
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Cellular Neural Network (CNN) Methods: 
Currently, with the software package mentioned above, the time spent on quantitatively processing a 
typical microarray fluorescent image is in the order of minutes. Some researchers think that such 
throughput is acceptable for laboratory purposes. However, it seems rather slow for the very high-output 
user, such as a pharmaceutical company, that might produce tens of thousands of arrays per year. 
Furthermore, DNA microarrays are predicted to be a normal diagnostic tool in clinics in the future, much 
like today’s blood test. A low-efficiency analysis approach is sure to impede the progress of microarray 
adoption in this area. Enhancing the processing speed, or ideally realizing real-time processing, is desirable. 
Microarray analysis by a traditional computer, which sequentially processes images pixel by pixel, not only 
is very time consuming, but also destroys the parallel nature of microarray techniques itself. Fortunately, 
the CNN was recently introduced into microarray analysis, which promises to provide a breakthrough in 
DNA microarray parallel processing and obtain the gene expression profile in real time. A CNN is an 
analog dynamic processor array that reflects this property: the processing elements interact directly within a 
finite local neighborhood. Due to its architecture, a two-dimensional CNN array is widely used to solve 
image processing and pattern recognition problems; moreover, the parallelism characteristic of this 
structure allows one to perform the most computationally expensive image analysis tasks three orders of 
magnitude faster than a classical CPU-based computer. This approach, thanks to the supercomputing 
capabilities of the CNN architecture, makes the whole DNA chip methodology fully parallel and also 
makes the processing phase, until now very time consuming, a real-time step. Overall CNN scheme is 
described in Figure 7 and 8. 
 
 

 
Figure 7.The CNN scheme: (a) The spatial grid showing local connections (b) The circuit of each cell(c) 
The classical output nonlinear function for each cell 
 
Biomodel-Based Technique: 
With the exciting results achieved from Genomics signal analysis, there also exist several open problems in 
this field. For instance, the prediction accuracy of a characteristic Genomics location is only around 70–
80%. The fixed-shape segmentation for microarray images does not reflect the reality of the system, and an 
adaptive technique is needed to more reliably detect spot location and its size in microarray images. 
Therefore, more efficient methods are being applied to solve these problems, such as singular value 
decomposition and template technique, etc. Biomodel based approaches will play an important role in the 
future of GSP, since modeling methods come from the actual physiological and Genomics processes, and 
they simulate the underlying dynamic mechanism for the signal generation. Also, these models have rich 
mathematical structures and form the theoretical basis for the applications. In [42], a stochastic model is 
used to interpret DNA microarray images and to unravel their underlying physical process. The nonlinear 
modeling method is applied to analyze the DNA sequence. These model-based methods have provided new 
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viewpoints in Genomics information exploration and will also accelerate this process. Bionic wavelet 
transform (BWT) is another example of such a biomodel-based method for time-frequency analysis. BWT 
can realize adaptive signal-dependent 2-D resolution adjustments over the time-frequency plane rather than 
the fixed frequency-dependent resolution in the wavelet case. Further research shows that BWT also 
possesses many other features, such as a more concentrated signal presentation over the time-frequency 
plane, and a better robustness to noise, etc. 
 

 
Figure 8. (a) Block scheme of the CNN architecture and operation principle (b) CNN local interaction 
between cells (c) Flowchart of the CNN algorithms for microarray analysis (d) CNN-UM chip for DNA 
microarray processing 
 
Usage of Multidimensional DSP/DIP Technique: 
Until now, two independent strategies have been developed for microarray data analysis. One treats the 
array-organized data as a one-dimensional (1-D) time-domain signal and uses classical 1-D SP methods to 
analyze these signals. The second one treats the overall gene expression spots as a contour plot or color 
mapped image and analyzes the data in a 2-D large-scale pattern. Statistical analysis on the color 
distribution of the microarray image is currently a major interest and tool in microarray data processing. 
Multidimensional (beyond 2-D) analysis will be another research trend in the Genomics research field. For 
instance, in protein engineering research, it is of great interest to reveal the complex 3-D structure of the 
Genomics sequence. Currently, most Genomics SP techniques are still static. The four-dimensional 
technique will help to detect the real-time dynamic Genomics structure change during future drug 
experiments. With the application of these multidimensional techniques, it will be possible in the future for 
us to reveal the underlying Genomics structure and function, and their relationship in dynamic situations. 
 
Noise Reduction: 
Noise reduction is a pervasive issue in DNA microarray analysis. If a DNA microarray image were an array 
of spots with a precise size and position located on a uniform low background, it would constitute a very 
simple problem in terms of image processing. It is the variation and noise in fluorescent images that 
complicate this problem. It is important for us to analyze the source of noise and to seek effective solutions. 
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The major source of variation and noise on microarray images originates from microarray fabrication 
machines, the treatment of glass slides, and fluorescence detectors. Despite the use of precise fabrication 
machines, spots vary significantly in size and position owing to variations in the amount of DNA on each 
spot and in the location where it is placed. Detector noise includes that from the amplification and 
digitization process, such as photon noise, electronic noise, laser light refection, and background 
fluorescence. In practice, the natural fluorescence of the glass and any nonspecifically bound DNA or dye 
molecules add a substantial noise floor to the image. This diffuse noise exhibits considerable variability in 
intensity both within and between small rectangles containing individual spots. Microarrays are also 
afflicted with discrete image artifacts such as highly fluorescent dust particles, unattached dye, salt deposits 
from vaporated solvents, and fibers or other airborne debris. Such artifacts appear in the vicinity of 10–15% 
of spots at random, even after a thorough cleaning of the slide, and can easily be brighter and sometimes 
larger than nearby useful spots [38]. Their heterogeneous brightness, shape, and size make them hard to 
detect and remove automatically, especially in the presence of spots that are themselves of variable size and 
brightness. 
 
Conclusion 
Many DSP and DIP techniques are effectively used and analyzed for the purpose of Genome Analysis and 
DNA Microarrays within last few years. More research work and efforts are required to use DSP 
technologies for solving biological problems. Some of the major areas of investigation and future 
challenges that can be tailored for future research directions in this emerging area are high throughput 
Genome Analysis especially in search of structural elements of genome and the development of new and 
advanced intelligent image processing techniques for both eliminating the noise sources inherent in the 
DNA microarray process and also the development of tailor-made image processing methodologies for 
speeding up the real-time diagnosis and implementation procedures of the next generation of system-on-a-
chip devices. 
 
References 
[1] R.M. Karp, “Mathematical challenges from Genomics and molecular biology,” Notices AMS, vol. 49, 
pp. 544–553, May 2002. 
[2] Gen Bank. Available: http://www.ncbi.nlm.nih.gov/Genbank/GenbankOverview.html 
NCBI, http://www.ncbi.nlm.nih.gov/ 
[3]SWISS-PROT. Available: http://www.ebi.ac.uk/swissprot/ 
[4] N.M. Luscombe, D. Greenbaum, and M. Gerstein,“What is bioinformatics? A proposed definition and 
overview of the field,” Method Inform. Med., pp. 346–358, Apr. 2001. 
[5] The Protein Data Bank. Available: http://www.rcsb.org/pdb/ 
[6] FASTA Programs at the U. of Virginia. Available:http://fasta.bioch.virginia.edu/ 
[7] Available: http://pauling.mbu.iisc.ernet.in/~pali/tree.html 
[8] NCBI Blast homepage. Available: http://ncbi.nih.gov/BLAST 
[9] C.H. Trad, Q. Fang, and I. Cosic, “Protein sequence comparison based on the wavelet transform 
approach,” Protein Eng., vol. 15, pp.193–203, Mar. 2002. 
[10] J. Zhao, X.W. Yang, J.P. Li, and Y.Y. Tang, “DNA sequences classification based on wavelet packet 
analysis,” in Proc. Wavelet Analysis and Its Applications, 2nd Int. Conf., WAA, 2001, pp.424–429. 
[11] D. Anastassion, “Genomic signal processing,”IEEE Signal Processing Mag., pp. 8–20, July 2001. 
[12] In silico Cloning. Available: http://www.hgmp.mrc.ac.uk/ESTBlast/Tutorial 
[13] A.A. Tsonis, P. Kumar, J.B. Elsner, and P.A.Tsonis, “Wavelet analysis of DNA sequences,” Phys. 
Rev. E, Stat. Phys. Plasmas Fluids Relat. Interdsip. Top., vol. 53, pp. 1828–1834, Feb.1996. 
[14] G. Dodin, P. Vandergheynst, P. Levoir, C. Cordier, and L. Marcourt, “Fourier and wavelet transform 
analysis, a tool for visualizing regular patterns in DNA sequences,” J. Theor. Biol., vol. 206, pp. 323–326, 
Oct. 2000. 
[15] R.F. Voss, “Evolution of long-range fractal correlations and 1/f noise in DNA base sequences,” Phys. 
Rev. Lett., vol. 68, pp. 3805–3908, June 1992. 
[16] A. Arneodo, E. Bacry, P.V. Graves, and J.F. Muzy, “Characterzing long-range correlations in DNA 
sequences from wavelet analysis,” Phys. Rev. Lett., vol. 74, pp. 3293–3296, Apr. 1995. 
[17] Swiss-Protein. Available: http://www.ebi.ac.uk/swissprot/index.html 
[18] The Drosophila melanogaster ADH sequence. Available: http://www.flybase.org 
[19] Center for automated learning and discoveries. Available:http://www.cs.cmu.edu/cald/research.html 



ARTICLE IN PRESS 
________________________________________________________________________ 

______________________________________________________________________________________
September 2006                                        Bioinformatics Trends                                             Vol. 1, No. 2 
 

[20] I. Shmulevich, E.R. Dougherty, and W. Zhang, “From Boolean to probabilistic Boolean networks as 
models of genetic regulatory networks,” Proc.IEEE, vol. 90, pp. 1778–1792, Nov. 2002. 
[21] J. White, J. Chen, J. Wang, and K.J. Ray Liu, “Modeling DNA transition using Markov random 
network,” submitted for publication. 
[22] S. Kim, H. Li, E.R. Dougherty, N. Cao, Y.D.Chen, M. Bittner, and E.B. Suh, “Can Markov chain 
models mimic biological regulation?” J.Biol. Syst., vol. 10, pp. 337–357, Nov. 2002. 
[23] Critical Assessment of Structure Prediction. Available:http://www.ncbi.nlm.nih.gov/ 
Structure/RESEARCH/casp3/index.shtml 
[24] P. Lio and M. Vannucci, “Finding pathogenicity islands and gene transfer events in genome data,” 
Bioinformatics, vol. 16, pp. 932–940, Oct. 2000. 
[25] P. Lio, “Wavelet change-point prediction of transmembrane proteins,” Bioinformatics, vol. 16, pp. 
376–382, Apr. 2000. 
[26] L. Pattini, L. Riva, and S. Cerutti, “A wavelet based method to predict the alpha helix content in the 
secondary structure of globular proteins,” in Proc. IEEE Special Top. Conf. Mol. Cell, Tissue Engineering, 
2002, pp. 142–143. 
[27] N. Dasgupta, S. Lin, and L. Carin, “Sequential modeling for identifying gene locations in human 
genome,” Dept. Elec. Comput. Eng., Duke Univ., Durham, NC, Tech. Rep., Dec. 2001. 
[28] P. Morozov, T. Sitnikova, G. Churchill, F.J. Ayala, and A. Rzhetsky, “A new method for replacement 
rate variation in molecular sequences: Application of the Fourier and wavelet models to Drosophila and 
mammalian proteins,” Genetics, vol. 154, pp. 381–395, Jan. 2000. 
[29] R.E. Green and S.E. Brenner, “Bootstrapping and normalization for enhanced evaluations of pairwise 
sequence comparison,” Proc. IEEE, vol. 90, pp. 1834–1847, Dec. 2002. 
[30] E. Pirogova, Q. Fang, M. Akay, and I. Cosic,“Investigation of the structural and functional 
relationships of oncogene proteins,” Proc. IEEE, vol. 90, pp. 1859–1867, Dec. 2002. 
[31] M. Peleg, I.S. Gabashvili, and R.B. Altman, “Linking genetic polymorphisms of tRNA to their 
functional sequelae,” Proc. IEEE, vol. 90, pp. 1875–1886, Dec. 2002. 
[32] J. Cheng and L.J. Kricka, Biochip Technology. New York: Hardwood Academic, 2001. 
[33] A. Schulze and J. Downward. (2001, August).Navigating gene expression using microarrays—A 
technology review. Nature Cell Biol. [Online]. Vol 3. Available: http://cellbio.nature.com 
[34] V.G. Cheung, M. Morley, F. Aguilar, A. Massimi, R. Kucherlapati, and G. Childs, “Making and 
reading microarrays,” Nature Genetics Suppl., vol. 21, pp. 15–19, Jan. 1999. 
[35] R.J. Lipshutz, S.P.A. Fodor, T.R. Gingeras, and D.J. Lockhart, “High density synthetic oligonucleotide 
arrays,” Nature Genetics Suppl. vol. 21, pp. 20–24, Jan. 1999. 
[36] Media Cybernetics, Inc. Array-pro analyzer. Available: 
 http://www.mediacy.com/ arraypro.htm 
[37] C. Bowman, R. Baumgartner, and S. Booth, “Automated analysis of gene microarray images,” in Proc. 
IEEE Can. Conf. Elect. Comput. Eng. 2002, pp. 1140–1144. 
[38] J. Buhler, T. Ideker, and D. Haynor, “Dapple: Improved techniques for finding spots on DNA 
microarray,” Comput. Sci. Eng., Univ. Washington, Seattle, Tech. Rep. UWTR 2000-08-05, Aug. 2000. 
[39] P. Arena, L. Fortuna, and L. Occhipinti, “A CNN algorithm for real time analysis of DNA 
microarrays,” IEEE Trans. Circuits Syst. I, vol. 49, pp. 335–340, Mar. 2002. 
[40] L. Fortuna, P. Arena, D. Balya, and A. Zarandy, “Cellular neural networks: A paradigm for nonlinear 
spatio- temporal processing,” IEEE Circuits Syst. Mag., vol. 1, pp. 6–21, Apr. 2001. 
[41] L.O. Chua and L. Yang, “Cellular neural networks: Theory,” IEEE Trans. Circuits Syst. I, vol. 35, pp. 
1257–1272, Oct. 1988. 
[42] D. Seale and S.W. Davies, “Stochastic model of DNA microarray,” in Proc. IEEE Special Top. Conf. 
Mol., Cell, Tissue Engineering, 2002, pp. 113–114. 


