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Abstract:

Application of Digital Signal/lmage Processing teitjues PSP & DIP) to solve Genomics problems
initiated the new field Genomics Signal ProcesgiG&P which concentrates to encode the Genomics
signals based on DSP/DIP framework. In this Generaia, high throughput DNA sequencing and the use
of DNA microarray to simultaneously conduct hugenter of experiments has lead to many signal/image
processing problems. There is an emergent neeevielap signal/image-processing techniques to examin
data and determine relationship between genehidipaper, we will focus on application of DSP &1Dh
Biomolecular Sequence Analysis, Genetic Network ®liod) and DNA Microarray Image Analysis.
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The Genome:

As we know that genes are physically embodied wittmplex DNA macromolecules that lie within
structures called chromosomes that are presentliving cell. Discovery of the structure of DNA by
Watson and Crick in 1953 showed that a DNA moledsila double helix consisting of two strands. Each
helix is a chain of bases, chemical units of foges: thymine (T), cytosine (C), adenine (A), andmne
(G). Each base on one strand is joined by hydrdgems sto a complementary base on the other strand,
where A is complementary to T, and C is complenmgnta. G. Thus the two strands contain the same
information. Certain segments within these chrommdoDNA molecules contain genes, which are the
carriers of the genetic information and spell taeps of the proteins. Thus the genetic informatizim be
thought of as being encoded digitally, as stringsrahe four-letter alphabet {A, C, T, G}, much as
information is encoded digitally in computers aingfs of zeros and ones. In humans there are 28 phi
chromosomes. All but two of these (the sex chrom@s) occur in pairs of “homologous” chromosomes.
Two homologous chromosomes contain the same gkuka,gene may have several alternate forms called
alleles, and the alleles of a gene on the two chemmes may be different. The total content of tiNAD
molecules within the chromosomes is called the genof an organism. Within an organism, each cell
contains a copy of the genome. The human genontaiosrabout 3 billion base pairs and about 35,000
genes. Genome size and no of chromosomes as w&leasmics complexity vary with organism to
organism.

Central Dogma- From Genesto Proteins:

The Central dogma of molecular biology is that Dbl#des for RNA and RNA codes for proteins. Thus the
production of a protein is a two-stage processhRNA playing a key role in both stages. An RNA
molecule is a single-stranded chain of chemica¢bad four types: A, U, C, and G. In the first gtagalled
transcription, a gene within the chromosomal DNAc@pied base by base into RNA according to the
correspondence AU, C—G, T—A, G—C. The resulting RNA transcript of the gene is themsported
within the cell to a molecular machine called thmsome that has the task of translating the RN& &
protein. Translation takes place according to #m@etic code, which maps successive triplets of Ridges

to amino acids. With minor exceptions, the 64 puesiriplets of 4 bases Y¥map to 20 amino acids for all
organisms.
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Figurel.Central Dogma of Molecular Biology (From Genes toteins)

Regulation of Gene Expression:

Gene expression can be viewed as a complex newfdriteractions involving genes, proteins, and RNA,
as well as other factors such as temperature angréssence or absence of nutrients and drugs wihkin
cell. It is clear that the expression of a genehinita cell (as measured by the abundance and tdvel
activity of the proteins it produces) is ultimateggulated by the machinery of the cell. The trapson of

a gene is typically regulated by proteins callesh$cription factors that bind to the DNA near teagand
enhance or inhibit the copying of the gene into RMMmilarly, translation can be regulated by pnagei
that bind to the ribosome. Certain post-translaigrocesses, such as the chemical modificatiothef
protein or the transport of protein to a particudampartment in the cell, can also be regulatedssto
affect the activity of the protein.

DSP/DIP Techniquesin DNA Sequence Analysis

DSP Techniquesin Sequence Comparisons and Classification

Wavelet analysis provides a useful DSP means ®wibual description of inherent structure undedyi
DNA sequences. In, wavelet analysis is used taektharacteristic bands from protein sequencethisn
research, the sequence-scale analysis with wagelat a multiresolution similarity comparison betwee
protein sequences. This “similarity” expanded ttalitional sequence similarity concept, which taato
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account only the local pair-wise amino acid andedjarded the information contained in coarser apati
resolution. Also, this wavelet based method didrequire the complex sequence alignment processing
sequences. Therefore, proteins with different secgdengths could be compared easily. Other than
sequence comparison, sequence classificationdsaatsajor problem in DNA signal analysis. The watel
packet (WP) technique is used in for DNA sequerasstfication, i.e., to classify exons (a segment o
DNA that is transcribed to RNA and specifies a jporbf a protein) and introns (honcoding subregiions
genes). After obtaining the energy distributionnfrdVP coefficients, the energy map was used as a
criterion for sequence classification. Digital safyprocessing (DSP) techniques offer more efficigays

to identify regions of the DNA exhibiting periodirzhavior. In some cases, digital filters are emgdbto
extract the T-3 component (the protein-coding regimf DNA demonstrate a period-3 (or T-3)
performance due to codon structure. A codon iscaesgce of three adjacent nucleotides constitutieg t
genetic code that determines the insertion of &iBpeamino acid in a polypeptide chain during @iat
synthesis or the signal to stop/start protein s3&ith). In addition, digital filters are used taréhate the
background 1/f noise exhibited by nearly all DNAjgences. We will describe few interesting exampies
details likeDNA SpectrogramandColor Maps

DNA Spectrograms:

Spectrograms are powerful visual tools for biomolac sequence analysis. It is well known that the
appearance of spectrograms provides significargrimition about signals, to the extent that trained
observers can figure out the words uttered in vaignals by simple visual inspection of their
spectrograms. An important advantage of DSP-bazad is their flexibility. Spectrograms can be defi

in many ways. For example, depending on the paatidaatures that must be emphasized, we may wish t
define spectrograms using certain values of parisieDnce a visual pattern appears to exist, we tias
opportunity to interactively modify the values bese parameters in ways that will enhance the appea

of these patterns, thus clarifying their significanlt is hoped that visual inspection of speciogs will
establish links between particular visual featulié® areas with peculiar texture or color) andtaer yet
undiscovered motifs of biological sequences. Figueeshows a spectrogram using DFTs of length @D of
DNA stretch of 4,000 nucleotides from chromosomiedfl C. elegans(GenBank Accession number
NCO000967). Figure 2.b shows the texture of a spgcaim coming from a sample of totally random DNA,
i.e.,, in which each type of nucleotide appears wtlobability 0.25 and independent of the other
nucleotides.
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Figure2.(a)Color spectrogram of a DNA stretch (b) Color sfpegram of “totally random” DNA
Color Maps:

Color maps are mostly used for Reading Frame [fieation and it is an excellent tool for sequence
feature visualization. Because the number of pyn@olors (red, green, and blue) is the same as the
number of possible forward coding reading framess,can conveniently assign a color-coding scheme and
based on that one can prepare color maps usingefFdransform. Foexampleconsider a DNA stretch
from chromosome Il ofS. cerevisiae(GenBank accession number NC 001135).Note thaetiemo
overlap with the collected statistics. The DNA stheconsists of 12,000 nucleotides starfiireggn location
212041. It contains six genes (three forwaodling and three reverse coding) at the locat&msvn in
Table 1 relative to 212040.

DSP Techniquesin Exploring the Relationship between Sequence Structure and Function:

Before the wavelet method was applied in explorthg structural features within the sequences,
conventional Fourier analysis had been used tadates the sequence structure information. Howether,
Fourier method could discover only “global” perioties, and it could not extract hidden localized
periodicities, which might provide hints about urigiag construction rules [13]. A correlation furat is
constructed to compare each DNA base with its varioeighbors [14]. After further Fourier or wavelet
processing applied to the correlation functionjrthesults readily showed some regular featureBNA
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sequences. Wavelet is also used to search the [2§Besce construction rules. The salient spotsén th
final two-dimensional (2-D) analysis results rewehlsignificant features in the DNA sequence. Their
results demonstrated that while the noncoding sexpse showed spectra similar to those from random
sequences, coding sequences revealed specifidp#ies of variable length and a common periogticit
three. Similarly, the method in quantifying symisofiequence correlation to analyze DNA sequences is
also used. The spectral density measurementsfefetit base positions demonstrated the ubiquitpwf
frequency noise, long-range fractal correlationd @nominent short range periodicities. The restdts
several categories of DNA sequences also showaeémsgic changes in spectral exponent. This result
provides a new technique for quantifying evolutign&@hanges in the information content of DNA.
Wavelet transforms modulus maxima (WTMM) are usednalyze the fractal scaling properties in DNA
sequences. The existence of long-range correlaiodemonstrated in genes containing introns and
noncoding regions, and this correlation is alsontjfiad. The fluctuations in the DNA walk profilegere
found to be homogeneous with Gaussian statistios esult reveals useful information about the rof
introns and noncoding intergenic regions in the equilibrium dynamic process that produced DNA
sequences. Recently, it has been asserted thagy alith functional information, information about
molecular evolution and relationships between ogyas can also be derived. Since the evolution of
genetic information and the principles through whiwature produced the genetic information and genes
are still not well understood, wavelet analysis [MA sequences may provide some insights for these
problems.

Table1.
Locations and Reading Frames of Six Genes.
Relative Location | Gene Length Reading Frame
761 — 1429 669 2
1687 — 3135 1449 1
3387 — 4931 1545 3
5066 «— 6757 1692 2
7147 « 9918 2772 I
10143 « 10919 | 777 3

2000 4000 6000 8000 10000 2000 4000 6000 8000 10000

(a) (b)

Figure3.Color map after partition for the genes simoin Table 1. (a) For forward coding (b) For reger
coding

DSP Techniquesin Sequence Structure Prediction:
Accurate prediction and detection of DNA regionstioeir underlying structural patterns is a constant
source of difficulty for researchers. Tradition&usture detection methods were primarily basedhen
average of DNA base contents within a fixed winddwerefore, the location accuracy depended on the
chosen window length. The multiresolution analyesture of wavelet transform is excellent in reswv
this problem, allowing efficient extraction of basiomponents at different scales. In [24], discredeelet
transform (DWT) is applied to find pathogenicityaisds and gene mutation events in genome data. The
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DWT is used to smooth G + C profiles to locate abteristic patterns in genome sequences, and detave
scalogram was obtained to compare the sequencéepamfiong genomes and to separate the different
components within a profile. Further a change-pbased wavelet thresholding method (WCP) is used to
predict transmembrane helix (HTM) locations and tilygology of HTM segments in the primary amino
acid sequences. Wavelet was applied to decompesertipensity profile, which was generated according
to the frequency of residues in HTM sequences. \tfithwavelet coefficients, a data-dependent thidsho
was then used to choose the coefficients repregpabirupt changes in the profile. The reported iptied
results were comparable to other methods, suchdaem Markov models. Moreover, the computational
task is simple. Similarly, a continuous wavelengi@mrm (CWT) is used in [26] to predict thehelix
content from the secondary structure of proteimgishe information from its hydrophobicity profiénd

the amino acid composition. Models are designedéatify gene locations in human DNA, including the
Markov model, the hidden Markov model, and a wavefsed hidden Markov tree (HMT). In HMT
processing, an adaptive wavelet model is desigmadatch individual CpG islands in a DNA sequence to
optimize the location identification. A model-baseéthod is introduced (and combined with wavelet) t
depict the replacement rate variation in genes @ntkeins, in which the profile of relative replacem
rates along the length of a sequence was defined &mction of the site number. Besides better
performance in fitting the data, the model alsovigled an additional useful method for determining

regions in genes and proteins that evolved sigmifiy faster than the average sequence.
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Figure4. (a) The G + C profiles of D. radioduransromosome 1, (b) with its wavelet scalograms,(@ tw
H. pylori sequences, and (d) their relative scakogs.

DSP/DIP Techniquesin Genetic Network M odeling

DSP Techniquesin Modeling Genetic Regulatory Networks

The mathematical and computational modeling of temegulatory networks promises to uncover the
fundamental principles governing biological systeitsalso paves the way toward the development of
systemic approaches for effective therapeutic vetetion in disease. In [20], a Boolean formalism is
presented as a building block to model complexgdescale, and dynamical networks of genetic
interactions. The role of Boolean networks is talenstand cell differentiation and cellular functbn
states. These Boolean networks can also be retatetbnlinear digital-filter design. In addition, eth
inference of Boolean networks from real gene exgioesdata can be modeled using computational
learning theory combined with nonlinear SP. To artle uncertainty in Boolean networks, a Markov
chain model is applied to analyze the probabilistenework. The potential effect of individual genen

the global dynamical network behavior is also cdesed using stochastic perturbation analysis. alss
leads to target identification for therapeutic im@ntion via the development of several computatidools
based on first-passage times in Markov chains.2lij,[DNA transition is modeled utilizing a Markov
process, specifically Markov chains. If the Markmwocess does not capture the DNA transition process
then CpG ‘“islands” can be used, where “p” simpldigates that “C” and “G” are connected by a
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phosphodiester bond. (The CpG islands are aggegdteich C-G pairs that are bunched in several
hundred to several thousand nucleotides.) The Cp@ad can construct a rough probability distribatio
model. In [22], a different approach is taken bystoucting a finite-state Markov chain whose traoss
depend on state dependent multivariate conditiprababilities between gene-expression levels, based
microarray data. Mathematical modeling tools tHedwaestimation of steady-state behavior in biotadi
systems would be useful for examining two ubiqustdorms of biological system behavior. The first is
homeostasis, the ability of cells to maintain th@igoing processes within the narrow ranges colvlpati
with survival, and the second is a switch-like flimeality that allows cells to rapidly transitionithin
limited process segments between metastable states.

DSP/DIP Techniquesin DNA Microarray Analysis

DNA Array Technology:

The principle of a microarray experiment, as oppaseclassical analysis, is that mMRNA from a gieet

line or tissue is used to generate a labeled samsplaetimes termed the target, which is hybridired
parallel with a large number of DNA sequences, inmehobilized on a solid surface in an ordered array.
Tens of thousands of transcript species can be®etand quantified simultaneously. During recegery,
DNA microarray technology has been advancing rgpi@the development of more powerful robots for
arraying, new surface technology for glass slidey] new labeling protocols and dyes, together with
increasing genome-sequence information for differ@manisms, including humans, will enable us to
extend the quality and complexity of microarray esiments. Although academic groups and commercial
suppliers have developed many different microaagstems, the most commonly used systems today can
be divided into two groups, according to the arcap@terial:

A 1) complementary DNA (cDNA)

A 2) oligonucleotide microarrays

as shown in Figure 4.
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Figure5 Schematic overview of probe array and target pragian for spotted cDNA microarrays and

high-density oligonucleotide microarrays :(a) cDNAcroarrays and (b) high-density oligonucleotide.
The fabrication of the DNA microarray came tione with the spotting method or on-chip synthesi

The target genes are normally required to be aiglibnd labeled with fluorescence. Multicolored
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fluorescent techniques are often used in compardybridization detection (Figure 4 gives an exanydl

a typical fluorescence image). Fluorescent detaci®m a conventional method for the detection of
hybridization results. The most important charastier to draw from a fluorescence image is the
assessment of the hybridization degree (e.g., whethnot, and at which quantitative level, theptigize

with a given nucleic acid sequence), which is prapoal to the intensity of each color spot. Ratibspot
intensities in both dyes in comparative hybridiaatican then be used to compute the differential
expression of the gene or the expressed sequegeddaveen the two samples. The analysis of data fr
fluorescence images and the gene expression dat&bascessary in the treatment of such large ataoun
of information obtained from a DNA microarray. Sinthe fluorescent image obtained from microarray
hybridization contains nearly all the gene exprmsdievels for detected DNA or RNA sequences, the
performance of image-processing methods used foordscent images has a potential impact on
subsequent analysis such as clustering or the ifidatibn of differentially expressed genes. Many
software tools have been developed for microarnagge processing. The basic goal is to transform an
image of spots of varying intensities into a mataalled a gene expression matrix, with a meastitkeo
intensity (or, for multicolored fluorescent imagése ratio of intensities) for each spot. Althougkeems

to be a relatively straightforward goal, the vadat noise, and large number of pixels on a miaaar
image make it a complex process. The major issuesetsoftware tools must address are how to reduce
noise to improve the accuracy and how to realizeraation for the processing procedure. Implementing
real-time processing for a microarray image is bgog increasingly critical because of the incregsin
number of microarrays that must be analyzed.

DNA Microarray |mage Processing:

DNA microarray image processing is one of the infation extraction problems occurring in molecular
biology and bioinformatics. Molecular biologistsdabioinformaticians are using microarray technology
for identifying a gene in a biological sequence angdicting the function of the identified gene hiit a
larger system (although there is still an activeade about how to define the bioinformatics disng).
Microarray technology is based on creating DNA wmégray that are typically composed of thousands of
DNA sequences, called probes, fixed to a glasslioos substrate. Usually, samples from two souraes
labeled with different fluorescent molecules (eimgtat red and green wavelengths) and hybridized
together on the same array. The array is then schimy activation with lasers at the appropriate
wavelength to excite each dye. The relative fluogase between each dye on each spot is then recorde
and a composite image may be produced. The relatteasities of each channel represent the relative
abundance of the RNA or DNA product in each of the samples. Since the invention of microarray
technology in 1995, researchers developed sevecabanray image processing methods, statisticalatsod
and data mining techniques that are specific to Dhiéroarray analysis. These analyses are usuaityopa

a microarray data processing workflow that inclydgsl alignment, spot segmentation, quality agstea
data quantification and normalization, identificatiof differentially expressed genes and theirificance
testing, and data mining. An example of microadata processing workflow is illustrated in FigureTBe
subset of image processing steps is enclosed wittslaed line in Figure 5.

The major tasks of DNA microarray image processing to identify the array format including the arra
layout, spot size and shape, spot intensitiesamigts between spots, and background fluorescemddpa
extract spot descriptors, as well as the uncestaoit the descriptors that represent the underlying
microarray experiment. Biological conclusions drert drawn based on the results from data mining and
statistical analysis of all extracted descriptditse reliability of spot descriptors depends on mdifferent
factors. For example, one could list basic factsugh as microarray technology components, ana@ot

for array production, sample labeling, hybridizatend image acquisition. Printing parameters, sicpin
size and shape, printing speed, temperature anddhynprinting buffers and deposition surface, Ivaill
affect the size and morphology of the individuabtsp The type of glass and coating, blocking agents
hybridization and wash buffers will affect backgndufluorescence. Any DNA array image analysis
programs must be easily adapted to these varyingnpeters. In order to choose an appropriate image
processing approach and automate DNA microarragénanalysis, one has to understand variations of
input microarray images in terms of (1) the imagmtent including foreground and background
morphology (e.g., grid layout, spot location, shagred size), and intensity information (e.g., spot
descriptors derived from foreground and backgroimtehsities), (2) the computer characteristicsnpiui
digital images (e.g., number of channels, numbdxytds per pixel, file format).

Ideal Microarray | mage:

First, let us define an “ideal” cDNA microarray ig&in terms of its image content. The image content
would be characterized by deterministic grid geameéinown background intensity with zero uncertgint
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pre-defined spot shape (morphology), and consfauitiatensity that (a) is different from the baabgnd,

(b) is directly proportional to the biological ptnenon (up- or -down regulation), and (c) has zero
uncertainty for all spots. While finding such aradl cDNA image is probably a pure utopia, it iscod)
starting point for understanding image variationd possibly simulating them.

Another aspect of an “ideal” cDNA microarray imaggn be expressed in terms of statistical confidelfice
one could not possibly acquire an ideal microafnagge, then a high statistical confidence in mioaa
measurements would be obtained with a very largebmun of pixels per spot (theoretically it would cha
infinity). However, the cost of experiments, thmiliations of laser scanners in terms of image te&wi,
storage of extremely high resolution images anceropecimen preparation issues are the real world
constraints that have to be taken into account.

L I L

MICROARRAY INAGE PROCESSING -
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Figure 6.Microarray data processing workflow. Thiagtam stresses the requirement to archive both raw
and processed data.

I mage-Processing Methods:

The automation of this process is complicated keyuariation of size and position of spots, thetreda
placement of the adjacent grid, and the overallitioms of the array image. Many existing software
packages for microarray image analysis require siegeee of user intervention in this step. Allowursgr
intervention may increase there liability and eesaccuracy of the whole quantization process; hewev
this may make the process unacceptably slow. S¢éomeied packages for grid generation do exist [36],
but all require some limited degree of user intatim, either in locating spots, setting threshplais
making unrealistic assumptions about the regulasftgata (e.g., assuming only circular spots). Aaio
operator independent and reproducible method ipgzed for the automated analysis of gene microarray
images [37] and the algorithm is based on the ergitucture of the images and uses Fourier mettmds
extract this periodic structure as an initial apym@ation of spot locations. This initial addressiisgthen
refined by an iterative method that produces adeul@cations of all spots on the array. In additian
classifier by spot quality is employed in some wafe packages to automate detection of spot-finding
errors and spots of poor quality for further improment of effectiveness. Many current implementation
require the user to specify explicit thresholdsvafious attributes, such as brightness, that separa
acceptable from unacceptable spots. Choosing duedtolds manually for multiple attributes throwgh
extended process of trial and error is time consgnaind may not achieve the desired result. In [88],
novel example- based classifier is implemented ¢gidk whether candidate spots have been found
correctly and are usable for further analysis. Niaehearning techniques are introduced in the dlasso
provide a convenient and powerful way for an iniggbr to specify complex concepts of spots without
explicitly determining classification thresholdsr fanage attribute values. According to the tesg th
automated classification matched their manual ifleatson for more than 95% of candidate spots [38]
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Cellular Neural Network (CNN) Methods:

Currently, with the software package mentioned abdhe time spent on quantitatively processing a
typical microarray fluorescent image is in the oradg minutes. Some researchers think that such
throughput is acceptable for laboratory purposeswéver, it seems rather slow for the very high-atitp
user, such as a pharmaceutical company, that nggiduce tens of thousands of arrays per year.
Furthermore, DNA microarrays are predicted to bemamal diagnostic tool in clinics in the future, chu
like today’s blood test. A low-efficiency analysipproach is sure to impede the progress of miagarr
adoption in this area. Enhancing the processingdspa ideally realizing real-time processing, ésidable.
Microarray analysis by a traditional computer, whgequentially processes images pixel by pixel omby

is very time consuming, but also destroys the parabture of microarray techniques itself. Fortieha

the CNN was recently introduced into microarraylgsia, which promises to provide a breakthrough in
DNA microarray parallel processing and obtain tlemey expression profile in real time. A CNN is an
analog dynamic processor array that reflects ttopgrty: the processing elements interact diresitiiin a
finite local neighborhood. Due to its architectusetwo-dimensional CNN array is widely used to solv
image processing and pattern recognition problemsreover, the parallelism characteristic of this
structure allows one to perform the most computatiy expensive image analysis tasks three orders o
magnitude faster than a classical CPU-based compites approach, thanks to the supercomputing
capabilities of the CNN architecture, makes the l@hbNA chip methodology fully parallel and also
makes the processing phase, until now very timeswmmng, a real-time step. Overall CNN scheme is
described in Figure 7 and 8.

(b)

Figure 7.The CNN scheme: (a) The spatial grid shgwocal connections (b) The circuit of each céli(c
The classical output nonlinear function for each ce

Biomodel-Based Technique:

With the exciting results achieved from Genomigmnal analysis, there also exist several open pnubla

this field. For instance, the prediction accuratyaaharacteristic Genomics location is only aroafg-
80%. The fixed-shape segmentation for microarragges does not reflect the reality of the systerd,aan
adaptive technique is needed to more reliably detpot location and its size in microarray images.
Therefore, more efficient methods are being apptiedsolve these problems, such as singular value
decomposition and template technique, etc. Biombdskd approaches will play an important role & th
future of GSP, since modeling methods come fromattteal physiological and Genomics processes, and
they simulate the underlying dynamic mechanismtlier signal generation. Also, these models have rich
mathematical structures and form the theoreticalsbfor the applications. In [42], a stochastic elod
used to interpret DNA microarray images and to wargheir underlying physical process. The nonlinea
modeling method is applied to analyze the DNA seqaeThese model-based methods have provided new
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viewpoints in Genomics information exploration awill also accelerate this process. Bionic wavelet

transform (BWT) is another example of such a bioetdhsed method for time-frequency analysis. BWT

can realize adaptive signal-dependent 2-D resaiwijustments over the time-frequency plane ratieam

the fixed frequency-dependent resolution in the eleivcase. Further research shows that BWT also
possesses many other features, such as a morentaed signal presentation over the time-frequency
plane, and a better robustness to noise, etc.
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Figure 8.(a) Block scheme of the CNN architecture and opengtrinciple (b) CNN local interaction
between cells (c) Flowchart of the CNN algorithimsrhicroarray analysis (d) CNN-UM chip for DNA
microarray processing

Usage of Multidimensional DSP/DIP Technique:

Until now, two independent strategies have beereld@ed for microarray data analysis. One treats the
array-organized data as a one-dimensional (1-Dg-tlemain signal and uses classical 1-D SP metlwods t
analyze these signals. The second one treats #malbgene expression spots as a contour plot lor co
mapped image and analyzes the data in a 2-D la@je-gattern. Statistical analysis on the color
distribution of the microarray image is currentlymajor interest and tool in microarray data process
Multidimensional (beyond 2-D) analysis will be anet research trend in the Genomics research fald.
instance, in protein engineering research, it igreft interest to reveal the complex 3-D structfréhe
Genomics sequence. Currently, most Genomics Shhitpeks are still static. The four-dimensional
technique will help to detect the real-time dynan@enomics structure change during future drug
experiments. With the application of these multiditsional techniques, it will be possible in theufatfor

us to reveal the underlying Genomics structurefandtion, and their relationship in dynamic sitoat.

Noise Reduction:

Noise reduction is a pervasive issue in DNA micrapanalysis. If a DNA microarray image were aragrr
of spots with a precise size and position locatec ainiform low background, it would constitute exryw
simple problem in terms of image processing. Ithis variation and noise in fluorescent images that
complicate this problem. It is important for usatwalyze the source of noise and to seek effectikgisns.
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The major source of variation and noise on mic@alimages originates from microarray fabrication
machines, the treatment of glass slides, and fhomrece detectors. Despite the use of precise &imtic
machines, spots vary significantly in size and fi@siowing to variations in the amount of DNA orcha
spot and in the location where it is placed. Detectoise includes that from the amplification and
digitization process, such as photon noise, elatraoise, laser light refection, and background
fluorescence. In practice, the natural fluorescesfae glass and any nonspecifically bound DNAdpe
molecules add a substantial noise floor to the anddpis diffuse noise exhibits considerable vatigbin
intensity both within and between small rectangtesitaining individual spots. Microarrays are also
afflicted with discrete image artifacts such ashhigluorescent dust particles, unattached dye,dsdosits
from vaporated solvents, and fibers or other aimbatebris. Such artifacts appear in the vicinitf @£15%

of spots at random, even after a thorough cleaafrifpe slide, and can easily be brighter and soneti
larger than nearby useful spots [38]. Their hetenegus brightness, shape, and size make themdard t
detect and remove automatically, especially inpitesence of spots that are themselves of varié##eand
brightness.

Conclusion

Many DSP and DIP techniques are effectively usetaralyzed for the purpose of Genome Analysis and
DNA Microarrays within last few years. More resdarwork and efforts are required to use DSP
technologies for solving biological problems. Some the major areas of investigation and future
challenges that can be tailored for future resealiobctions in this emerging area are high throughp
Genome Analysis especially in search of structataments of genome and the development of new and
advanced intelligent image processing techniques@h eliminating the noise sources inherent ia th
DNA microarray process and also the developmentaibdr-made image processing methodologies for
speeding up the real-time diagnosis and implemientgtrocedures of the next generation of systena-on-
chip devices.
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