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Abstract

New modeling approaches are needed to tackle the complexity of cell signaling systems. An emerg-
ing approach is rule-based modeling, in which protein-protein interactions are represented at the
level of functional components. By using rules to represent interactions, a modeler can avoid enu-
merating the reachable chemical species in a system, which is a necessity in traditional modeling
approaches. A set of rules can be used to generate a reaction network, or to perform simulations
with or without network generation. Although the rule-based approach is a relatively recent devel-
opment in biology, it is based on concepts that have proven useful in other fields. In this chapter,
we discuss innovations of the rule-based modeling approach, relative to traditional approaches for
modeling chemical kinetics. These innovations include the use of rules to concisely capture the dy-
namics of molecular interactions, the view of models as programs, and agent-based computational
approaches that can be applied to simulate the chemical kinetics of a system characterized by a
large traditional model. These innovations should enable the development of models that can re-
late the molecular state of a cell to its phenotype, even though vast and complex networks bridge
perturbations at the molecular level to fates and activities at the cellular level. In the future, we
expect that validated rule-based models will be useful for model-guided studies of cell signaling
mechanisms, interpretation of temporal phosphoproteomic data, and cell engineering applications.
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Abbreviatons: BEM (bond electron matrix), BNGL (BioNetGen Language), ODE (ordinary dif-
ferential equation), SBGN (Systems Biology Graphical Notation), SBML (Systems Biology Markup
Language)

Introduction

An important aim of systems biology is to understand phenomena that arise from the interactions of
the component parts of cellular regulatory systems [1], such as genes, proteins, and metabolites. Key
components of many regulatory systems have been studied extensively in isolation, which remains
a common approach for investigating cellular regulation. Synthesis of the knowledge gained from
reductionist studies, and accompanying development of systems-level understanding, necessitates
the use of computational models that can account for the complexity of cellular regulatory networks
[2, 3, 4, 5, 6]. Models are useful because they can make testable predictions and elucidate the logical
consequences of the assumptions upon which a model is based. Models can advance understanding
in other ways [7], for example, by consolidating available knowledge, visualizing this knowledge to
make it more accessible, and revealing knowledge gaps. For a model to be useful, it need not capture
all known mechanistic details, but the level of detail included in a model should be suitable for the
system of interest and the questions that a modeler intends to ask.

Here, we focus on cell signaling systems. These systems consist of interacting molecules that
coordinate responses to changes in the environment (signals). Aspects of these responses may not
always be possible to predict using intuition alone. Indeed, molecularly targeted therapies, such as
RAF inhibitors for cancer treatment [8], may lead to unexpected and even harmful outcomes due to
complex repercussions emanating from perturbed molecular states. To better understand how cell
signaling systems process information and respond to stimuli, we need mathematical/computational
models that capture the chemical kinetics of molecular interactions in these systems. These physical
interactions have been found to be dynamic [9, 10], regulated (viz., protein-protein interactions that
are affected by post-translational modifications [11]), and mediated by modular components (e.g.,
domains and linear motifs [12]). Thus, it seems worthwhile to develop models that can account for
these mechanistic details.

However, mechanistic details of protein-protein interactions in cell signaling systems give rise to
at least two significant challenges for modelers. The first challenge is size: a signaling system typically
contains numerous proteins [13]. The second challenge is combinatorial complexity [14, 15]: a protein
may participate in multiple interactions and undergo post-translational modifications at multiple
sites. As a result, a large number of chemical species can potentially be populated. Traditional
modeling approaches, such as those indicated in Fig. 1, are poorly suited to cope with combinatorial
complexity because they require enumeration of every reachable species. An alternative approach
more suited for modeling of cell signaling systems, and other types of biochemical systems, is that of
rule-based modeling, which is distinguished from traditional modeling approaches in several ways.
Here, we review key innovative features of the rule-based modeling approach. It is a method of
systems biology that is likely to grow in importance in the future, in part because of the number of
sophisticated software tools now available to support it. For example, see [16, 17, 18, 19, 20, 21, 22,
23, 24]. There is also a large body of knowledge available about a number of cell signaling systems
and a need to formalize this knowledge.
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Fig. 1 Traditional modeling approaches. For well-mixed systems with large population sizes (i.e., populations that
are large enough for concentrations to be continuous), ordinary differential equations (ODEs) can be used. For well
mixed-systems with small population sizes, kinetic Monte Carlo (KMC) methods (e.g., Gillespie’s method) may be
more appropriate. If the rate of mixing in a system is slower than the rate of chemical reactions, spatial effects can
be expected to be important. In these cases, partial differential equations (PDEs) and Brownian dynamics (BD)
can be used for systems with large and small population sizes, respectively. For each of these traditional modeling
approaches, there is a corresponding rule-based approach. BioNetGen [16] and Smoldyn [17] can perform ODE-based
and KMC-based simulations. Other simulators, including DYNSTOC [18], KaSim [19], NFsim [20], and RuleMonkey
[21] can also perform KMC-based simulations. BNG@VCell [22] and Simmune [23, 24] can perform PDE-based
simulations. Smoldyn [17] can also use BD to model diffusion of molecules.

To illustrate the size and combinatorial complexity of a well-studied cell signaling system, let
us consider a subset of the proteins involved in signaling via the epidermal growth factor receptor
(EGFR). Specifically, let us focus on 21 proteins included in the model of Chen et al. [25]; it is
worth noting that the NetPath database lists over 400 proteins involved in EGFR signaling [13].
Based on information available in public databases, on average each of the 21 proteins contains
8.2 sites of phosphorylation [26], 2.6 domains [27], and 0.6 motifs [28], and has 6.5 interaction
partners among the other 20 proteins [29]. These statistics are summarized in Fig. 2. Enumeration
of every possible species of interest that could arise in this subsystem would be impractical, if not
impossible, without the use of simplifying assumptions to reduce combinatorial complexity. For
example, consider Gabl, Raf-1, and EGFR. According to Phospho.ELM, these proteins have 14,
21, and 35 sites of phosphorylation, respectively [26]. As a result, Gabl has 2'* = 16, 384 possible
phosphorylation states, Raf-1 has 22! ~ 2 x 10° possible phosphorylation states, and EGFR has
235 ~ 3.4 x 10'° possible phosphorylation states.

The challenge of combinatorial complexity can be addressed using the rule-based modeling ap-
proach [30, 31, 32]. In this approach, proteins are represented as structured objects whose compo-
nents can interact independently of one another unless otherwise specified. Contextual constraints
on protein-protein interactions can be captured in rules, which include necessary and sufficient
conditions for firing of reaction events. One can view reactants as satisfying conditions required at
specific sites, as specified in rules. Fewer simplifying assumptions are typically required and a more
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Fig. 2 Sites, modifications and interactions of proteins involved in EGFR signaling. Gene names of the proteins
considered here are EGF, NRG1, EGFR, ERBB2, ERBB3, ERBB4, SHC1, GRB2, SOS1, GABI1, PIK3RI, PIK3CA,
PDPK1, AKT1, KRAS, RASA1, RAF1, MAP2K1, MAPK1, PTEN, and PTPN11. A. Domains considered are those
documented in the Pfam database [27]. B. Similarly, motifs were obtained from ELM [28]. C Phosphorylation sites
were obtained from Phospho.ELM [26]. D Interaction partners were obtained from HPRD [29].

comprehensive picture of a signaling system can be developed that is more aligned with mechanistic
understanding.

In this chapter, we discuss innovations of the rule-based modeling approach. The first innovation
that we discuss is the use of rules, which builds on concepts that have proven useful in other fields.
A second innovation is the use of formal languages to specify models, allowing models to be viewed
as programs. A third innovation is network-free algorithms for stochastic simulation of agent-based
models consistent with the law of mass action. These algorithms are needed for mechanistic modeling
of cell signaling on a large scale.

1 Use of rules to represent molecular interactions in cellular and
molecular biology

The network motifs (e.g., the writer, reader, eraser motif, which consists of tyrosine phosphorylation,
SH2 domain binding, and dephosphorylation [33]) and subsystems that constitute a signaling system
may each involve only a few different proteins. However, interactions among these proteins may give
rise to far larger numbers of distinct chemical species through combinations of the different possible
interactions and modifications [34, 14, 15, 35]. To capture these effects, a number of tools and
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modeling frameworks have been developed that use rules to represent molecular interactions at the
level of molecular components, or sites.

Among the first software tools developed for rule-based modeling of biological systems were
OLIGO [37] and STOCHSIM [38, 39]. OLIGO is capable of generating reaction networks for assembly
of oligomeric complexes, but does not capture regulation of interactions through post-translational
modifications. This capability is provided in STOCHSIM, where proteins are represented as multi-
state entities. A protein is encoded as a set of “flags” that represent binding or modification states.
During a simulation, molecules are selected randomly and a list of rules is used to determine whether
a reaction can occur between them (i.e., whether states can change). Although STOCHSIM can be
used to effectively capture changes in state, it is poorly suited for explicitly tracking the connectivity
of molecular complexes.

Another early approach, developed by Regev et al. [40], uses m-calculus to model a cell signaling
system as a concurrent computational system. In this approach, molecules and sites are treated as
parallel processes that can behave independently of one another, in accordance with a set of rules.
Stochastic m-calculus [41] and tools implementing this method, such as BioSPI [42], BlenX [43], and
SPiM [44, 45], enable simulation of biochemical kinetics. However, the use of m-calculus introduces
artifacts from the study of concurrency, such as directionality of communication.

An early example of a non-trivial rule-based model is that of Goldstein et al. [46] and Faeder et
al. [47]. This model is equivalent to 354 ODEs with 3,680 distinct right-hand-side terms, making
it tedious to specify using traditional approaches. The model was used to investigate early events
in signaling via the high-affinity receptor for IgE. The rule-based approach has since been applied
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Fig. 3 A model of scaffold-ligand interactions traditionally formulated. Ligands A and B bind non-cooperatively
to scaffold S. A. A list of reactions with associated rate constants for forward and reverse reactions. A, B, and S
represent unbound proteins. C'4 and Cp represent S bound to A and B, respectively. C4p represents the ternary
complex of S, A, and B. B. A reaction scheme, i.e., an organized layout of the reactions of Panel A. C. An SBGN
(Process Diagram) [36] representation of the model of Panels A and B. D. The model in the form of a system of
ODEs: the variables z1, ..., x¢ represent the concentrations of S, A, B,C4,Cp, and C4p, respectively.
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extensively to study immunoreceptor signaling [48, 49, 50, 51, 52, 53, 54, 55]. However, these and
other applications are not the main subject of this chapter; instead, we focus on methodology.

To demonstrate the use of rules, let us consider a system in which a scaffold, S, may bind ligand
A with a forward rate constant of k4 4 and a reverse rate constant of k_ 4. The scaffold S may also
independently bind ligand B with a forward rate constant of kg and a reverse rate constant of
k_p. Thus, the system has six species: S, A, B, a complex of S and A, a complex of S and B, and a
ternary complex of S, A, and B. Fig. 3 illustrates traditional formulations of a model of this system.
Panels A and B show the reactions of the model as a list and as a reaction scheme, respectively.
Panel C is a visualization of the model using the conventions of Systems Biology Graphical Notation
(SBGN) [36]. Panel D shows the six ODEs of the model that follow from mass-action kinetics. The
ODEs characterize the change with time of each of the six concentrations for a well-mixed reaction
compartment and continuous population levels (i.e., large numbers of molecules).
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Fig. 4 A rule-based model of scaffold-ligand interactions. A. Two rules visualized using the graphical conventions
of Faeder et al. [56]. Components not affecting an interaction are omitted from a rule. Proteins are represented as

simple colored graphs. The “color” of a graph is the name of the protein that the graph represents. By convention,
boxes enclose vertices of the same color. Bonds are represented as edges, which connect vertices that represent
cognate binding sites. A BioNetGen Language (BNGL) encoding of the first rule is S(a) + A(s) <-> S(a!1).A(s!1)
kpa,kma. A BNGL encoding of the second rule is S(b) + B(s) <-> S(b!1).B(s!1) kpb,kmb. B. The model visualized
as an extended contact map [57]. Boxes represent proteins and components. A double-headed arrow represents a
noncovalent bond. Contact maps can be generated using RuleBender [58]. C. An alternative rendering of a contact
map, consistent with conventions of Danos et al. [31].

A rule-based formulation of the same model is illustrated graphically in Fig. 4. This model can be
encoded in a number of rule-based modeling languages. As we will discuss, the most commonly used
languages for rule-based modeling are BioNetGen Language (BNGL) [59, 16] and Kappa [60, 31, 61],
and we will use shared conventions of these languages in our description of the model. The scaffold
is represented as a structured object, S, with two components, a and b. These components are
binding sites that recognize ligands A and B, respectively. Ligand A contains a component s that
binds a in S. Similarly, ligand B contains a component s that binds b in S. Fig. 4A illustrates two
rules that capture the interactions among these molecules. The first rule specifies the conditions
necessary for S to bind A: S must have an unbound component a and A must have an unbound
component s. We assume that the state of site b does not affect the interaction between S and A,
so it is omitted from the rule. If b could affect the interaction between S and A (e.g., through an
allosteric mechanism), it would be possible to express such an effect by appropriate modification of
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Fig. 5 Illustration of an extension of the scaffold model of Figs. 3 and 4 to allow the scaffold to dimerize. A. A
partial reaction scheme showing the ten additional species that arise when scaffold dimerization is allowed. B. An
example of an equation from the scaffold model of Fig. 1D that must be modified if scaffold dimerization is allowed.
The terms that must be added to account for scaffold dimerization are highlighted. C. The rule that is added to the
rule-based model of Fig. 2A to account for scaffold dimerization. A BNGL encoding of this rule is S(s) + S(s) <->
S(s!1).8(s!'1) kps,kms

the rules that comprise the model. The second rule specifies the conditions necessary for S to bind
B, which are similar to those of the first rule. These two rules represent the same set of interactions
as the eight unidirectional reactions and the six ODEs shown in Fig. 3. Fig. 4B shows the model
visualized as a contact map, which in general provides an illustration of all molecules, components,
modifications (none in this model) and interactions that are included in a model. Fig. 4C is an
alternative rendering of the contact map.

From the simple example given above, the benefits of the rule-based approach may not be evident.
However, consider addition of one more interaction to the model: dimerization of the scaffold protein.
This added interaction gives rise to ten additional species (Fig 5A). Thus, ten additional ODEs
must be added to capture this one additional interaction. Furthermore, the original six equations
must be modified to account for additional reactions that each of the original six species can
now undergo. Fig. 5B shows a modified equation from the original model; the highlighted terms are
added to account for interactions that become possible if the scaffold dimerizes. In contrast, scaffold
dimerization can be incorporated into a rule-based model through single addition of the rule of Fig.
5C without modification of the rules of Fig. 4A. Thus, rule-based modeling is more extensible than
traditional modeling for chemical kinetics. It is worth noting that the rule-based approach has been
used to study scaffold effects in cell signaling [62, 63]. A complete specification of the rule-based
model in which scaffold molecules may dimerize is provided in Fig. 6, wherein a BNGL [59, 16]
encoding (Listing 1) and an equivalent Kappa [60, 31, 61] encoding (Listing 2) are given. Listing 1
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can be used to generate a MATLAB (The MathWorks, Natick, MA) definition of a system of ODEs
(i.e, a traditional model specification) by adding the command “writeMfile();” to the end of the
listing (i.e., in the actions block of the code, which is not shown). Listing 1 can be processed by
BioNetGen [59, 16] to generate an M-file consisting of 113 lines of code. The M-file defines a system
of 16 ODEs with 60 different right-hand-side terms. In contrast, the model specification of Listing 1
in Fig. 6 consists of only three rules and three molecule type definitions (molecule type definitions
are not shown in Fig. 6), as well as specifications of parameter values and initial conditions.

Listing 1 Listing 2

begin molecule types %agent: S(s,a,b)

S(s,a,b) %agent: A(s)

A(s) %agent: B(s)

B(s) %init: 1le5 * S(s,a,b)

end molecule types $init: le5 * A(s)

begin seed species %$init: le5 * B(s)

S(s,a,b) S init S(a),A(s) ->S(a'!l),A(s!l) @0.1
A(s) A init S(a!l),A(s!l) ->S(a),A(s) @0.1
B(s) B _init S(b),B(s) ->S(B!1),B(s!l) @0.1
end seed species S(B!1),B(s!l) ->S(b),B(s) @0.1
begin reaction rules S(S),S(s) ->S(s!l),S(s!l) @0.1
S(a) + A(s) <-> S(a!l).A(s!l) kpa,kma S(s!l),S(s!l) ->S(S),S(s) @0.1
S(b) + B(s) <-> S(b!1l).B(s!l) kpb, kmb

S(s) + S(s) <-> S(s!'l).S(s!l) kps,kms

end reaction rule

Fig. 6 The model composed of the rules illustrated in Fig. 4A and 5C encoded in two formal languages, the
BioNetGen Language (BNGL) and Kappa. Listing 1. BNGL-encoded model specification. This excerpt from a
BioNetGen input file illustrates the definition of molecule types, seed species (initial conditions for a simulation), and
rules. Lines of code for setting parameter values and actions are not shown. The model specification can be simulated
using different methods available in BioNetGen [59, 16] or other BNGL-compliant software tools [22, 18, 20, 21].
Note that the first rule corresponds to the top rule of Fig. 4A, the second rule corresponds to the bottom rule of
Fig. 4A, and the third rule corresponds to the rule of Fig. 5C. Listing 2. Kappa-encoded model specification. This
model specification, which is equivalent to Listing 1, can be processed by KaSim [61].

Although the rule-based modeling approach is a relatively recent development in biology, similar
concepts have long been used in other fields. Below, we briefly discuss related approaches that have
been developed for a variety of problems in physics, chemistry, and computer science. The success of
this approach in other fields suggests that it will also be useful for studying the systems of cellular
and molecular biology.

1.1 Precedents in physics

The Ising model was originally developed to study ferromagnetism: the emergence of a magnetic
moment through alignment of atomic spin states. The model, which has a number of other applica-
tions, involves a lattice of sites, each of which has one of two states, e.g., spin-up or spin-down. The
state or spin of a site can be reversed. The probability of a site’s spin reversing depends on the spin
states of its neighbors. The Ising model can be simulated using a number of methods. In the classic
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Metropolis method [64], a site (if spin is flipped) or pair of sites (if spins are exchanged) is first
selected at random. For the purposes of this discussion, we assume that a single site is chosen. The
probability of spin reversal is then computed based on temperature and the configuration of a site’s
neighbors. This probability is then compared to a random number. If the random number is less
than or equal to the probability of flipping, the spin of the site is reversed and time is incremented.
If the random number is greater than the probability of flipping, spin is not reversed (i.e., there is
a null event) and time is incremented. A drawback of this method is that a high frequency of null
events causes simulation to slow significantly.

A B
. Number of spin-u

Class Spin nearest neig?wborg S 7 3 9 8
1 Up 4 6 3 3 8 4
2 Up 3
3 Up 2
4 Up 1 3 2 8 8 2
5 Up 0
6 Down 4
7 Down 3 7 4 7 4 3
8 Down 2
9 Down 1
10 Down 0 9 8 4 8 9

Fig. 7 Classes used in KMC simulation of the Ising model. A. Scheme used for classification of lattice sites. A site
is classified based on its spin and the number of its nearest neighbors that are spin-up. B. In this example, white
squares are used for spin-up sites and dark squares are used for spin-down sites. Class numbers are shown on squares
in accordance with the scheme of Panel A. The lattice is assumed to have periodic boundary conditions, i.e., the
lower boundary is replicated above the upper boundary and the left boundary is replicated after the right boundary.

An alternative approach is the n-fold way [65], a kinetic Monte Carlo (KMC) method [66], in
which null events are avoided. In this algorithm, a site is classified based on its spin state and the
spin states of its nearest neighbors. A classification scheme for a square lattice is shown in Fig.
7A. Use of this scheme is illustrated in Fig.7B; white squares represent spin-up sites, gray squares
represent spin-down sites, and the number of a square indicates its class. Rather than selecting a
site randomly, the probability of a site being selected is related to the probability of its spin flipping.
Once a site is selected, its spin is flipped immediately. Thus, null events do not arise. The n-fold
way for the example of Fig. 7 consists of the following steps:

1. Assign each site to one of ten possible classes.
2. Choose a class r € [1, 2,..., 10]. A class is chosen by first calculating cumulative rates @1,

Q27' s 7Q10a where
T
Qr=) P (1)
j=1
In the above expression, n; is the number of sites in class j and P; is the probability of spin

reversal for a site in class j. Then, a random number R;, uniformly distributed between 0 and
(10, is chosen, and a class r is chosen such that Q,._1 < R <Q,.



10 Lily A. Chylek, Edward C. Stites, Richard G. Posner, and William S. Hlavacek

3. Randomly choose a site ¢ within 7.
4. Flip the spin of site .
5. Update classes and the rates @1, @2, ..., Q19 based on the new configuration of the lattice.
6. Increment time. The time step is calculated as
Ap - Tloga Ry 2)
Q10

where Rs is a random number and 7 is the expectation value (i.e., the average time per spin
flip). Recall that Q1¢ is the overall rate of spin flipping.

This procedure applied to stochastic simulation of chemical reaction systems is known as Gillespie’s
method [67, 68, 69], which is discussed below. The similarity between the n-fold way and the rule-
based modeling approach lies in the use of classes. In the n-fold way, a class defines a set of lattice
sites that have a particular spin state and configuration of neighbors. Sites within a class all have
the same probability of undergoing a transition. Similarly, a rule defines a class of reactions whose
reactants share certain local component properties and reactions that are defined by a rule are
taken to have the same kinetic parameters.

1.2 Precedents in chemistry

In modeling chemical reactions, matrices and matrix operations can serve as useful abstractions for
representing molecular structures and functional group transformations. Ugi and co-workers devel-
oped a formalism in which of a bond electron matrix (BEM) is used to represent the atoms present
in a molecule (or set of molecules) and the sharing of electrons between them. In this formalism, a
chemical reaction is viewed as converting a BEM into an isomeric BEM by redistributing valence
electrons. A BEM for n atoms contains n rows and columns. The ith row and column correspond
to the ith atom of the molecule or set of molecules. The matrix entry b;; is the number of bonds
between atoms ¢ and j and the diagonal matrix entry b;; is the number of free valence electrons of
atom 4 [70]. (When applied to reactions on surfaces, b;; can also represent the number of electrons
backdonated to the absorbate.) Electrons are redistributed (i.e., a chemical reaction is executed) by
addition of a reaction matrix R to a reactant matrix B. An entry in a reaction matrix corresponds
to the number of bonds formed (positive numbers) or broken (negative numbers) between atoms
as a result of a reaction. The matrix E = B + R represents the product molecule(s) of a reaction.
The BEM formalism can be used to generate reaction networks and elucidate possible synthetic
routes between reactant and target molecules [71, 72, 73, 74]. This method has also been used for
time-scale analysis of rule-based models in which reactions within the same class have different
kinetic parameters [75].

BEMs have been applied by Broadbelt and co-workers to investigate reaction mechanisms for
heterogeneous catalytic chemistry [76] and novel metabolites and pathways in metabolic networks
[77, 78]. The assumption underlying the latter is that the large number of reactions found in a
metabolic network can be represented by a smaller number of rules for common functional group
transformations in metabolism [77, 79]. Functional groups can be encoded as BEMs and associated
with reaction matrices. An input molecule can also be encoded as a BEM and compared to the BEM
of a functional group to determine whether the molecule contains the functional group necessary to
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Fig. 8 Bond electron matrices and matrix operations can be used to model functional group transformations in
organic chemistry. A. A general Fischer esterification reaction between a carboxylic acid and an alcohol. A box is
placed around functional groups that participate in the reaction, and a jagged line is used to mark the bonds that are
broken. B. B is a bond electron matrix for the reactants. Rows and columns are labeled to correspond to labeling of
atoms in Panel A. R is a reaction matrix showing the bonds that are broken and formed as a result of esterification.
E'is a bond electron matrix for the products. C, D. Two instances of rule application. Functional groups are enclosed
within a box and atoms are numbered to correspond to panels A and B.

undergo a reaction. If so, a reaction matrix is added to the appropriate part of the reactant matrix
to yield a matrix for a product molecule or set of molecules. If the product is a chemical species that
has not yet been generated, it is evaluated to determine whether it can undergo further reactions. A
maximum number of generations can be specified as a stopping criterion. In this way, a set of rules
can be identified that can generate potentially novel reaction paths from reactants to products. This
approach has been complemented by thermodynamic studies to evaluate the feasibility of possible
reaction paths [78].

An example of the use of BEMs to model a chemical reaction is shown in Fig. 8. Panel A shows
a rule that specifies the functional groups involved in an esterification reaction. Panel B shows the
same functional groups in the form of BEMs, with atoms numbered to correspond to Panel A.
Panels C and D show two instances of the rule acting on specific molecules.

1.3 Precedents in computer science

A concurrent computational system is one in which multiple processes are executed in parallel
and can potentially influence each other. Interaction among processes can lead to many possible
outcomes. The complexity of concurrent systems necessitates a language that can be used to analyze
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and reason about a system’s behavior. This need is addressed by process algebras [80, 81]. Here, we
focus on m-calculus, a process algebra that has been intensely studied in computer science and that
has also been applied to model biological systems, as noted earlier. A notable feature of m-calculus
is that it allows explicit representation of communication channels and allows system components
to be modeled independently.

A
B Pl:=a<x>R+b<y>T

P2::= .0
bl a(u)

P3::=bv).0
P2 //@ +@\\ P3 P4 ::=c(w).0

of RO Su=PI|P2|P3|P4

P4

©

C S§':=R|0|P3|P4
D S'=:=T|P2|0|P4

Fig. 9 The process algebra m-calculus is used to model concurrent computational systems. A. System S contains
processes P1, P2, P3, and P/. P1 can communicate with P2 using channel a. P! can communicate with P8 using
channel b. P4 can receive information along channel ¢; however, there is no complementary channel in S. B. Repre-
sentation of the system in mw-calculus. C. The system that S reduces to if PI sends a message on channel a. D. The
system that S reduces to if PI sends a message on channel b.

An example of the use of m-calculus is shown in Fig. 9. In w-calculus, “+” designates choice,
“” designates sequence, and “|” designates processes executed in parallel. The symbol 0 designates
an inert process (i.e., a process that does nothing further). A process can contain one or more
channels, which can be used to communicate with other processes. Channels that can communicate
with one another are referred to as complementary channels. Complementary channels share the
same name, and prefixing conventions are used to distinguish an input channel from an output
channel. For example, a<z> is an output channel named a that sends a piece of information
named z. A complementary input channel can be designated a(u). When a(u) receives information,
the name received (e.g., ) becomes bound to w.

In the example of Fig. 9, P1 is a process that can send x on channel a. P then behaves as R.
Alternatively, PI can send y on channel b and then behave as T. In the first scenario, P1 becomes R,
and P2 uses channel a to receive z from PI. The message x becomes bound to u. Then, P2 becomes
0. The processes P3 and P4 are unaffected by this communication event. As a result, P1|P2|P3|P4
becomes R|0|P3|P4. Similarly, if P1 chooses the second option, the system becomes T'|P2|0|P4.

The similarity between m-calculus in computer science and rule-based modeling approaches in
systems biology lies in modularity. In a rule-based model, one may specify an interaction using only
the sites that participate in the interaction. In 7w-calculus, one may likewise specify the effect of
communication using expressions that only include the relevant (sub)processes and channels. For
example, in the system of Fig. 9, communication between P1 and P2 or P3 is expressed without
the inclusion of P/, which does not communicate with the other processes. Rule-based modeling
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approaches and process algebras share context-free properties, meaning that context can be omitted
from a rule. Omitted contexts have no affect on the transformation specified in a rule, so that the
rule can be applied in multiple contexts that need not be specified by the modeler. However, in
some cases it is necessary for rule application to be restricted by context (e.g., when a reaction can
only occur intramolecularly). In these cases, features of rule-based modeling languages, such as the
dot-plus notation of BNGL (see Section 2), can be used to impose contextual constraints. Different
but functionally equivalent notation is available in Kappa.

2 Models as programs

A model can be formalized using mathematical expressions. A different approach is to formalize a
model as an executable program, which can potentially facilitate analysis [61], extensibility [82], and
high-level abstractions [83, 84, 85]. A number of languages for modeling biological systems have been
developed, including languages designed for specification of rule-based models. As we will discuss
below, BNGL [59, 16] and Kappa [60, 61] are the most widely used rule-based modeling languages.
A BNGL-encoded model and an equivalent Kappa-encoded model can be found in Listings 1 and
2 of Fig. 6, respectively.

A model, once specified using rules, may be simulated in a number of different ways without
modification of the model specification per se. The model of Listing 1 can be simulated determin-
istically with the command simulate_ode, or stochastically with simulate_ssa. (For a complete
description of BNGL syntax, see Faeder et al. [16].) Thus, model specification is separated from
simulation. For an example of a rule-based model simulated in multiple ways, see Lipniacki et al.[86].

Methods for simulating rule-based models include generate-first, on-the-fly, and network-free
methods. In generate-first methods, rules are iteratively applied to a set of species to generate new
reactions and new species. This process continues until the full network is generated (i.e., no new
species are generated) or until a stopping criterion is satisfied [87]. The dynamics of the network can
then be simulated through numerical integration of a corresponding system of ODEs or a stochastic
simulation algorithm. In on-the-fly methods, a network is generated as simulation progresses rather
than before simulation begins [87, 88]. When a species is first populated, rules are applied to it, and
new reactions and species may be generated. This approach can be useful if a set of rules implies
a large number of possible species, some of which might never become populated. However, this
method still relies on a computer’s memory to store the network, which can be a limitation. The
step of network generation is avoided entirely with network-free methods, which are discussed in
more detail in the next section. In short, in a network-free method, all components of a system
are tracked individually and rules are used directly to advance the state of a system by modifying
states of components. Thus, network-free methods are particle- or agent-based.

A number of software tools compatible with BNGL and/or Kappa implement the simulation
methods described above, in addition to providing other capabilities. These tools are listed in Table
1. Other languages that may be used to specify rule-based models include cBNGL, a form of BNGL
that allows for explicit representation of compartments [89]; ML-rules, designed for multi-level rule-
based modeling [90]; and SBML-multi, which is in development. See the Systems Biology Markup
Language (SBML) website (http://sbml.org).

BNGL and Kappa are closely related but differ in several details. One difference is the treatment
of indistinguishable sites. In BNGL, a molecule is allowed to have two or more sites that have the
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Tool Language Reference
BioNetGen BNGL [59, 87, 16]
BNG@VCell BNGL 22

little b little b 91
Smoldyn/libMoleculizer| BNGL/Kappa-like| [88, 17]

SSC SSC 92
DYNSTOC BNGL 18

NF'sim BNGL (93, 20]
RuleMonkey BNGL [21]

KaSim Kappa (61, 19]
SRSim BNGL 94
RuleBender BNGL 58
RuleStudio Kappa 19
RuleBase BNGL and Kappa 95
GetBonNie BNGL 96
BioLab BNGL 97
complx Kappa 19
PySB BNGL and Kappa 85

Table 1 Software tools that use BNGL and/or Kappa. Capabilities: BioNetGen is capable of network genera-
tion, ODE-based simulation, and generate-first and on-the-fly stochastic simulation. BNG@VCell has the addi-
tional capability of PDE-based simulation. The little b environment uses BioNetGen to perform network generation.
Smoldyn/libMoleculizer and SSC can perform particle-based reaction diffusion calculations. BioNetGen can convert
BNGL-specified rules into SSC format. DYNSTOC, NFsim, and RuleMonkey perform network-free simulation. KaSim
performs network-free and ODE-based simulations. SRSim combines rule-based modeling with atomistic modeling
(i-e., molecular dynamics simulation). RuleBender and RuleStudio are modeling interfaces, and RuleBender provides
visualization capabilities. RuleBase and GetBonnie are model databases. BioLab is a model-checking tool, complx
is a tool for static analysis, and PySB is tool for model building and analysis. Other software tools for rule-based
modeling that do not use BNGL or Kappa include ALC [98], ANC [99] , BIOCHAM [100], BioSPI [40] , BlenX4Bio
[101], CplexA [102], Meredys [103], ML-Rules [90], Moleculizer [88], Pathway Logic Assistant [104] PottersWheel
[105], Simmune [23, 24], and StochSim [39].

same name. Such sites are taken to be indistinguishable. This capability is useful for molecules such
as an IgG or IgE antibody, which contains two antigen-combining sites that are essentially identical.
A bivalent antibody can be captured in BNGL with a molecule type definition such as IgE(Ag,Ag).
In contrast, Kappa requires that every site have a unique name. Thus, the same molecule would
necessarily require a definition of the form IgE(Agl,Ag2).

Reaction rules in BNGL constrain the molecularity of reactions using “dot-plus” notation. This
notation does not exist in Kappa; however, equivalent distinctions can now be made through other
conventions [106].

The dot-plus notation is used to distinguish molecules that are part of the same chemical species
(i.e., molecules that are directly or indirectly connected) from molecules that are part of separate
species (i.e., not connected). For example, the following rule states that a bond forms between
molecules L and R.

R(1) + L(r) -> R(1!'1D).L(r!'D) (3)

The “+” sign specifies that the two reactant sites must be part of separate species for the rule to be
applied. Thus, the rule defines only bimolecular association reactions. In general, the molecularity
of a reaction is 1 + p, where p is the number of “+” signs on the left-hand-side of a rule. In contrast,
the following rule states that a bond forms between molecules L and R only when they are part of
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the same species.
R(1).L(r) -> R(1!'1).L(xr!'1) (4)

The absence of a “+” sign is an application condition of the rule, which indicates that the rule
generates only unimolecular reactions. This rule defines reactions that form intramolecular bonds.
The dot-plus notation of BNGL allows a modeler to not only impose molecularity constraints
but also specify that a pair of molecules are connected without explicitly specifying connectivity.
For example, to obtain the number of complexes that contain two receptors, one may specify an
observable R() .R(), which encompasses all complexes that contain at least two receptors.

3 Agent-based modeling consistent with the law of mass action

Traditional models are usually simulated via population-based methods, which require explicit
tracking of all potentially populated chemical species. A rule-based model can also be simulated
with population-based methods; however, combinatorial complexity can give rise to a large num-
ber of species, which makes the approach impractical or, in some cases, impossible. An alternative
method is network-free simulation. Algorithms for network-free simulation are agent-based simu-
lation protocols consistent with the law of mass action. Agent-based models are used in a variety
of fields [107], and most algorithms for agent-based simulation are not guided by physicochemical
principles. Thus, the innovation of network-free methods is that agents behave according to rules
that recapitulate chemical kinetics.

To illustrate agent-based simulation of a rule-based model, let us consider a model of a bivalent
ligand and a bivalent cell-surface receptor (Fig. 10). The ligand contains two identical, independent
sites that can bind receptors. The receptor contains two identical, independent sites that can bind
ligands. Interactions between ligands and receptors can give rise to chains (i.e., linear aggregates)
and rings (i.e., cyclic aggregates). The two molecule type definitions and three rules that form this
model are shown in Figs. 10A and 10B, respectively.

The rate for a free ligand binding a free receptor site (Fig. 10B, Rule 1) is given by the following
equation [108]:

m :4/€+1FL(NR—NB) (5)

where k41 is the forward rate constant associated with the rule, Fy, is the number of free ligands,
Npg, is the number of receptors, and Np is the number of bonds. The statistical factor of four arises
from the two identical binding sites per receptor and two identical binding sites per ligand.

The rate of dissociation of ligand from receptor (Fig. 10B, Rules 1, 2, and 3), including breaking
of a cyclic aggregate, is proportional to the number of ligand-receptor bonds [108, 109]:

Nir = koffNB (6)

We assume that a single dissociation rate constant, k.g, applies for all dissociation reactions.
The rate for a tethered ligand binding a receptor site that is not part of the same complex as
the ligand (Fig. 10B, Rule 2) is given by the following equation [108]:
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Ligand Rule 1

oG

—_— Rule 2
Receptor

R

oo Rule 3

—

Fig. 10 A rule-based model for multivalent ligand-receptor binding. A. Molecule type definitions for a bivalent
ligand and bivalent receptor. B. Rules for interactions between a bivalent ligand and a bivalent receptor. Note that
the receptor R contains two identical sites (Panel A), but only one site is shown in Rules 1-3 (in accordance with the
conventions of Faeder et al. [56]) because we assume that the bound state of the second site does not affect interactions
represented by these rules. Rule 1 characterizes binding of a free ligand to a receptor. Rule 2 characterizes binding
of a tethered ligand to a second receptor, thereby cross-linking a pair of receptors. Rule 3 characterizes ring closure
and opening. The reactant sites of Rule 3 are required to be (indirectly) connected (i.e., they must exist within the
same complex). Rules 2 and 3 differ on their left-hand sides. The plus sign in Rule 2 indicates that the rule defines
reactions with molecularity of 2, whereas the absence of a plus sign in Rule 3 indicates that the rule defines reactions
with molecularity of 1.

Na
n2=ky2 Y li(vsNg — Np —17) (7)

=1

where N4 is the number of aggregates, [; is the number of free ligand sites in the ith aggregate,
and r; is the number of free receptor sites in the ith aggregate.
The rate for ring closure (Fig. 10B, Rule 3) is given by the following equation:

Na lﬂ"i
s =kis ) I (8)
i=1 "

The rate constant for ring closure can be taken to be inversely proportional to the length of a
chain [109]. Here, we assume that rings of size one (i.e., containing one ligand and one receptor)
are prohibited, and that k3 is the rate constant for closure of a chain that yields a ring of size two
(i.e., containing two ligands and two receptors). L, is proportional to the length of a chain. For a
ring of size two, we take L; = 1.

Information about rates is used by network-free simulation algorithms to select rules to apply.
Sequential rule application produces a system trajectory. Fig. 11 shows an example of a trajectory
in a network-free simulation of the model of Fig. 10. It is worth noting that Rule 1 is executed
twice, in Panel B and Panel F. The two instances represent different reactions, but both reactions
are captured by the same rule. A rule can be viewed as a generalized reaction, and algorithms for
network-free simulation can be viewed as generalizations of Gillespie’s method, which we briefly
present below before reviewing different network-free algorithms reported in the literature.
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Fig. 11 An example trajectory in agent-based simulation of the model of Fig. 10. Each site is labeled with a unique
number because sites are tracked individually. Reaction rates are calculated using Eqns. 5-8. A. The initial state of
the system contains three free ligands and three free receptors. B. At time 71, Rule 1 is fired and a ligand binds a
receptor. C. Between times 71 and 72, the system contains two free receptors, two free ligands, and a ligand-receptor
complex. D. At time 72, Rule 2 is fired and a pair of receptors are cross-linked. E. Between times 7o and 73, the
system contains two free ligands, one free receptor, and a complex of two receptors and one ligand. F. At time 73,
Rule 1 is fired and a ligand binds a receptor. This reaction differs from the instance of Rule 1 in Panel B because
the receptor that undergoes reaction is already part of a complex. G. Between times 73 and 74, the system contains
one free ligand, one free receptor, and a chain of two ligands and two receptors. H. At time 74, Rule 3 is fired and

a ring or cyclic aggregate forms. I. Between times 74 and 75, the system contains one free ligand, one free receptor,
and a cyclic aggregate of two ligands and two receptors. J. At time 75, the reverse of Rule 3 is fired and the cyclic
aggregate is transformed into a chain or linear aggregate. K. Between times 75 and 7¢, the system contains one free
ligand, one free receptor, and a chain of two ligands and two receptors. This state is identical to the state of Panel

G.

3.1 Gillespie’s method

Gillespie’s method [67, 68, 69], a method for stochastic simulation of chemical reaction systems,
is useful because it takes into account two facts that a deterministic method is not designed to
capture: a system contains a whole number of molecules, and reactions among molecules are subject
to randomness. These qualities are likely to be important in systems where population sizes are
small.

Gillespie’s method consists of essentially the same steps as the n-fold way, described above.
Both methods belong to the class of kinetic Monte Carlo methods [66]. An implicit assumption
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of Gillespie’s method is the assumption that an explicit list of the reactions that can occur in a
system is available. A simulation proceeds as follows. First, initial population sizes and reaction
rates are calculated. Reaction rates are calculated based on rate constants and numbers of reactant
species. Rates are used to select the next event time and the next reaction. A reaction is then
fired. Populations and rates are updated for the new state of the system, and simulation continues
until a stopping criterion is satisfied. Variations of this method have been developed to increase its
speed. For example, efficiency of simulation can be improved through use of a reaction classification
scheme, as demonstrated in the method of Blue et al. [110] or Gibson and Bruck [111]. More recently,
the method of Slepoy et al. [112] groups together reactions that share similar rates.

Reaction classification is an inherent feature of the rule-based approach: as a coarse-graining
assumption, reactions implied by the same rule are assigned the same rate law. Thus, Gillespie’s
method is well-suited for simulation of rule-based models, if rates of all reactions implied by a rule
can be calculated without explicitly deriving the reactions. These calculations are performed in
network-free methods, of which there are multiple variants.

3.2 Algorithms for network-free simulation

Gillespie’s method has been generalized for simulation of rule-based models. These simulation meth-
ods are termed “network-free” because rules are used directly to advance the state of a system,
thereby avoiding network generation. Currently, four related algorithms have been described for
network-free simulation. These algorithms are summarized in Fig. 12. A main point of difference
between them lies in the handling of non-local site properties. An example of a non-local site prop-
erty is connectivity. The non-local environment of two sites must be examined if they are connected
indirectly. Determining if two sites are indirectly connected is important for enforcing rule applica-
tion conditions that place constraints on molecularity of rule-defined reactions. In general, non-local
properties are more difficult to evaluate than local properties (e.g., whether a site is bound or free).

In the method of Danos et al. [31], rates are assumed to depend on local properties only. A
waiting time is determined, a rule is selected, and sites are selected for rule application. The system
is updated, rates and populations are recalculated, time is incremented, and simulation continues.
The method of Yang et al. [93] performs the same calculation of rates as the method of Danos et
al. [31]. However, after sites are selected based on local properties, non-local properties are checked.
If a site is found to lack permissive non-local properties, it is rejected and a null event occurs.
The method of Colvin et al. [21] avoids the rejection step by calculating rates exactly (i.e., with
consideration of both local and non-local properties) before selecting rules and sites. Lastly, the
method of Colvin et al. [18] differs from the other algorithms in a number of ways. The time step
is fixed, and sites are selected before rules are selected. This method yields results consistent with
the other methods as long as the time step is below a certain threshold, which is checked during
simulation. The performance of tools implementing these methods have been compared, to a limited
extent [21, 20, 108].
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Fig. 12 A comparison of algorithms for network-free simulation. A. The method of Danos et al. [113] can be applied

if rule application depends on local context only. B. The method of Yang et al.[93] introduces a rejection step to
account for non-local site properties. C. The method of Colvin et al. [21] calculates exact rule rates considering
both local and non-local site properties. Thus, it has no rejection step. D. The method of Colvin et al. [18] is a
generalization of the STOCHSIM method [38, 114], which has a number of distinguishing features, including a fixed
time step and reversal of the site and rule selection steps. However, the method yields results consistent with other

methods, as long as step size is below a threshold.

4 Outlook and closing remarks

Our accumulated knowledge about the mechanisms of cell signaling motivates the development of
models that can capture these details. Current experimental capabilities that allow us to charac-
terize the functional roles of specific protein sites and to monitor the dynamics of protein-protein
interactions [115, 116, 117, 118, 119, 120, 121] makes the development of complementary modeling

methods especially timely. A method that addresses this need is the rule-based modeling approach.

By using rules to represent interactions, a modeler can avoid enumerating the reachable chemical
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species in a system, which is required in traditional approaches and which is a severe limitation
given the typical size and combinatorial complexity of cell signaling (sub)systems. The rule-based
approach allows models to be specified compactly, with simplifying assumptions that are more trans-
parent and arguably less ad hoc than traditional modeling approaches [122]. With recent advances
in simulation methodology, simulation of models that imply large reaction networks has become
feasible. As a result, it is now possible to develop models that capture site-specific details of a large
number of protein-protein interactions.

These capabilities are relevant for the study and, potentially, manipulation of cell signaling
mechanisms. For example, different residues in the same protein may have different kinetics of
phosphorylation, and each phosphorylated residue may regulate a distinct set of interactions (for
example, see Houtman et al. [123]). As a result, perturbations that affect phosphorylation kinetics
of specific sites (e.g., therapeutic kinase inhibitors, such as imatinib [124]) may be difficult to
analyze without a model in which individual sites of phosphorylation are distinguished. However,
traditional modeling approaches often necessitate a “virtual phosphorylation site” assumption [125],
meaning that multiple sites are lumped together as a single, virtual site of phosphorylation. Roles
for individual sites are not distinguished. This assumption can be lifted in a rule-based model more
eagsily than in a traditional model.

Rule-based models can be specified using formal domain-specific languages (i.e., programming
languages specialized for modeling). In contrast, traditional models for chemical kinetics formulated
in terms of equations are more suitable for analysis (e.g., integration or differentiation) than for
computation. Traditional modeling forms are used by many software tools, including tools that
bridge equations to numerical methods of analysis (e.g., numerical integration), such as MATLAB
(The MathWorks, Natick, MA). However, departure from traditional forms can be advantageous
[82] and for mechanistic modeling of cell signaling systems, it is necessary. This need arises from the
size and combinatorial complexity of signaling systems, which can be better captured if a model is
viewed as a program. The reason is that a programming language can be tailored for the problem
at hand. A model specified as a program has a number of other advantages over a set of equations.
One advantage that has perhaps not yet been fully appreciated is greater extensibility and a po-
tential for clearer annotation. As demonstrated by Thomson et al. [126], the formal elements of a
rule-based model can be specified incrementally (i.e., one at a time), annotated independently, and
then later assembled to address specific questions about system properties, which can also be for-
malized [97, 127, 128]. Guidelines for annotating rule-based models have been proposed [57], which
if adopted, could make models more understandable and reusable. Rule-based modeling provides
a general paradigm for modeling interactions of structured objects, with proven applications in
physics, chemistry, and computer science. The approach is being used increasingly often in systems
biology. In the future, we expect it to be a foundational method of the field because its extensibility
addresses large network size, and the use of rules addresses combinatorial complexity, which are
two inherent features of cell signaling systems.
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